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Abstract. In our previous papers (Nishimura [2001 and 2003]) we dealt with
jet bundles from a synthetic perch by regarding a 1-jet as something like a pin-
pointed (nonlinear) connection (called a preconnection) and then looking on higher-
order jets as repeated 1-jets. In this paper we generalize our notion of preconnec-
tion to higher orders, which enables us to develop a non-repetitive but still syn-
thetic approach to jet bundles. Both our repetitive and non-repetitive approaches
are coordinate-free and applicable to microlinear spaces in general. In our non-
repetitive approach we can establish a theorem claiming that the (n + 1)-th jet
space is an affine bundle over the n-th jet space, while we have not been able to
do so in our previous repetitive approach. We will show how to translate repeated
1-jets into higher-order preconnections. Finally we will demonstrate that our repet-
itive and non-repetitive approaches to jet bundles tally, as far as formal manifolds
are concerned.
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Introduction

In our previous papers (Nishimura [2001 and 2003]) we have approached the theory of jet
bundles from a synthetic coign of vantage by regarding a 1-jet as a decomposition of the
tangent space to the space at the point at issue (cf. Saunders [1989, Theorem 4.3.2]) and
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then looking on higher-order jets as repeated 1-jets (cf. Saunders [1989, §5.2 and §5.3]). In
Nishimura [2001] a 1-jet put down in such a way was called a preconnection, which should
have been called, exactly speaking, a 1-preconnection. In §1 of this paper we generalize our
previous notion of 1-preconnection to higher-orders to get the notion of n-preconnection
for any natural number n, reminiscent of higher-order generalizations of linear connection
discussed by Lavendhomme [1996, p.107] and Lavendhomme and Nishimura [1998, Definition
2]. The immediate meed of our present approach to jet bundles is that we can establish a
synthetic variant of Theorem 6.2.9 of Saunders [1989] claiming that the canonical projection
from the (n + 1)-th jet space to the n-th one is an affine bundle.

The remaining two sections are concerned with the comparison between our new ap-
proach to jet bundles by higher-order preconnections and our previous one by iterated 1-
preconnections discussed in Nishimura [2001 and 2003]. In Section 2 we will explain how to
translate the latter approach into the former, but we are not sure whether the translation
gives a bijection in this general context. However, if we confine our scope to formal manifolds,
the above translation indeed gives a bijection, which is the topic of Section 3.

Our standard reference of synthetic differential geometry is Lavendhomme [1996], but
some material which is not easily available in his book or which had better be presented in
this paper anyway is exhibited in §0 as preliminaries. Our standard reference of jet bundles
is Saunders [1989], §5.2 and §5.3 of which have been constantly inspiring.

0. Preliminaries

0.1. Microcubes

Let R be the extended set of real numbers with cornucopia of nilpotent infinitesimals, which
is expected to acquiesce in the so-called general Kock axiom (cf. Lavendhomme [1996, §2.1]).
We denote by D the totality of elements of R whose squares vanish. Given a microlinear
space M and an infinitesimal space E, a mapping γ from E to M is called an E-microcube
on M. Dn-microcubes are usually called n-microcubes. In particular, 1-microcubes are called
tangent vectors, and 2-microcubes are referred to as microsquares. We denote by TE(M)
the totality of E-microcubes on M. Given x ∈ M , we denote by TEx(M) the totality of
E-microcubes γ on M with γ(0, . . . , 0) = x. TDn

(M) and TDn

x (M) are usually denoted
by Tn(M) and Tn

x(M) respectively. Given γ ∈ Tn(M) and a natural number k with k ≤ n,
we can put down γ as a tangent vector tk

γ to Tn−1(M) mapping d ∈ D to γk
d ∈ Tn−1(M),

where
γk

d (d1, . . . , dn−1) = γ(d1, . . . , dk−1, d, dk, . . . , dn−1) (0.1.1)

for any d1, . . . , dn−1 ∈ D. Given α ∈ R, we define α ·
k
γk to be αtk

γ. Given γ+, γ− ∈ Tn(M)

with tk
γ+

(0) = tk
γ−(0), γ+ −

k
γ− is defined to be tk

γ+
− tk

γ− . Given γ1, . . . , γm ∈ Tn(M) with

tk
γ1

(0) = · · · = tk
γm

(0), tk
γ1

+ · · ·+tk
γm

is denoted by γ1 +
k
· · ·+

k
γm or Σm

ki=1γi. Given γ ∈ Tn(M)

and a mapping f : M →M ′, we will often denote f ◦ γ ∈ Tn(M ′) by f∗(γ).
We denote by Sn the symmetric group of the set {1, . . . , n}, which is well known to

be generated by n − 1 transpositions < i, i + 1 > exchanging i and i + 1(1 ≤ i ≤ n − 1)
while keeping the other elements fixed. A cycle σ of length k is usually denoted by <
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j, σ(j), σ2(j), . . . , σk−1(j) >, where j is not fixed by σ. Given σ ∈ Sn and γ ∈ Tn(M), we
define Σσ(γ) ∈ Tn(M) to be

Σσ(γ)(d1, . . . , dn) = γ(dσ(1), . . . , dσ(n)) (0.1.2)

for any (d1, . . . , dn) ∈ Dn. Given α ∈ R and γ ∈ Tn(M), we define α·
i
γ ∈ Tn

i (M) (1 ≤ i ≤ n)

to be
(α ·

i
γ)(di, . . . , dn) = γ(d1, . . . , di−1, αdi, di+1, . . . , dn) (0.1.3)

for any (d1, . . . , dn) ∈ Dn.

Some subspaces of Dn will play an important role. We denote by D(n) the set {(d1, . . . , dn) ∈
Dn | didj = 0 for any 1 ≤ i, j ≤ n}. We denote by D(n; n) the set {(d1, . . . , dn) ∈ Dn |
d1 . . . dn = 0}. Note that D(2) = D(2; 2).

Between Tn(M) and Tn+1(M) there are 2n+ 2 canonical mappings:

Tn+1(M)
di−−−−→←−−−si

Tn(M) (1 ≤ i ≤ n + 1)

For any γ ∈ Tn(M), we define si(γ) ∈ Tn+1(M) to be

si(γ)(d1, . . . , dn+1) = γ(d1, . . . , di−1, di+1, . . . , dn+1) (0.1.4)

for any (d1, . . . , dn+1) ∈ Dn+1. For any γ ∈ Tn+1(M), we define di(γ) ∈ Tn(M) to be

di(γ)(d1, . . . , dn) = γ(d1, . . . , di−1, 0, di, . . . , dn) (0.1.5)

for any (d1, . . . , dn) ∈ Dn. These operators satisfy the so-called simplicial identities (cf.
Goerss and Jardine [1999, p.4]).

Now we have

Proposition 0.1.1. For any γ+, γ− ∈ Tn(M), γ+|D(n;n) = γ−|D(n;n)iff di(γ+) = di(γ−) for
all 1 ≤ i ≤ n.

Proof. By the quasi-colimit diagram of Proposition 1 of Lavendhomme and Nishimura [1998].

0.2. Bundles

A mapping π : E →M of microlinear spaces is called a bundle over M , in which E is called
the total space of π, M is called the base space of π, and Ex = π−1(x) is called the fiber over
x ∈ M . Given y ∈ E, we denote by Vn

y (π) the totality of n-microcubes γ on E such that
π ◦γ is a constant function and γ(0, . . . , 0) = y. We denote by Vn(π) the set-theoretic union
of Vn

y (π)′s for all y ∈ E. A bundle π : E →M is called a vector bundle provided that Ex is
a Euclidean R-module for every x ∈ M . The canonical projections τM : T1(M) → M and
vπ : V1(π) → E are vector bundles. A bundle π : E → M is called an affine bundle over a
vector bundle π′ : E ′ →M provided that Ex is an affine space over the R-module E ′

x for every
x ∈M . Given two bundles π : E ′ →M and E ′ →M over the same base space M , a mapping
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f : E → E ′ is called a morphism of bundles from π to π′ over M if it induces the identity
mapping on M . Given two bundles π : E →M and ι : M ′ →M over the same base space M ,
the mapping ι∗(π) assigning a ∈ E to each (y, a) ∈M ′×

M
E = {(y, a) ∈M ′×E|ι(y) = π(a)} is

called the bundle obtained by pulling back the bundle π : E →M along ι.

0.3. Strong differences

Kock and Lavendhomme [1984] have provided the synthetic rendering of the notion of strong
difference for microsquares, a good exposition of which can be seen in Lavendhomme [1996,
§3.4]. Given two microsquares γ+ and γ− on M , their strong difference γ+−̇γ− is defined
exactly when γ+|D(2) = γ−|D(2), and it is a tangent vector to M with (γ+−̇γ−)(0) = γ+(0, 0) =
γ−(0, 0). Given t ∈ T1(M) and γ ∈ T2(γ) with t(0) = γ(0, 0), the strong addition t+̇γ is
defined to be a microsquare on M with (t+̇γ)|D(2) = γ|D(2). With respect to these operations
Kock and Lavendhomme [1984] have shown that

Theorem 0.3.1. The canonical projection T2(M) → TD(2)(M) is an affine bundle over
the vector bundle T1(M) ×

M
TD(2)(M) → TD(2)(M) assigning γ to each (t, γ) ∈ T1(M) ×

M

TD(2)(M) = {(t, γ) ∈ T1(M)×TD(2)(M)|t(0) = γ(0, 0)}. �

These considerations can be generalized easily to n-microcubes for any natural number n.
More specifically, given two n-microsquares γ+ and γ− on M , their strong difference γ+−̇γ−is
defined exactly when γ+|D(n;n) = γ−|D(n;n), and it is a tangent vector to M with (γ+−̇γ−)(0) =
γ+(0, . . . , 0) = γ−(0, . . . , 0). Given t ∈ T1(M) and γ ∈ Tn(γ) with t(0) = γ(0, . . . , 0), the
strong addition t+̇γ is defined to be an n-microcube on M with (t+̇γ)|D(n;n) = γ|D(n;n). So
as to define −̇ and +̇, we need the following two lemmas. Their proofs are akin to their
counterparts of microsquares (cf. Lavendhomme [1996, pp.92-93]).

Lemma 0.3.2. (cf. Nishimura [1997. Lemma 5.1] and Lavendhomme and Nishimura [1998,
Proposition 3]). The diagram

D(n; n) i−→ Dn

i ↓ ↓ Ψ
Dn Φ−→ Dn ∨D

is a quasi-colimit diagram, where i : D(n; n) → Dn is the canonical injection, Dn ∨ D =
{(d1, . . . , dn, e) ∈ Dn+1 | d1e = · · · = dne = 0}, Φ(d1, . . . , dn) = (d1, . . . , dn, 0) and
Ψ(d1, . . . , dn) = (d1, . . . , dn, d1 . . . dn).

Given two n-microsquares γ+ and γ− on M with γ+|D(n;n) = γ−|D(n;n), there exists a unique
function f : Dn∨D →M with f ◦Ψ = γ+ and f ◦Φ = γ−. We define (γ+−̇γ−)(d) = f(0, 0, d)
for any d ∈ D. From the very definition of −̇ we have

Proposition 0.3.3. Let f : M →M ′. Given γ+, γ− ∈ Tn(M) with γ+|D(n;n) = γ−|D(n;n), we
have f∗(γ+)|D(n;n) = f∗(γ−)|D(n;n) and

f∗(γ+−̇γ−) = f∗(γ+)−̇f∗(γ−). (0.3.1)
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Lemma 0.3.4. The diagram
1 i−→ Dn

i ↓ ↓ Ξ
Dn Φ−→ Dn ∨D

is a quasi-colimit diagram, where i : 1→ Dn and i : 1→ D are the canonical injections and
Ξ(d) = (0, . . . , 0, d). �

Given t ∈ T1(M) and γ ∈ Tn(γ) with t(0) = γ(0, . . . , 0), there exists a unique func-
tion f : Dn ∨ D → M with f ◦ Φ = γ and f ◦ Ξ = t. We define (t+̇γ)(d1, . . . , dn) =
f(d1, . . . , dn, d1 . . . dn) for any (d1, . . . , dn) ∈ Dn. From the very definition of +̇ we have

Proposition 0.3.5. Let f : M → M ′. Given t ∈ T1(M) and γ ∈ Tn(γ) with t(0) =
γ(0, . . . , 0), we have f∗(t)(0) = f∗(γ)(0, . . . , 0) and

f∗(t+̇γ) = f∗(t)+̇f∗(γ) (0.3.2)

�

We can proceed as in the case of microsquares to get

Theorem 0.3.6. The canonical projection Tn(M) → TD(n;n)(M) is an affine bundle over
the vector bundle T1(M)×

M
TD(n;n)(M)→ TD(n;n)(M) assigning γ to each (t, γ) ∈ T1(M)×

M

TD(n;n)(M) = {(t, γ) ∈ T1(M)×TD(n;n)(M)|t(0) = γ(0, 0)}.

We have the following n-dimensional counterparts of Propositions 5, 6 and 7 of Lavendhomme
[1996, §3.4].

Proposition 0.3.7. For any α ∈ R, any γ+, γ−, γ ∈ Tn(M) and any t ∈ T1(M) with
γ+|D(n;n) = γ−|D(n;n) and t(0) = γ(0, . . . , 0), we have

α(γ+−̇γ−) = (α ·
i
γ+)−̇(α ·

i
γ−). (0.3.3)

α ·
i
(ti+̇γ) = αt+̇α ·

i
γi (0.3.4)

�

Proposition 0.3.8. For any σ ∈ σn, any γ+, γ−, γ ∈ Tn(M), and any t ∈ T1(M) with
γ+|D(n;n) = γ−|D(n;n) and t(0) = γ(0, . . . , 0), we have

Σσ(γ+)−̇Σσ(γ−) = γ+−̇γ− (0.3.5)

Σσ(t+̇γ) = t+̇Σσ(γ) (0.3.6)

�

Proposition 0.3.9. For γ+, γ−, γ ∈ Tn(M) with γ+|D(n;n) = γ−|D(n;n) we have

γ+−̇γ− = (· · · (γ+ −
1

γ−)−
2

s1 ◦ d1(γ+))−
3

s2
1 ◦ d2

1(γ+)) · · · −
n

sn−1
1 ◦ dn−1

1 (γ+) (0.3.7)

�
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0.4. Symmetric forms

Given a vector bundle π : E → M and a bundle ξ : P → M , a symmetric n-form at x ∈ P
along ξ with values in π is a mapping ω : Tn

x(P ) → Eξ(x) such that for any γ ∈ Tn(P ), any
γ′ ∈ Tn−1(P ), any α ∈ R and any σ ∈ Sn we have

ω(α ·
i
γ) = αω(γ) (1 ≤ i ≤ n) (0.4.1)

ω(Σσ(γ)) = ω(γ) (0.4.2)

ω((d1, . . . , dn) ∈ Dn 7−→ γ′(d1, . . . , dn−2, dn−1dn)) = 0 (0.4.3)

We denote by Sn
x(ξ; π) the totality of symmetric n-forms at x along ξ with values in π.

We denote by Sn(ξ; π) the set-theoretic union of Sn
x(ξ; π)′s for all x ∈ P . If P = M and

ξ : P → M is the identity mapping, then Sn
x(ξ; π) and Sn(ξ; π) are usually denoted by

Sn
x(M ; π) and Sn(M ; π) respectively.

Proposition 0.4.1. Let ω ∈ Sn+1(ξ; π). Then we have

ω(si(γ)) = 0 (1 ≤ i ≤ n + 1) (0.4.4)

for any γ ∈ Tn(P ).

Proof. For any α ∈ R, we have

ω(si(γ)) = ω(α ·
i
si(γ)) = αω(si(γ)) (0.4.5)

Let α = 0, we have the desired conclusion. �

0.5. Convention

Two bundles π : E → M and π′ : E ′ → M over the same microlinear space M shall be
chosen once and for all.

1. Preconnections

Let n be a natural number. An n-pseudoconnection over the bundle π : E → M at x ∈ E
is a mapping ∇x : Tn

π(x)(M) → Tn
x(E) such that for any γ ∈ Tn

π(x)(M), any α ∈ R and any
σ ∈ Sn, we have the following:

π ◦ ∇x(γ) = γ (1.1)

∇x(α ·
i
γ) = α ·

i
∇x(γ) (1 ≤ i ≤ n) (1.2)

∇x(Σσ(γ)) = Σσ(∇x(γ)) (1.3)

We denote by Ĵn
x(π) the totality of n-pseudoconnections ∇x over the bundle π : E → M at

x ∈ E. We denote by Ĵn(π) the set-theoretic union of Ĵn
x(π)′s for all x ∈ E. In particular,

Ĵ0(π) = E by convention.
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Let ∇x be an (n + 1)-pseudoconnection over the bundle π : E → M at x ∈ E. Let
γ ∈ Tn

π(x)(M) and (d1, . . . , dn+1) ∈ Dn+1. Then we have

Lemma 1.1. ∇x(sn+1(γ))(d1, . . . , dn, dn+1) is independent of dn+1, so that we can put down
∇x(sn+1(γ)) at Tn

x(E).

Proof. The proof is similar to that of Proposition 0.4.1. For any α ∈ R we have

(∇x(sn+1(γ)))(d1, . . . , dn, αdn+1) = (α ·
n+1
∇x(sn+1(γ)))(d1, . . . , dn, dn+1)

= (∇x(α ·
n+1

(sn+1(γ))))(d1, . . . , dn, dn+1) (1.4)

= (∇x(sn+1(γ)))(d1, . . . , dn, dn+1)

Letting α = 0 in (1.4), we have

(∇x(sn+1(γ)))(d1, . . . , dn, 0) = (∇x(sn+1(γ)))(d1, . . . , dn, dn+1), (1.5)

which shows that ∇x(sn+1(γ))(d1, . . . , dn, dn+1) is independent of dn+1. �

Now it is easy to see that

Proposition 1.2. The assignment γ ∈ Tn
π(x)(M) 7−→ ∇x(sn+1(γ)) ∈ Tn

x(E) is an n-
pseudoconnection over the bundle π : E →M at x. �

By Proposition 1.2 we have the canonical projections π̂n+1,n : Ĵn+1(π)→ Ĵn(π). By assigning

π(x) ∈ M to each the canonical projections π̂n : Ĵn(π) → M . Note that π̂n ◦ π̂n+1,n =

π̂n+1. For any natural numbers n, m with m ≤ n, we define π̂n,m : Ĵn(π) → Ĵm(π) to be
π̂m+1,m ◦ · · · ◦ π̂n,n−1.

Now we are going to show that

Proposition 1.3. Let ∇x ∈ Ĵn+1(π). Then the following diagrams are commutative:

Tn+1(M) ∇x−−−−−−−−−−−−−−−−→ Tn+1(E)

si ↑ ↑ si

Tn(M)
−−−−−−−−−−−−−−−→

π̂n+1,n(∇x) Tn(E)

Tn+1(M) ∇x−−−−−−−−−−−−−−−−→ Tn+1(E)

di ↓ ↓ di

Tn(M)
−−−−−−−−−−−−−−−→

π̂n+1,n(∇x) Tn(E)

Proof. By the very definition of π̂n+1,n we have

sn+1(π̂n+1(∇x)(γ)) = ∇x(sn+1(γ)) (1.6)
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for any γ ∈ Tn
π(x)(M). For i 6= n + 1, we have

si(π̂n+1,n(∇x)(γ)) = Σ<i+1,i+2,... ,n,n+1>(Σ<i,n+1>(sn+1(π̂n+1,n(∇x)(γ))))

= Σ<i+1,i+2,... ,n,n+1>(Σ<i,n+1>(∇x(sn+1(γ)))) [(1.6)]

= Σ<i+1,i+2,... ,n,n+1>(∇x(Σ<i,n+1>(sn+1(γ)))) [(1.3)] (1.7)

= ∇x(Σ<i+1,i+2,... ,n,n+1>(Σ<i,n+1>(sn+1(γ)))) [(1.3)]

= ∇x(si(γ))

Now we are going to show that

di(∇x(γ)) = (π̂n+1,n(∇x))(di(γ)) (1.8)

for any γ ∈ Tn+1
π(x)(M). First we deal with the case of i = n+1. For any (d1, . . . , dn+1) ∈ Dn+1

we have

(dn+1(∇x(γ)))(d1, . . . , dn) = (∇x(γ))(d1, . . . , dn, 0)

= (∇x(γ))(d1, . . . , dn, 0dn+1)

= (0 ·
n+1
∇x(γ))(d1, . . . , dn, dn+1) (1.9)

= (∇x(0 ·
n+1

γ))(d1, . . . , dn, dn+1)

= (∇x(sn+1(dn+1(γ))))(d1, . . . , dn, dn+1)

= (π̂n+1,n(∇x))(dn+1(γ))(d1, . . . , dn)

For i 6= n + 1 we have

di(∇x(γ)) = Σ<n,n−1,... ,i+1,i>(dn+1(Σ<i,n+1>(∇x(γ))))

= Σ<n,n−1,... ,i+1,i>(dn+1(∇x(Σ<i,n+1>(γ))))

[(1.3)]

= Σ<n,n−1,... ,i+1,i>(π̂n+1,n(∇x)(dn+1(Σ<i,n+1>(γ)))) (1.10)

[(1.9)]

= π̂n+1,n(∇x)(Σ<n,n−1,... ,i+1,i>(dn+1(Σ<i,n+1>(γ))))

[(1.3)]

= π̂n+1,n(∇x)(di(γ)) �

Corollary 1.4. Let ∇+
x , ∇−

x ∈ Ĵn+1(π) with π̂n+1,n(∇+
x ) = πn+1,n(∇−

x ). Then

∇+
x (γ)|D(n+1;n+1) = ∇−

x (γ)|D(n+1;n+1) for any γ ∈ Tn+1
π(x)(M).

Proof. By Lemma 0.1.1 and Proposition 1.3. �

The notion of an n-preconnection is defined inductively on n. The notion of a 1-preconnection
shall be identical with that of a 1-pseudoconnection. Now we proceed inductively. An (n+1)-
pseudoconnection ∇x : Tn+1

π(x)(M)→ Tn+1
x (E) over the bundle π : E → M at x ∈ E is called
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an (n + 1)-preconnection over the bundle π : E → M at x if it acquiesces in the following
two conditions

π̂n+1,n(∇x) is an n−preconnection. (1.11)

For any γ ∈ Tn
π(x)(M), we have

∇x((d1, . . . , dn+1) ∈ Dn+1 7−→ γ(d1, . . . , dn−1, dndn+1))

= (d1, . . . , dn+1) ∈ Dn+1 7−→ π̂n+1,n(∇x)(γ)(d1, . . . , dn−1, dndn+1).

(1.12)

We denote by Jn
x(π) the totality of n-preconnections ∇x over the bundle π : E → M at

x ∈ E. We denote by Jn(π) the set-theoretic union of Jn
x(π)′s for all x ∈ E. In particular,

J0(π) = Ĵ0(π) = E by convention and J1(π) = Ĵ1(π) by definition. By the very definition
of n-preconnection, the projections π̂n+1,n : Ĵn+1(π) → Ĵn(π) are naturally restricted to
mappings πn+1,n : Jn+1(π)→ Jn(π). Similarly for πn : Jn(π)→M and πn,m : Jn(π)→ Jm(π)
with m ≤ n.

Proposition 1.5. Let m, n be natural numbers with m ≤ n. Let k1, . . . , km be positive
integers with k1 + · · ·+ km = n. For any ∇x ∈ Jn(π), any γ ∈ Tm

π(x)(M) and any σ ∈ Sn we
have

∇x((d1, . . . , dn) ∈ Dn 7−→ γ(dσ(1) . . . dσ(k1),

dσ(k1+1) . . . dσ(k1+k2), . . . , dσ(k1+···+km−1+1) . . .σ(n)))

= (d1, . . . , dn) ∈ Dn 7−→ πn,m(∇x)(γ)(dσ(1) . . . dσ(k1), dσ(k1+1) . . .

dσ(k1+k2), . . . , dσ(k1+···+km−1+1) . . . dσ(n))

(1.13)

Proof. This follows simply from repeated use of (1.3) and (1.12). �

The following proposition will be used in the proof of Proposition 3.6.

Proposition 1.6. Let ∇x ∈ Jn(π), t ∈ T1
π(x)(M) and γ, γ+, γ− ∈ Tn

π(x)(M) with γ+|D(n;n) =

γ−|D(n;n). Then we have

∇x(γ+)−̇∇x(γ−) = πn,1(∇x)(γ+−̇γ−) (1.14)

πn,1(∇x)(t)+̇∇x(γ) = ∇x(t+̇γ). (1.15)

Proof. It is an easy exercise of affine geometry to show that (1.14) and (1.15) are equivalent.
Here we deal only with (1.14) in case of n = 2. For any d1, d2 ∈ D, we have
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(∇x(γ+)−̇∇x(γ−))(d1d2) =((∇x(γ+)−
1
∇x(γ−))−

2
(s1 ◦ d1)(∇x(γ+)))(d1, d2)

[By Proposition 0.3.9]

=∇x((γ+ −
1

γ−)−
2

(s1 ◦ d1)(γ+))(d1, d2)

[By (1.2) and Proposition 1.3]

=∇x(((e1, e2) ∈ D2 7−→ (γ+−̇γ−)(e1e2)))(d1, d2)

[By Proposition 0.3.9 again]

=π2,1(∇x)(γ+−̇γ−)(d1d2)

[By Proposition 1.5],

(1.16)

so that (1.14) in case of n = 2 obtains. �

Proposition 1.7. Let ∇+
x , ∇−

x ∈ Jn+1
x (π) with π̂n+1,n(∇+

x ) = π̂n+1,n(∇−
x ). Then the

assignment γ ∈ Tn+1
π(x)(M) 7−→ ∇+

x (γ)−̇∇−
x (γ) belongs to Sn+1

π(x)(M ; vπ).

Proof. Since

π∗(∇+
x (γ)−̇∇−

x (γ)) = π∗(∇+
x (γ))−̇π∗(∇−

x (γ)) [By Proposition 0.3.3]

= 0 [(1.1)],
(1.17)

∇+
x (γ)−̇∇−

x (γ) belongs in V1
x(π). For any α ∈ R and any natural number i with 1 ≤ 1 ≤ n+1,

we have

∇+
x (α ·̇

i
γ)i−̇∇−

x (α ·̇
i
γ) = α ·

i
∇+

x (γ)−̇α ·
i
∇−

x (γ) [(1.2)]

= α(∇+
x (γ)−̇∇−

x (γ)) [(0.3.3)],
(1.18)

which implies that the assignment γ ∈ Tn+1
π(x)(M) 7−→ ∇+

x (γ)−̇∇−
x (γ) abides by (0.4.1). For

any σ ∈ Sn+1 we have

∇+
x (Σσ(γ))−̇∇−

x (Σσ(γ)) = Σσ(∇+
x (γ))−̇Σσ(∇−

x (γ)) [(1.3)]

= Σσ(∇+
x (γ)−̇∇−

x (γ)) [(0.3.5)],
(1.19)

which implies that the assignment γ ∈ Tn+1
π(x)(M) 7−→ ∇+

x (γ)−̇∇−
x (γ) abides by (0.4.2). It

remains to show that the assignment γ ∈ Tn+1
π(x)(M) 7−→ ∇+

x (γ)−̇∇−
x (γ) abides by (0.4.3),

which follows directly from (1.12) and the assumption that π̂n+1,n(∇+
x ) = π̂n+1,n(∇−

x ). �

Proposition 1.8. Let ∇x ∈ Jn+1
x (π) and ω ∈ Sn+1

π(x)(M ; vπ). Then the assignment γ ∈
Tn+1

π(x)(M) 7−→ ω(γ)+̇∇x(γ) belongs to Jn+1
x (π).

Proof. Since

π∗(ω(γ)+̇∇x(γ)) = π∗(ω(γ))+̇π∗(∇x(γ)) [(0.3.2)]

= γ [(1.1)],
(1.20)
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the assignment γ ∈ Tn+1
π(x)(M) 7−→ ω(γ)+̇∇x(γ) stands to (1.1). For any α ∈ R and any

natural number i with 1 ≤ i ≤ n + 1, we have

ω(α ·
i
γ)i+̇∇x(α ·

i
γ) = αω(γ)+̇α ·

i
∇x(γ) [(0.4.1) and (1.2)]

= α ·
i
(ω(γ)i+̇∇x(γ)) [(0.3.4)],

(1.21)

so that the assignment γ ∈ Tn+1
π(x)(M) 7−→ ω(γ)+̇∇x(γ) stands to (1.2). For any σ ∈ Sn+1 we

have

ω(Σσ(γ))+̇∇x(Σσ(γ)) = ω(γ)+̇Σσ(∇x(γ)) [(0.4.2)and (1.2)]

= Σσ(ω(γ)+̇∇x(γ)) [(0.3.6)],
(1.22)

so that the assignment γ ∈ Tn+1
π(x)(M) 7−→ ω(γ)+̇∇x(γ) stands to (1.3). That the assignment

γ ∈ Tn+1
π(x)(M) 7−→ ω(γ)+̇∇x(γ) stands to (1.11) follows from the simple fact that the image of

the assignment under π̂n+1,n coincides with π̂n+1,n(∇x), which is consequent upon Proposition

0.4.1. It remains to show that the assignment γ ∈ Tn+1
π(x)(M) 7−→ ω(γ)+̇∇x(γ) abides by

(1.12), which follows directly from (0.4.3) and (1.12). �

For any ∇+
x , ∇−

x ∈ Jn+1(π) with π̂n+1,n(∇+
x ) = π̂n+1,n(∇−

x ), we define ∇+
x −̇∇−

x ∈ Sn+1
π(x)(M ; vπ)

to be

(∇+
x −̇∇−

x )(γ) = ∇+
x (γ)−̇∇−

x (γ) (1.23)

for any γ ∈ Tn+1
π(x)(M). This is well defined by dint of Lemma 1.4 and Propositions 0.3.5 and

0.3.6. For any ω ∈ Sn+1
π(x)(M ; vπ) and any ∇x ∈ Jn+1(π) we define ω+̇∇x ∈ Jn+1

x (π) to be

(ω+̇∇x)(γ) = ω(γ)+̇∇x(γ) (1.24)

for any γ ∈ Tn+1
π(x)(M). This is well defined by dint of Propositions 0.3.5 and 0.3.6

With these two operations defined in (1.23) and (1.24) it is easy to see that

Theorem 1.9 (cf. Saunders [1989, Theorem 6.2.9]). The bundle πn+1,n : Jn+1(π)→ Jn(π) is
an affine bundle over the vector bundle Jn(π)×

M
Sn+1(M ; vπ)→ Jn(π). �

An n-connection ∇ over π is simply an assignment of an n-preconnection ∇x over π at x to
each point x of E, in which we will often write ∇(γ, x) in place of ∇x(γ). 1-preconnections
over π (at x ∈ E) in this paper were called simply preconnections over π (at x ∈ E) in
Nishimura [2001].

Let f be a morphism of bundles over M from π to π′. We say that an n-preconnection
∇x over π at a point x of E is f -related to an n-preconnection ∇y over π′ at a point y = f(x)
of E ′ provided that

f ◦ ∇x(γ) = ∇y(γ) (1.25)

for any γ ∈ Tn
a(M) with a = π(x) = π′(y).
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Now we recall the construction of Jn(π)′s in Nishimura [2003]. By convention we let
J0(π) = J0(π) = E with π0,0 = π0,0 = idE and π0 = π0 = π. We let J1(π) = J1(π) with
π1,0 = π1,0 and π1 = π1. Now we are going to define Jn+1(π) together with the canonical
mapping πn+1,n : Jn+1(π)→ Jn(π) by induction on n ≥ 1. These are intended for holonomic
jet bundles (cf. Saunders [1989, Chapter 5]). We define Jn+1(π) to be the subspace of J1(πn)
consisting of ∇′

xs with x = ∇y ∈ Jn(π) pursuant to the following two conditions:

∇x is πn,n−1−related to ∇y. (1.26)

Let d1, d2 ∈ D and γ a microsquare on M with

γ(0, 0) =πn(x). Let it be that

z =∇y(γ(·, 0))(d1) (1.27.1)

w =∇y(γ(0, ·))(d2) (1.27.2)

∇z =∇x(γ(·, 0))(d1) (1.27.3)

∇w =∇x(γ(0, ·))(d2) (1.27.4)

(1.27)

Then we have
∇z(γ(d1, ·))(d2) = ∇w(γ(·, d2))(d1) (1.27.5)

We define πn+1,n to be the restriction of (πn)1,0 : J1(Jn(π)) → Jn(π) to Jn+1(π). We let
πn+1 = πn ◦ πn+1,n

2. Translation of repeated 1-jets into higher-order Preconnections

Mappings ϕn : Jn(π) → Jn(π)(n = 0, 1) shall be the identity mappings. We are going to
define ϕn : Jn(π) → Jn(π) for any natural number n by induction on n. Let xn = ∇xn−1 ∈
Jn(π) and ∇xn ∈ Jn+1(π). We define ϕn+1(∇xn) as follows:

ϕn+1(∇xn)(γ)(d1, . . . , dn+1) = ϕn(∇xn(γ(0, . . . , 0, ·))(dn+1))(γ(·, . . . , ·, dn+1))(d1, . . . , dn)
(2.1)

for any γ ∈ Tn+1
πn(xn)(M) and any (d1, . . . , dn+1) ∈ Dn+1. Then we have

Lemma 2.1. ϕn+1(∇xn) ∈ Ĵn+1(π).

Proof. It suffices to show that for any γ ∈ Tn+1
πn(xn)(M), any α ∈ R and any σ ∈ Sn+1 we have

π ◦ ϕn+1(∇xn)(γ) =γ (2.2)

ϕn+1(∇xn)(α ·
i
γ) =α ·

i
ϕn+1(∇xn)(γ) (1 ≤ i ≤ n + 1) (2.3)

ϕn+1(∇xn)(Σσ(γ)) =Σσ(ϕn+1(∇xn)(γ)) (2.4)
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We proceed by induction on n. First we deal with (2.2)

π ◦ ϕn+1(∇xn)(γ)(d1, . . . , dn+1) = π(ϕn+1(∇xn)(γ)(d1, . . . , dn+1))

= π(ϕn(∇xn(γ(0, . . . , 0, ·))(dn+1))(γ(·, . . . , ·, dn+1))(d1, . . . , dn))

[By the definition of ϕn+1]

= π ◦ ϕn(∇xn(γ(0, . . . , 0, ·))(dn+1))(γ(·, . . . , ·, dn+1))(d1, . . . , dn)

= γ(·, . . . , ·, dn+1)(d1, . . . , dn)

[By induction hypothesis]

= γ(d1, . . . , dn+1)

(2.5)

Next we deal with (2.3), the treatment of which is divided into two cases, namely, i ≤ n and
i = n + 1. For the former case we have

ϕn+1(∇xn)(α ·
i
γ)(di, . . . , dn+1)

= ϕn(∇xn(α ·
i
γ(0, . . . , 0, ·))(dn+1))(α ·

i
γ(·, . . . , ·, dn+1))(d1, . . . , dn)

[By the definition of ϕn+1]

= α ·
i
ϕi(∇xn(γ(0, . . . , 0, ·))(dn+1))(γ(·, . . . , ·, dn+1))(d1, . . . , dn)

[By induction hypothesis]

= ϕn(∇xn(γ(0, . . . , 0, ·))(dn+1))(γ(·, . . . , ·, dn+1))(d1, . . . , di−1, αdi, di+1, · · · , dn)

= ϕn+1(∇xn)(γ)(d1, . . . , di−1, αdi, di+1, · · · , dn+1)

= α ·
i
ϕi(∇xn)(γ)(d1, . . . , dn+1)

(2.6)

For the latter case of our treatment of (2.3) we have

ϕn+1(∇xn)(α ·
n+1

γ)(d1, . . . , dn+1)

= ϕn(∇xn(α ·
n+1

γ(0, . . . , 0, ·))(dn+1))(α ·
n+1

γ(·, . . . , ·, dn+1))(d1, . . . , dn)

[By the definition of ϕn+1]

= ϕn(∇xn(γ(0, . . . , 0, ·))(αdn+1))(γ(·, . . . , ·, αdn+1))(d1, . . . , dn)

= α ·
n+1

ϕn+1(∇xn)(γ)(d1, . . . , dn+1)

(2.7)

Finally we deal with (2.4), for which it suffices to handle σ =< i, i + 1 > (1 ≤ i ≤ n). The
treatment of the simple case of i ≤ n− 1 can safely be left to the reader. Here we deal with
(2.4) in case of σ =< n, n + 1 >. Let it be that

yn−1 =∇xn−1(γ(0, . . . , 0, ·))(dn+1) (2.8)

zn−1 =∇xn−1(γ(0, . . . , 0, ·, 0))(dn) (2.9)

∇yn−1 =∇xn(γ(0, . . . , 0, ·))(dn+1) (2.10)

∇zn−1 =∇xn(γ(0, . . . , 0, ·, 0))(dn) (2.11)
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On the one hand we have

ϕn+1(∇xn)(Σ<n,n+1>(γ))(d1, . . . , dn+1)

= ϕn(∇xn(Σ<n,n+1>(γ)(0, . . . , 0, ·))(dn+1))(Σ<n,n+1>(γ)(·, . . . , ·, dn+1))(d1, . . . , dn)

[By the definition of ϕn+1]

= ϕn(∇xn(γ(0, . . . , 0, ·, 0))(dn+1))(γ(·, . . . , ·, dn+1, ·))(d1, . . . , dn)

= ϕn−1(∇zn−1(γ(0, . . . , 0, dn+1, ·)(dn))(γ(·, . . . , ·, dn+1, dn))(d1, . . . , dn−1)

[By the definition of ϕn]

= ϕn−1(∇yn−1(γ(0, . . . , 0, ·, dn)(dn+1))(γ(·, . . . , ·, dn+1, dn))(d1, . . . , dn−1)

[(1.27.5)]

(2.12)

On the other hand we have

Σ<n,n+1>(ϕn+1(∇xn)(γ))(d1, . . . , dn+1)

= ϕn+1(∇xn)(γ)(d1, . . . , dn−1, dn+1, dn)

= ϕn(∇xn(γ(0, . . . , 0, ·))(dn))(γ(·, . . . , ·, dn))(d1, . . . , dn−1, dn+1)

[By the definition of ϕn+1]

= ϕn−1(∇yn−1(γ(0, . . . , 0, ·, dn)(dn+1))(γ(·, . . . , ·, dn+1, dn))(d1, . . . , dn−1)

[By the definition of ϕn]

(2.13)

It follows from (2.12) and (2.13) that

ϕn+1(∇xn)(Σ<n,n+1>(γ)) = Σ<n,n+1>(ϕn+1(∇xn)(γ)) (2.14)

This completes the proof. �

Lemma 2.2. The diagram

Jn+1(π) ϕn+1−−−−−−−−−−−−−−−−−→ Ĵn+1(π)

πn+1,n ↓ ↓ π̂n+1,n

Jn(π) −−−−−−−−−−−−−−−−→ϕn Ĵn(π)

(2.15)

is commutative.

Proof. Let ∇xn ∈ Jn+1(π) and xn = ∇xn−1 ∈ Jn(π). For any γ ∈ Tn
πn−1(xn−1)(M) and any

(d1, . . . , dn) ∈ Dn we have

((πn+1,n ◦ ϕn+1)(∇xn))(γ)(d1, . . . , dn)

= (ϕn+1(∇xn))(sn+1(γ))(d1, . . . , dn, 0)

[By the definition of πn+1,n]

= ϕn(∇xn(sn+1(γ)(0, . . . , 0, ·))(0))(sn+1(γ)(·, . . . , ·, 0))(d1, . . . , dn)

[By the definition of ϕn+1]

= ϕn(∇xn−1)(γ)(d1, . . . , dn),

(2.16)
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which shows the commutativity of the diagram (2.15). �

Lemma 2.1 can be strengthened as follows:

Lemma 2.3. ϕn+1(∇xn) ∈ Jn+1(π).

Proof. With due regard to Lemmas 2.1 and 2.2, we have only to show that for any γ ∈
Tn

πn(xn)(M), we have

ϕn+1(∇xn)(((d1, . . . , dn+1) ∈ Dn+1 7−→ γ(d1, . . . , dn−1, dndn+1)))

= (d1, . . . , dn+1) ∈ Dn+1 7−→ π̂n+1,n(ϕn+1(∇xn))(γ)(d1, . . . , dn−1, dndn+1)
(2.17)

We proceed by induction on n. For n =0 there is nothing to prove. Let γ̄ be the (n + 1)-
microcube (d1, . . . , dn+1) ∈ Dn+1 7−→ γ(d1, . . . , dn−1, dndn+1). For any d1, . . . , dn+1 ∈ D we
have

ϕn+1(∇xn)(γ̄)(d1, , , , dn+1)

= ϕn(∇xn(γ̄(0, . . . , 0, ·))(dn+1))(γ̄(·, . . . , ·, dn+1))(d1, . . . , dn)

[By the definition of ϕn+1]

= ϕn(∇xn−1)(γ̄(·, . . . , ·, dn+1))(d1, . . . , dn)

= ϕn(∇xn−1)(dn+1n ·
n
γ̄)(d1, . . . , dn)

= dn+1 ·
n
(ϕn(∇xn−1)(γ̄))(d1, . . . , dn) [By Lemma 2.1]

= ϕn(∇xn−1)(γ̄)(d1, . . . , dn−1, dndn+1)

(2.18)

Thus we have established the mappings ϕn : Jn(π)→ Jn(π). �

3. Preconnections in formal bundles

In this section we will assume that the bundle π : E → M is a formal bundle of fiber
dimension q over the formal manifold of dimension p. For the exact definition of a for-
mal bundle, the reader is referred to Nishimura [n.d.]. Since our considerations to follow
are always infinitesimal, this means that we can assume without any loss of generality
that M = Rp, E = Rp+q, and π : Rp+q → Rp is the canonical projection to the first p
axes. We will let i with or without subscripts range over natural numbers between 1 and
p (including endpoints), while we will let j with or without subscripts range over natural
numbers between 1 and q (including endpoints). For any natural number n, we denote
by J n(π) the totality of (xi, yj, αj

i , α
j
i1i2

, . . . , αj
i1...in

)′s of p + q + pq + p2q + · · · + pnq ele-

ments of R such that αj
i1...ik

′s are symmetric with respect to subscripts, i.e., αj
iσ(1)...iσ(k)

=

αj
i1...ik

for any σ ∈ Sk(2 ≤ k ≤ n). Therefore the number of independent components

in (xi, yj, αj
i , α

j
i1i2

, . . . , αj
i1...in

) ∈ J n(π) is p + qΣn
k=0(

p+k−1
p−1 ) = p + q(p+n

n ). The canonical

projection (xi, yj, αj
i , α

j
i1i2

, . . . , αj
i1...in

, αj
i1...in+1

) ∈ J n+1(π) 7−→ (xi, yj, αj
i , α

j
i1i2

, . . . , αj
i1...in

) ∈
J n(π) is denoted by π

˜
n+1,n. We will use Einstein’s summation convention to suppress Σ.
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The principal objective in this section is to define mappings θ̃n : J n(π) → Jn(π) and

θ
˜
n : Jn(π) → J n(π), which are to be shown to be the inverse of each other. Let θ̃0 be the

identity mapping. We define θ̃1 : J 1(π)→ J1(π) to be

θ̃1((x
i, yj, αj

i ))(d ∈ D 7−→ (xi) + d(ai)) = d ∈ D 7−→ (xi, yj) + d(ai, aiαj
i ) (3.1)

We define θ̃2 : J 2(π)→ J2(π) to be

θ̃2((x
i, yj, αj

i , α
j
i1i2

))((d1, d2) ∈ D2

7−→ (xi) + d1(a
i
1) + d2(a

i
2) + d1d2(a

i
12))

= (d1, d2) ∈ D2

7−→ (xi, yj) + d1(a
i
1, a

i
1α

j
i ) + d2(a

i
2, a

i
2α

j
i ) + d1d2(a

i
12, a

i1
1 ai2

2 αj
i1i2

+ ai
12α

j
i )

(3.2)

Generally we define θ̃n : J n(π)→ Jn(π) to be

θ̃n((xi, yj, αj
i , α

j
i1i2

, . . . , αj
i1i2...in

))((d1, . . . , dn) ∈ Dn

7−→ (xi) + Σn
r=1Σ1≤k1<···<kr≤ndk1 . . . dkr(a

i
k1...kr

))

= (d1, . . . , dn) ∈ Dn

7−→ (xi, yj) + Σn
r=1Σ1≤k1<···<kr≤ndk1 . . . dkr(a

i
k1...kr

, Σa
iJ1
J1

. . . a
iJs
Js

αj
iJ1

...iJs
)),

(3.3)

where the last Σ is taken over all partitions of the set {k1, . . . , kr} into nonempty subsets
{J1, . . . ,Js}, and if J = {k1, . . . , kt} is a set of natural numbers with k1 < · · · < kt, then aiJ

J

denotes a
ik1···kt

k1···kt
.

First of all we note that

Proposition 3.1. For any (xi, yj, αj
i , . . . , αj

i1...in
) ∈ J n(π), we have

θ̃n((xi, yj, αj
i , . . . , αj

i1...in
)) ∈ Ĵn(π)

Proof. For the sake of simplicity of notation we deal only with the case of n = 2, leaving
the general case safely to the reader. It should be obvious that θ̃2((x

i, yj, αj
i , . . . , αj

i1...in
))

satisfies conditions (1.1) and (1.2). To show that it abides also by (1.3), we note that given
γ ∈ T2(M) of the form (d1, d2) ∈ D2 7−→ (xi) + d1(a

i
1) + d2(a

i
2) + d1d2(a

i
12), we have

θ̃2((x
i, yj, αj

i , α
j
i1i2

))(Σ<1,2>(γ))

= (d1, d2) ∈ D2

7−→ (xi, yj) + d2(a
i
1, a

i
1α

j
i ) + d1(a

i
2, a

i
2α

j
i ) + d1d2(a

i
12, a

i1
2 ai2

1 αj
i1i2

+ ai
12α

j
i )

= (d1, d2) ∈ D2

7−→ (xi, yj) + d2(a
i
1, a

i
1α

j
i ) + d1(a

i
2, a

i
2α

j
i ) + d1d2(a

i
12, a

i1
2 ai2

1 αj
i2i1

+ ai
12α

j
i )

[since αj
i1i2

= αj
i2i1

]

= Σ<1,2>(θ̃2((x
i, yj, αj

i , α
j
i1i2

))(γ))

(3.4)
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This completes the proof. �

Proposition 3.2. The following diagram is commutative:

J n+1(π) θ̃n+1−−−−−−−−−−−−−−−−−→ Ĵn+1(π)

π
˜

n+1,n ↓ ↓ π̂n+1,n

J n(π)
−−−−−−−−−−−−−−−−−→

θ̃n Ĵn(π)

Proof. For the sake of simplicity of notation we deal only with the case of n = 1, leaving the
general case safely to the reader. Given t ∈ T1(M) of the form d ∈ D 7−→ (xi) + d(ai), s2(t)

is seen to be of the form (d1, d2) ∈ D2 7−→ (xi) + d1(a
i), so that θ̃2((x

i, yj, αj
i , α

j
i1i2

))(s2(t)) is

of the form (d1, d2) ∈ D2 7−→ (xi, yj) + d1(a
i, aiαj

i ), which means the commutativity of the
above diagram. �

Proposition 3.3. For any (xi, yj, αj
i , . . . , αj

i1...in
) ∈ J n(π), we have

θ̃n((xi, yj, αj
i , . . . , αj

i1...in
)) ∈ Jn(π)

Proof. With due regard to Proposition 3.1 we have only to deal with conditions (1.11) and
(1.12). For n = 0 and n = 1 there is nothing to prove. For n = 2 it is easy to see that

θ̃2((x
i, yj, αj

i , α
j
i1i2

))((d1, d2) ∈ D2 7−→ (xi) + d1d2(a
i))

= (d1, d2) ∈ D2 7−→ (xi, yj) + d1d2(a
i, aiαj

i )

= (d1, d2) ∈ D2 7−→ θ̃1((x
i, yj, αj

i ))(d ∈ D 7−→ (xi) + d(ai))(d1d2),

(3.5)

from which (1.12) is easily seen to hold by dint of Proposition 3.2. The condition (1.11) holds
trivially. We can continue by induction on n by dint of Proposition 3.2. �

Now we are going to define mappings θ
˜
n : Jn(π) → J n(π) by induction on n such that the

diagram

Jn+1(π) θ
˜
n+1

−−−−−−−−−−−−−−−−−→
J n+1(π)

πn+1,n ↓ ↓ π
˜

n+1,n

Jn(π)
−−−−−−−−−−−−−−−−−−→

θ
˜
n J n(π)

is commutative. The mapping θ
˜
0 : J0(π)→ J 0(π) shall be the identity mapping. Assuming

that θ
˜
n : Jn(π) → J n(π) is defined, we are going to define θ

˜
n+1 : Jn+1(π) → J n+1(π), for

which it suffices by the required commutativity of the above diagram only to give αj
i1...in+1

’s

for each ∇x ∈ Jn+1(π) with x = (xi, yj). Let ei denote (0, . . . , 0, 1, 0, . . . , 0) ∈ Rp, where
1 is inserted at the i-th position while the other p − 1 elements are fixed zero. By the
general Kock axiom (cf. Lavendhomme [1996, §2.1.3]), ∇x((d1, . . . , dn+1) ∈ Dn+1 7−→
(xi) + d1ei1 + · · · + dn+1ein+1)) should be a polynomial of d1, . . . , dn+1, in which the co-
efficient of d1 . . . dn+1 should be of the form (0, . . . , 0, α1

i1...in+1
, . . . , αq

i1...in+1
) ∈ Rp+q for some

(α1
i1...in+1

, . . . , αq
i1...in+1

) ∈ Rq and we choose them as our desired αj
i1...in+1

′s. Now we have
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Proposition 3.4. For any ∇x ∈ Jn(π), we have θ
˜n

(∇x) ∈ J n(π).

Proof. We have only to check the symmetric nature of αj
i1...ik

′s with respect to subscripts,
which follows easily from (1.3) by induction on n. �

It is easy to see that

Proposition 3.5. The composition θ
˜n
◦ θ̃n is the identity mapping of J n(π).

Proof. Using the commutative diagram

J n+1(π) θ̃n+1−−−−−−−−→ Jn+1(π) θ
˜
n+1

−−−−−−−−→
J n+1(π)

π
˜

n+1,n ↓ ↓ πn+1,n ↓ π
˜

n+1,n

J n(π)
−−−−−−→

θ̃n Jn(π)
−−−−−−−→

θ
˜
n J n(π)

we can easily establish the desired result by induction on n. �

Proposition 3.6. The mapping θ
˜
n : Jn(π)→ J n(π) is one-to-one.

Proof. For n = 0, 1, there is nothing to prove. For n = 2 we have

(d1, d2) ∈ D2 7−→ (xi) + d1(a
i
1) + d2(a

i
2) + d1d2(a

i
12)

= (d ∈ D 7−→ (xi) + d(ai
12))+̇((d1, d2) ∈ D2 7−→ (xi) + d1(a

i
1) + d2(a

i
2))

=
∑

1

p

i=1
ai

12(d ∈ D 7−→ (xi) + ei
¯
))

+̇
∑

2

p

i′′=1
ai′′

2 ·
2
((d1, d2) ∈ D2 7−→ (xi) + d1(a

i
1) + d2ei′′)

=

p∑
i=1

ai
12(d ∈ D 7−→ ei))

+̇
∑

2

p

i′′=1
ai′′

2 ·
2
(
∑

1

p

i′=1
ai

1 ·
1
((d1, d2) ∈ D2 7−→ (xi) + d1ei′ + d2ei′′))

(3.6)

Therefore the desired statement follows from Proposition 1.6. We can continue to proceed
by induction on n by using Propositions 1.3, 1.5 and 1.6. �

These considerations finally yield the following main theorem of this section.

Theorem 3.7. The mappings θ
˜
n : Jn(π) → J n(π) and θ̃n : J n(π) → Jn(π) are the inverse

of each other. In particular, both of them are bijective.

Proof. This follows directly from Propositions 3.5 and 3.6. �

By combining the above theorem with a main result of our previous paper (Nishimura [2003,
Theorem 4.8]), we have
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Theorem 3.8. Under the present assumption that the bundle π : E →M is a formal bundle
of dimension q over the formal manifold of dimension p, the translation ϕn : Jn(π)→ Jn(π)
is a bijective correspondence. �
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