Higher-Order Preconnections in Synthetic Differential Geometry of Jet Bundles

Hirokazu Nishimura
Institute of Mathematics, University of Tsukuba
Tsukuba, Ibaraki 305-8571, Japan
e-mail: logic@math.tsukuba.ac.jp

Abstract

In our previous papers (Nishimura [2001 and 2003]) we dealt with jet bundles from a synthetic perch by regarding a 1 -jet as something like a pinpointed (nonlinear) connection (called a preconnection) and then looking on higherorder jets as repeated 1-jets. In this paper we generalize our notion of preconnection to higher orders, which enables us to develop a non-repetitive but still synthetic approach to jet bundles. Both our repetitive and non-repetitive approaches are coordinate-free and applicable to microlinear spaces in general. In our nonrepetitive approach we can establish a theorem claiming that the $(n+1)$-th jet space is an affine bundle over the n-th jet space, while we have not been able to do so in our previous repetitive approach. We will show how to translate repeated 1 -jets into higher-order preconnections. Finally we will demonstrate that our repetitive and non-repetitive approaches to jet bundles tally, as far as formal manifolds are concerned.

MSC 2000: 51K10,58A03,58A20
Keywords: Synthetic differential geometry, jet bundle, preconnection, strong difference, repeated jets, formal manifold, formal bundle

Introduction

In our previous papers (Nishimura [2001 and 2003]) we have approached the theory of jet bundles from a synthetic coign of vantage by regarding a 1-jet as a decomposition of the tangent space to the space at the point at issue (cf. Saunders [1989, Theorem 4.3.2]) and
then looking on higher-order jets as repeated 1-jets (cf. Saunders [1989, §5.2 and §5.3]). In Nishimura [2001] a 1-jet put down in such a way was called a preconnection, which should have been called, exactly speaking, a 1-preconnection. In $\S 1$ of this paper we generalize our previous notion of 1-preconnection to higher-orders to get the notion of n-preconnection for any natural number n, reminiscent of higher-order generalizations of linear connection discussed by Lavendhomme [1996, p.107] and Lavendhomme and Nishimura [1998, Definition 2]. The immediate meed of our present approach to jet bundles is that we can establish a synthetic variant of Theorem 6.2.9 of Saunders [1989] claiming that the canonical projection from the $(n+1)$-th jet space to the n-th one is an affine bundle.

The remaining two sections are concerned with the comparison between our new approach to jet bundles by higher-order preconnections and our previous one by iterated 1preconnections discussed in Nishimura [2001 and 2003]. In Section 2 we will explain how to translate the latter approach into the former, but we are not sure whether the translation gives a bijection in this general context. However, if we confine our scope to formal manifolds, the above translation indeed gives a bijection, which is the topic of Section 3.

Our standard reference of synthetic differential geometry is Lavendhomme [1996], but some material which is not easily available in his book or which had better be presented in this paper anyway is exhibited in $\S 0$ as preliminaries. Our standard reference of jet bundles is Saunders [1989], $\S 5.2$ and $\S 5.3$ of which have been constantly inspiring.

0. Preliminaries

0.1. Microcubes

Let \mathbb{R} be the extended set of real numbers with cornucopia of nilpotent infinitesimals, which is expected to acquiesce in the so-called general Kock axiom (cf. Lavendhomme [1996, §2.1]). We denote by D the totality of elements of \mathbb{R} whose squares vanish. Given a microlinear space M and an infinitesimal space \mathbb{E}, a mapping γ from \mathbb{E} to M is called an \mathbb{E}-microcube on M. D^{n}-microcubes are usually called n-microcubes. In particular, 1 -microcubes are called tangent vectors, and 2-microcubes are referred to as microsquares. We denote by $\mathbf{T}^{\mathbb{E}}(M)$ the totality of \mathbb{E}-microcubes on M . Given $x \in M$, we denote by $\mathbf{T}_{x}^{\mathbb{E}}(M)$ the totality of \mathbb{E}-microcubes γ on M with $\gamma(0, \ldots, 0)=\mathrm{x}$. $\mathbf{T}^{D^{n}}(M)$ and $\mathbf{T}_{x}^{D^{n}}(M)$ are usually denoted by $\mathbf{T}^{n}(M)$ and $\mathbf{T}_{x}^{n}(M)$ respectively. Given $\gamma \in \mathbf{T}^{n}(M)$ and a natural number k with $k \leq n$, we can put down γ as a tangent vector \mathbf{t}_{γ}^{k} to $\mathbf{T}^{n-1}(M)$ mapping $d \in D$ to $\gamma_{d}^{k} \in \mathbf{T}^{n-1}(M)$, where

$$
\begin{equation*}
\gamma_{d}^{k}\left(d_{1}, \ldots, d_{n-1}\right)=\gamma\left(d_{1}, \ldots, d_{k-1}, d, d_{k}, \ldots, d_{n-1}\right) \tag{0.1.1}
\end{equation*}
$$

for any $d_{1}, \ldots, d_{n-1} \in D$. Given $\alpha \in \mathbb{R}$, we define $\alpha_{k} \gamma_{k}$ to be $\alpha \mathbf{t}_{\gamma}^{k}$. Given $\gamma_{+}, \gamma_{-} \in \mathbf{T}^{n}(M)$ with $\mathbf{t}_{\gamma_{+}}^{k}(0)=\mathbf{t}_{\gamma_{-}}^{k}(0), \gamma_{+}{ }_{k} \gamma_{-}$is defined to be $\mathbf{t}_{\gamma_{+}}^{k}-\mathbf{t}_{\gamma_{-}}^{k}$. Given $\gamma_{1}, \ldots, \gamma_{m} \in \mathbf{T}^{n}(M)$ with $\mathbf{t}_{\gamma_{1}}^{k}(0)=\cdots=\mathbf{t}_{\gamma_{m}}^{k}(0), \mathbf{t}_{\gamma_{1}}^{k}+\cdots+\mathbf{t}_{\gamma_{m}}^{k}$ is denoted by $\gamma_{1}+\cdots \underset{k}{+} \gamma_{m}$ or $\sum_{k^{i=1}}^{m} \gamma_{i}$. Given $\gamma \in \mathbf{T}^{n}(M)$ and a mapping $f: M \rightarrow M^{\prime}$, we will often denote $f \circ \gamma \in \mathbf{T}^{n}\left(M^{\prime}\right)$ by $f_{*}(\gamma)$.

We denote by \mathfrak{S}_{n} the symmetric group of the set $\{1, \ldots, n\}$, which is well known to be generated by $n-1$ transpositions $<i, i+1>$ exchanging i and $i+1(1 \leq i \leq n-1)$ while keeping the other elements fixed. A cycle σ of length k is usually denoted by $<$
$j, \sigma(j), \sigma^{2}(j), \ldots, \sigma^{k-1}(j)>$, where j is not fixed by σ. Given $\sigma \in \mathfrak{S}_{n}$ and $\gamma \in \mathbf{T}^{n}(M)$, we define $\Sigma_{\sigma}(\gamma) \in \mathbf{T}^{n}(M)$ to be

$$
\begin{equation*}
\Sigma_{\sigma}(\gamma)\left(d_{1}, \ldots, d_{n}\right)=\gamma\left(d_{\sigma(1)}, \ldots, d_{\sigma(n)}\right) \tag{0.1.2}
\end{equation*}
$$

for any $\left(d_{1}, \ldots, d_{n}\right) \in D^{n}$. Given $\alpha \in \mathbb{R}$ and $\gamma \in \mathbf{T}^{n}(M)$, we define $\alpha_{i} \cdot \gamma \in \mathbf{T}_{i}^{n}(M)(1 \leq i \leq n)$ to be

$$
\begin{equation*}
\left(\alpha_{i} \gamma\right)\left(d_{i}, \ldots, d_{n}\right)=\gamma\left(d_{1}, \ldots, d_{i-1}, \alpha d_{i}, d_{i+1}, \ldots, d_{n}\right) \tag{0.1.3}
\end{equation*}
$$

for any $\left(d_{1}, \ldots, d_{n}\right) \in D^{n}$.
Some subspaces of D^{n} will play an important role. We denote by $D(n)$ the set $\left\{\left(d_{1}, \ldots, d_{n}\right) \in\right.$ $D^{n} \mid d_{i} d_{j}=0$ for any $\left.1 \leq i, j \leq n\right\}$. We denote by $D(n ; n)$ the set $\left\{\left(d_{1}, \ldots, d_{n}\right) \in D^{n} \mid\right.$ $\left.d_{1} \ldots d_{n}=0\right\}$. Note that $D(2)=D(2 ; 2)$.

Between $\mathbf{T}^{n}(M)$ and $\mathbf{T}^{n+1}(M)$ there are $2 n+2$ canonical mappings:

$$
\mathbf{T}^{n+1}(M) \underset{\mathbf{s}_{i}}{\stackrel{\mathbf{d}_{i}}{\rightleftarrows}} \mathbf{T}^{n}(M) \quad(1 \leq i \leq n+1)
$$

For any $\gamma \in \mathbf{T}^{n}(M)$, we define $\mathbf{s}_{i}(\gamma) \in \mathbf{T}^{n+1}(M)$ to be

$$
\begin{equation*}
\mathbf{s}_{i}(\gamma)\left(d_{1}, \ldots, d_{n+1}\right)=\gamma\left(d_{1}, \ldots, d_{i-1}, d_{i+1}, \ldots, d_{n+1}\right) \tag{0.1.4}
\end{equation*}
$$

for any $\left(d_{1}, \ldots, d_{n+1}\right) \in D^{n+1}$. For any $\gamma \in \mathbf{T}^{n+1}(M)$, we define $\mathbf{d}_{i}(\gamma) \in \mathbf{T}^{n}(M)$ to be

$$
\begin{equation*}
\mathbf{d}_{i}(\gamma)\left(d_{1}, \ldots, d_{n}\right)=\gamma\left(d_{1}, \ldots, d_{i-1}, 0, d_{i}, \ldots, d_{n}\right) \tag{0.1.5}
\end{equation*}
$$

for any $\left(d_{1}, \ldots, d_{n}\right) \in D^{n}$. These operators satisfy the so-called simplicial identities (cf. Goerss and Jardine [1999, p.4]).

Now we have
Proposition 0.1.1. For any $\gamma_{+}, \gamma_{-} \in \mathbf{T}^{n}(M),\left.\gamma_{+}\right|_{D(n ; n)}=\left.\gamma_{-}\right|_{D(n ; n)}$ iff $\mathbf{d}_{i}\left(\gamma_{+}\right)=\mathbf{d}_{i}\left(\gamma_{-}\right)$for all $1 \leq i \leq n$.

Proof. By the quasi-colimit diagram of Proposition 1 of Lavendhomme and Nishimura [1998].

0.2. Bundles

A mapping $\pi: E \rightarrow M$ of microlinear spaces is called a bundle over M, in which E is called the total space of π, M is called the base space of π, and $E_{x}=\pi^{-1}(x)$ is called the fiber over $x \in M$. Given $y \in E$, we denote by $\mathbf{V}_{y}^{n}(\pi)$ the totality of n-microcubes γ on E such that $\pi \circ \gamma$ is a constant function and $\gamma(0, \ldots, 0)=y$. We denote by $\mathbf{V}^{n}(\pi)$ the set-theoretic union of $\mathbf{V}_{y}^{n}(\pi)^{\prime} s$ for all $y \in E$. A bundle $\pi: E \rightarrow M$ is called a vector bundle provided that E_{x} is a Euclidean \mathbb{R}-module for every $x \in M$. The canonical projections $\tau_{M}: \mathbf{T}^{1}(M) \rightarrow M$ and $v_{\pi}: \mathbf{V}^{1}(\pi) \rightarrow E$ are vector bundles. A bundle $\pi: E \rightarrow M$ is called an affine bundle over a vector bundle $\pi^{\prime}: E^{\prime} \rightarrow M$ provided that E_{x} is an affine space over the \mathbb{R}-module E_{x}^{\prime} for every $x \in M$. Given two bundles $\pi: E^{\prime} \rightarrow M$ and $E^{\prime} \rightarrow M$ over the same base space M, a mapping
$f: E \rightarrow E^{\prime}$ is called a morphism of bundles from π to π^{\prime} over M if it induces the identity mapping on M. Given two bundles $\pi: E \rightarrow M$ and $\iota: M^{\prime} \rightarrow M$ over the same base space M, the mapping $\iota^{*}(\pi)$ assigning $a \in E$ to each $(y, a) \in M^{\prime} \times E=\left\{(y, a) \in M^{\prime} \times E \mid \iota(y)=\pi(a)\right\}$ is called the bundle obtained by pulling back the bundle $\pi: E \rightarrow M$ along ι.

0.3. Strong differences

Kock and Lavendhomme [1984] have provided the synthetic rendering of the notion of strong difference for microsquares, a good exposition of which can be seen in Lavendhomme [1996, $\S 3.4]$. Given two microsquares γ_{+}and γ_{-}on M, their strong difference $\gamma_{+} \dot{-} \gamma_{-}$is defined exactly when $\left.\gamma_{+}\right|_{D(2)}=\left.\gamma_{-}\right|_{D(2)}$, and it is a tangent vector to M with $\left(\gamma_{+}-\gamma_{-}\right)(0)=\gamma_{+}(0,0)=$ $\gamma_{-}(0,0)$. Given $t \in \mathbf{T}^{1}(M)$ and $\gamma \in \mathbf{T}^{2}(\gamma)$ with $t(0)=\gamma(0,0)$, the strong addition $t \dot{+} \gamma$ is defined to be a microsquare on M with $\left.(t \dot{+} \gamma)\right|_{D(2)}=\left.\gamma\right|_{D(2)}$. With respect to these operations Kock and Lavendhomme [1984] have shown that

Theorem 0.3.1. The canonical projection $\mathbf{T}^{2}(M) \rightarrow \mathbf{T}^{D(2)}(M)$ is an affine bundle over the vector bundle $\mathbf{T}^{1}(M) \underset{M}{\times} \mathbf{T}^{D(2)}(M) \rightarrow \mathbf{T}^{D(2)}(M)$ assigning γ to each $(t, \gamma) \in \mathbf{T}^{1}(M) \underset{M}{\times}$ $\mathbf{T}^{D(2)}(M)=\left\{(t, \gamma) \in \mathbf{T}^{1}(M) \times \mathbf{T}^{D(2)}(M) \mid t(0)=\gamma(0,0)\right\}$.

These considerations can be generalized easily to n-microcubes for any natural number n. More specifically, given two n-microsquares γ_{+}and γ_{-}on M, their strong difference $\gamma_{+} \dot{-} \gamma_{-}$is defined exactly when $\left.\gamma_{+}\right|_{D(n ; n)}=\left.\gamma_{-}\right|_{D(n ; n)}$, and it is a tangent vector to M with $\left(\gamma_{+} \dot{-} \gamma_{-}\right)(0)=$ $\gamma_{+}(0, \ldots, 0)=\gamma_{-}(0, \ldots, 0)$. Given $t \in \mathbf{T}^{1}(M)$ and $\gamma \in \mathbf{T}^{n}(\gamma)$ with $t(0)=\gamma(0, \ldots, 0)$, the strong addition $t \dot{+} \gamma$ is defined to be an n-microcube on M with $\left.(t \dot{+} \gamma)\right|_{D(n ; n)}=\left.\gamma\right|_{D(n ; n)}$. So as to define $\dot{-}$ and $\dot{+}$, we need the following two lemmas. Their proofs are akin to their counterparts of microsquares (cf. Lavendhomme [1996, pp.92-93]).

Lemma 0.3.2. (cf. Nishimura [1997. Lemma 5.1] and Lavendhomme and Nishimura [1998, Proposition 3]). The diagram

is a quasi-colimit diagram, where $i: D(n ; n) \rightarrow D^{n}$ is the canonical injection, $D^{n} \vee D=$ $\left\{\left(d_{1}, \ldots, d_{n}, e\right) \in D^{n+1} \mid d_{1} e=\cdots=d_{n} e=0\right\}, \Phi\left(d_{1}, \ldots, d_{n}\right)=\left(d_{1}, \ldots, d_{n}, 0\right)$ and $\Psi\left(d_{1}, \ldots, d_{n}\right)=\left(d_{1}, \ldots, d_{n}, d_{1} \ldots d_{n}\right)$.

Given two n-microsquares γ_{+}and γ_{-}on M with $\left.\gamma_{+}\right|_{D(n ; n)}=\left.\gamma_{-}\right|_{D(n ; n)}$, there exists a unique function $f: D^{n} \vee D \rightarrow M$ with $f \circ \Psi=\gamma_{+}$and $f \circ \Phi=\gamma_{-}$. We define $\left(\gamma_{+} \dot{-} \gamma_{-}\right)(d)=f(0,0, d)$ for any $d \in D$. From the very definition of - we have

Proposition 0.3.3. Let $f: M \rightarrow M^{\prime}$. Given $\gamma_{+}, \gamma_{-} \in \mathbf{T}^{n}(M)$ with $\left.\gamma_{+}\right|_{D(n ; n)}=\left.\gamma_{-}\right|_{D(n ; n)}$, we have $\left.f_{*}\left(\gamma_{+}\right)\right|_{D(n ; n)}=\left.f_{*}\left(\gamma_{-}\right)\right|_{D(n ; n)}$ and

$$
\begin{equation*}
f_{*}\left(\gamma_{+} \dot{-} \gamma_{-}\right)=f_{*}\left(\gamma_{+}\right) \dot{-} f_{*}\left(\gamma_{-}\right) . \tag{0.3.1}
\end{equation*}
$$

Lemma 0.3.4. The diagram

1	\xrightarrow{i}	D^{n}
$i \downarrow$		$\downarrow \Xi$
D^{n}	$\xrightarrow{\Phi}$	$D^{n} \vee D$

is a quasi-colimit diagram, where $i: 1 \rightarrow D^{n}$ and $i: 1 \rightarrow D$ are the canonical injections and $\Xi(d)=(0, \ldots, 0, d)$.

Given $t \in \mathbf{T}^{1}(M)$ and $\gamma \in \mathbf{T}^{n}(\gamma)$ with $t(0)=\gamma(0, \ldots, 0)$, there exists a unique function $f: D^{n} \vee D \rightarrow M$ with $f \circ \Phi=\gamma$ and $f \circ \Xi=t$. We define $(t+\gamma)\left(d_{1}, \ldots, d_{n}\right)=$ $f\left(d_{1}, \ldots, d_{n}, d_{1} \ldots d_{n}\right)$ for any $\left(d_{1}, \ldots, d_{n}\right) \in D^{n}$. From the very definition of $\dot{+}$ we have

Proposition 0.3.5. Let $f: M \rightarrow M^{\prime}$. Given $t \in \mathbf{T}^{1}(M)$ and $\gamma \in \mathbf{T}^{n}(\gamma)$ with $t(0)=$ $\gamma(0, \ldots, 0)$, we have $f_{*}(t)(0)=f_{*}(\gamma)(0, \ldots, 0)$ and

$$
\begin{equation*}
f_{*}(t \dot{+} \gamma)=f_{*}(t) \dot{+} f_{*}(\gamma) \tag{0.3.2}
\end{equation*}
$$

We can proceed as in the case of microsquares to get
Theorem 0.3.6. The canonical projection $\mathbf{T}^{n}(M) \rightarrow \mathbf{T}^{D(n ; n)}(M)$ is an affine bundle over the vector bundle $\mathbf{T}^{1}(M) \underset{M}{\times} \mathbf{T}^{D(n ; n)}(M) \rightarrow \mathbf{T}^{D(n ; n)}(M)$ assigning γ to each $(t, \gamma) \in \mathbf{T}^{1}(M) \times{ }_{M}^{\times}$ $\mathbf{T}^{D(n ; n)}(M)=\left\{(t, \gamma) \in \mathbf{T}^{1}(M) \times \mathbf{T}^{D(n ; n)}(M) \mid t(0)=\gamma(0,0)\right\}$.

We have the following n-dimensional counterparts of Propositions 5, 6 and 7 of Lavendhomme [1996, §3.4].

Proposition 0.3.7. For any $\alpha \in \mathbb{R}$, any $\gamma_{+}, \gamma_{-}, \gamma \in \mathbf{T}^{n}(M)$ and any $t \in \mathbf{T}^{1}(M)$ with $\left.\gamma_{+}\right|_{D(n ; n)}=\left.\gamma_{-}\right|_{D(n ; n)}$ and $t(0)=\gamma(0, \ldots, 0)$, we have

$$
\begin{gather*}
\alpha\left(\gamma_{+} \dot{-} \gamma_{-}\right)=\left(\alpha \cdot \gamma_{i}\right) \dot{-}\left(\alpha \cdot \gamma_{-}\right) . \tag{0.3.3}\\
\alpha_{i} \cdot\left(t_{i} \dot{+} \gamma\right)=\alpha t \dot{+} \alpha_{i} \gamma_{i} \tag{0.3.4}
\end{gather*}
$$

Proposition 0.3.8. For any $\sigma \in \sigma_{n}$, any $\gamma_{+}, \gamma_{-}, \gamma \in \mathbf{T}^{n}(M)$, and any $t \in \mathbf{T}^{1}(M)$ with $\left.\gamma_{+}\right|_{D(n ; n)}=\left.\gamma_{-}\right|_{D(n ; n)}$ and $t(0)=\gamma(0, \ldots, 0)$, we have

$$
\begin{gather*}
\Sigma_{\sigma}\left(\gamma_{+}\right) \dot{-} \Sigma_{\sigma}\left(\gamma_{-}\right)=\gamma_{+} \dot{-} \gamma_{-} \tag{0.3.5}\\
\Sigma_{\sigma}(t \dot{+} \gamma)=t \dot{+} \Sigma_{\sigma}(\gamma) \tag{0.3.6}
\end{gather*}
$$

Proposition 0.3.9. For $\gamma_{+}, \gamma_{-}, \gamma \in \mathbf{T}^{n}(M)$ with $\left.\gamma_{+}\right|_{D(n ; n)}=\left.\gamma_{-}\right|_{D(n ; n)}$ we have

$$
\begin{equation*}
\left.\gamma_{+} \dot{-} \gamma_{-}=\left(\cdots\left(\gamma_{+}-\gamma_{-}\right)-\mathbf{s}_{1} \circ \mathbf{d}_{1}\left(\gamma_{+}\right)\right){ }_{3} \mathbf{s}_{1}^{2} \circ \mathbf{d}_{1}^{2}\left(\gamma_{+}\right)\right) \cdots-\mathbf{s}_{1}^{n-1} \circ \mathbf{d}_{1}^{n-1}\left(\gamma_{+}\right) \tag{0.3.7}
\end{equation*}
$$

0.4. Symmetric forms

Given a vector bundle $\pi: E \rightarrow M$ and a bundle $\xi: P \rightarrow M$, a symmetric n-form at $x \in P$ along ξ with values in π is a mapping $\omega: \mathbf{T}_{x}^{n}(P) \rightarrow E_{\xi(x)}$ such that for any $\gamma \in \mathbf{T}^{n}(P)$, any $\gamma^{\prime} \in \mathbf{T}^{n-1}(P)$, any $\alpha \in \mathbb{R}$ and any $\sigma \in \mathfrak{S}_{n}$ we have

$$
\begin{align*}
\omega\left(\alpha_{i} \gamma\right) & =\alpha \omega(\gamma) \quad(1 \leq i \leq n) \tag{0.4.1}\\
\omega\left(\Sigma_{\sigma}(\gamma)\right) & =\omega(\gamma) \tag{0.4.2}\\
\omega\left(\left(d_{1}, \ldots, d_{n}\right) \in D^{n}\right. & \left.\longmapsto \gamma^{\prime}\left(d_{1}, \ldots, d_{n-2}, d_{n-1} d_{n}\right)\right)=0 \tag{0.4.3}
\end{align*}
$$

We denote by $\mathbf{S}_{x}^{n}(\xi ; \pi)$ the totality of symmetric n-forms at x along ξ with values in π. We denote by $\mathbf{S}^{n}(\xi ; \pi)$ the set-theoretic union of $\mathbf{S}_{x}^{n}(\xi ; \pi)^{\prime} s$ for all $x \in P$. If $P=M$ and $\xi: P \rightarrow M$ is the identity mapping, then $\mathbf{S}_{x}^{n}(\xi ; \pi)$ and $\mathbf{S}^{n}(\xi ; \pi)$ are usually denoted by $\mathbf{S}_{x}^{n}(M ; \pi)$ and $\mathbf{S}^{n}(M ; \pi)$ respectively.

Proposition 0.4.1. Let $\omega \in \mathbf{S}^{n+1}(\xi ; \pi)$. Then we have

$$
\begin{equation*}
\omega\left(\mathbf{s}_{i}(\gamma)\right)=0 \quad(1 \leq i \leq n+1) \tag{0.4.4}
\end{equation*}
$$

for any $\gamma \in \mathbf{T}^{n}(P)$.
Proof. For any $\alpha \in \mathbb{R}$, we have

$$
\begin{equation*}
\omega\left(\mathbf{s}_{i}(\gamma)\right)=\omega\left(\alpha{ }_{i} \mathbf{s}_{i}(\gamma)\right)=\alpha \omega\left(\mathbf{s}_{i}(\gamma)\right) \tag{0.4.5}
\end{equation*}
$$

Let $\alpha=0$, we have the desired conclusion.

0.5. Convention

Two bundles $\pi: E \rightarrow M$ and $\pi^{\prime}: E^{\prime} \rightarrow M$ over the same microlinear space M shall be chosen once and for all.

1. Preconnections

Let n be a natural number. An n-pseudoconnection over the bundle $\pi: E \rightarrow M$ at $x \in E$ is a mapping $\nabla_{x}: \mathbf{T}_{\pi(x)}^{n}(M) \rightarrow \mathbf{T}_{x}^{n}(E)$ such that for any $\gamma \in \mathbf{T}_{\pi(x)}^{n}(M)$, any $\alpha \in \mathbb{R}$ and any $\sigma \in \mathfrak{S}_{n}$, we have the following:

$$
\begin{align*}
\pi \circ \nabla_{x}(\gamma) & =\gamma \tag{1.1}\\
\nabla_{x}(\alpha \cdot \gamma) & =\alpha \cdot \nabla_{i}(\gamma) \quad(1 \leq i \leq n) \tag{1.2}\\
\nabla_{x}\left(\Sigma_{\sigma}(\gamma)\right) & =\Sigma_{\sigma}\left(\nabla_{x}(\gamma)\right) \tag{1.3}
\end{align*}
$$

We denote by $\hat{\mathbb{J}}_{x}^{n}(\pi)$ the totality of n-pseudoconnections ∇_{x} over the bundle $\pi: E \rightarrow M$ at $x \in E$. We denote by $\hat{\mathbb{J}}^{n}(\pi)$ the set-theoretic union of $\hat{\mathbb{J}}_{x}^{n}(\pi)^{\prime} s$ for all $x \in E$. In particular, $\hat{\mathbb{J}}^{0}(\pi)=E$ by convention.

Let ∇_{x} be an $(n+1)$-pseudoconnection over the bundle $\pi: E \rightarrow M$ at $x \in E$. Let $\gamma \in \mathbf{T}_{\pi(x)}^{n}(M)$ and $\left(d_{1}, \ldots, d_{n+1}\right) \in D^{n+1}$. Then we have

Lemma 1.1. $\nabla_{x}\left(\mathbf{s}_{n+1}(\gamma)\right)\left(d_{1}, \ldots, d_{n}, d_{n+1}\right)$ is independent of d_{n+1}, so that we can put down $\nabla_{x}\left(\mathbf{s}_{n+1}(\gamma)\right)$ at $\mathbf{T}_{x}^{n}(E)$.

Proof. The proof is similar to that of Proposition 0.4.1. For any $\alpha \in \mathbb{R}$ we have

$$
\begin{align*}
\left(\nabla_{x}\left(\mathbf{s}_{n+1}(\gamma)\right)\right)\left(d_{1}, \ldots, d_{n}, \alpha d_{n+1}\right) & =\left(\alpha_{n+1} \nabla_{x}\left(\mathbf{s}_{n+1}(\gamma)\right)\right)\left(d_{1}, \ldots, d_{n}, d_{n+1}\right) \\
& =\left(\nabla_{x}\left(\alpha_{n+1}\left(\mathbf{s}_{n+1}(\gamma)\right)\right)\right)\left(d_{1}, \ldots, d_{n}, d_{n+1}\right) \tag{1.4}\\
& =\left(\nabla_{x}\left(\mathbf{s}_{n+1}(\gamma)\right)\right)\left(d_{1}, \ldots, d_{n}, d_{n+1}\right)
\end{align*}
$$

Letting $\alpha=0$ in (1.4), we have

$$
\begin{equation*}
\left(\nabla_{x}\left(\mathbf{s}_{n+1}(\gamma)\right)\right)\left(d_{1}, \ldots, d_{n}, 0\right)=\left(\nabla_{x}\left(\mathbf{s}_{n+1}(\gamma)\right)\right)\left(d_{1}, \ldots, d_{n}, d_{n+1}\right) \tag{1.5}
\end{equation*}
$$

which shows that $\nabla_{x}\left(\mathbf{s}_{n+1}(\gamma)\right)\left(d_{1}, \ldots, d_{n}, d_{n+1}\right)$ is independent of d_{n+1}.
Now it is easy to see that
Proposition 1.2. The assignment $\gamma \in \mathbf{T}_{\pi(x)}^{n}(M) \longmapsto \nabla_{x}\left(\mathbf{s}_{n+1}(\gamma)\right) \in \mathbf{T}_{x}^{n}(E)$ is an n pseudoconnection over the bundle $\pi: E \rightarrow M$ at x.

By Proposition 1.2 we have the canonical projections $\hat{\underline{\pi}}_{n+1, n}: \hat{\mathbb{J}}^{n+1}(\pi) \rightarrow \hat{\mathbb{J}}^{n}(\pi)$. By assigning $\pi(x) \in M$ to each the canonical projections $\underline{\hat{\tilde{x}}}_{n}: \hat{\mathbb{J}}^{n}(\pi) \rightarrow M$. Note that $\underline{\hat{\pi}}_{n} \circ \underline{\hat{\underline{T}}}_{n+1, n}=$ $\hat{\hat{\pi}}_{n+1}$. For any natural numbers n, m with $m \leq n$, we define $\hat{\underline{\pi}}_{n, m}: \hat{\mathbb{J}}^{n}(\pi) \rightarrow \hat{\mathbb{J}}^{m}(\pi)$ to be $\hat{\underline{\pi}}_{m+1, m} \circ \cdots \circ \hat{\underline{\pi}}_{n, n-1}$.

Now we are going to show that
Proposition 1.3. Let $\nabla_{x} \in \hat{\mathbb{J}}^{n+1}(\pi)$. Then the following diagrams are commutative:

Proof. By the very definition of $\hat{\underline{\tilde{n}}}_{n+1, n}$ we have

$$
\begin{equation*}
\mathbf{s}_{n+1}\left(\hat{\underline{\pi}}_{n+1}\left(\nabla_{x}\right)(\gamma)\right)=\nabla_{x}\left(\mathbf{s}_{n+1}(\gamma)\right) \tag{1.6}
\end{equation*}
$$

for any $\gamma \in \mathbf{T}_{\pi(x)}^{n}(M)$. For $i \neq n+1$, we have

$$
\begin{array}{rll}
\mathbf{s}_{i}\left(\hat{\underline{\tilde{\pi}}}_{n+1, n}\left(\nabla_{x}\right)(\gamma)\right) & =\Sigma_{<i+1, i+2, \ldots, n, n+1>}\left(\Sigma_{<i, n+1>}\left(\mathbf{s}_{n+1}\left(\hat{\underline{\tilde{t}}}_{n+1, n}\left(\nabla_{x}\right)(\gamma)\right)\right)\right) \\
& =\Sigma_{<i+1, i+2, \ldots, n, n+1>}\left(\Sigma_{<i, n+1>}\left(\nabla_{x}\left(\mathbf{s}_{n+1}(\gamma)\right)\right)\right) & {[(1.6)]} \\
& =\Sigma_{<i+1, i+2, \ldots, n, n+1>}\left(\nabla_{x}\left(\Sigma_{<i, n+1>}\left(\mathbf{s}_{n+1}(\gamma)\right)\right)\right) & {[(1.3)]} \tag{1.7}\\
& =\nabla_{x}\left(\Sigma_{<i+1, i+2, \ldots, n, n+1>}\left(\Sigma_{<i, n+1>}\left(\mathbf{s}_{n+1}(\gamma)\right)\right)\right) & {[(1.3)]} \\
& =\nabla_{x}\left(\mathbf{s}_{i}(\gamma)\right)
\end{array}
$$

Now we are going to show that

$$
\begin{equation*}
\mathbf{d}_{i}\left(\nabla_{x}(\gamma)\right)=\left(\underline{\underline{\hat{x}}}_{n+1, n}\left(\nabla_{x}\right)\right)\left(\mathbf{d}_{i}(\gamma)\right) \tag{1.8}
\end{equation*}
$$

for any $\gamma \in \mathbf{T}_{\pi(x)}^{n+1}(M)$. First we deal with the case of $i=n+1$. For any $\left(d_{1}, \ldots, d_{n+1}\right) \in D^{n+1}$ we have

$$
\begin{align*}
\left(\mathbf{d}_{n+1}\left(\nabla_{x}(\gamma)\right)\right)\left(d_{1}, \ldots, d_{n}\right) & =\left(\nabla_{x}(\gamma)\right)\left(d_{1}, \ldots, d_{n}, 0\right) \\
& =\left(\nabla_{x}(\gamma)\right)\left(d_{1}, \ldots, d_{n}, 0 d_{n+1}\right) \\
& =\left(0 \underset{n+1}{\ldots} \nabla_{x}(\gamma)\right)\left(d_{1}, \ldots, d_{n}, d_{n+1}\right) \tag{1.9}\\
& =\left(\nabla_{x}\left(0_{n+1} \gamma\right)\right)\left(d_{1}, \ldots, d_{n}, d_{n+1}\right) \\
& =\left(\nabla_{x}\left(\mathbf{s}_{n+1}\left(\mathbf{d}_{n+1}(\gamma)\right)\right)\right)\left(d_{1}, \ldots, d_{n}, d_{n+1}\right) \\
& =\left(\underline{\hat{\pi}}_{n+1, n}\left(\nabla_{x}\right)\right)\left(\mathbf{d}_{n+1}(\gamma)\right)\left(d_{1}, \ldots, d_{n}\right)
\end{align*}
$$

For $i \neq n+1$ we have

$$
\begin{align*}
\mathbf{d}_{i}\left(\nabla_{x}(\gamma)\right)= & \Sigma_{<n, n-1, \ldots, i+1, i>}\left(\mathbf{d}_{n+1}\left(\Sigma_{<i, n+1>}\left(\nabla_{x}(\gamma)\right)\right)\right) \\
= & \Sigma_{<n, n-1, \ldots, i+1, i>}\left(\mathbf{d}_{n+1}\left(\nabla_{x}\left(\Sigma_{<i, n+1>}(\gamma)\right)\right)\right) \\
& {[(1.3)] } \\
= & \Sigma_{<n, n-1, \ldots, i+1, i>}\left(\underline{\hat{\pi}}_{n+1, n}\left(\nabla_{x}\right)\left(\mathbf{d}_{n+1}\left(\Sigma_{<i, n+1>}(\gamma)\right)\right)\right) \tag{1.10}\\
& {[(1.9)] } \\
= & \hat{\underline{\pi}}_{n+1, n}\left(\nabla_{x}\right)\left(\Sigma_{<n, n-1, \ldots, i+1, i>}\left(\mathbf{d}_{n+1}\left(\Sigma_{<i, n+1>}(\gamma)\right)\right)\right) \\
& {[(1.3)] } \\
= & \underline{\hat{\pi}}_{n+1, n}\left(\nabla_{x}\right)\left(\mathbf{d}_{i}(\gamma)\right)
\end{align*}
$$

Corollary 1.4. Let $\nabla_{x}^{+}, \nabla_{x}^{-} \in \hat{\mathbb{J}}^{n+1}(\pi)$ with $\hat{\underline{\underline{x}}}_{n+1, n}\left(\nabla_{x}^{+}\right)=\underline{\pi}_{n+1, n}\left(\nabla_{x}^{-}\right)$. Then
$\left.\nabla_{x}^{+}(\gamma)\right|_{D(n+1 ; n+1)}=\left.\nabla_{x}^{-}(\gamma)\right|_{D(n+1 ; n+1)}$ for any $\gamma \in \mathbf{T}_{\pi(x)}^{n+1}(M)$.
Proof. By Lemma 0.1.1 and Proposition 1.3.
The notion of an n-preconnection is defined inductively on n. The notion of a 1-preconnection shall be identical with that of a 1-pseudoconnection. Now we proceed inductively. An ($n+1$)pseudoconnection $\nabla_{x}: \mathbf{T}_{\pi(x)}^{n+1}(M) \rightarrow \mathbf{T}_{x}^{n+1}(E)$ over the bundle $\pi: E \rightarrow M$ at $x \in E$ is called
an ($n+1$)-preconnection over the bundle $\pi: E \rightarrow M$ at x if it acquiesces in the following two conditions

$$
\begin{equation*}
\hat{\underline{\underline{ }}}_{n+1, n}\left(\nabla_{x}\right) \text { is an } n \text {-preconnection. } \tag{1.11}
\end{equation*}
$$

For any $\gamma \in \mathbf{T}_{\pi(x)}^{n}(M)$, we have

$$
\begin{align*}
& \nabla_{x}\left(\left(d_{1}, \ldots, d_{n+1}\right) \in D^{n+1} \longmapsto \gamma\left(d_{1}, \ldots, d_{n-1}, d_{n} d_{n+1}\right)\right) \tag{1.12}\\
& =\left(d_{1}, \ldots, d_{n+1}\right) \in D^{n+1} \longmapsto \underline{\underline{\pi}}_{n+1, n}\left(\nabla_{x}\right)(\gamma)\left(d_{1}, \ldots, d_{n-1}, d_{n} d_{n+1}\right) .
\end{align*}
$$

We denote by $\mathbb{J}_{x}^{n}(\pi)$ the totality of n-preconnections ∇_{x} over the bundle $\pi: E \rightarrow M$ at $x \in E$. We denote by $\mathbb{J}^{n}(\pi)$ the set-theoretic union of $\mathbb{J}_{x}^{n}(\pi)^{\prime} s$ for all $x \in E$. In particular, $\mathbb{J}^{0}(\pi)=\hat{\mathbb{J}}^{0}(\pi)=E$ by convention and $\mathbb{J}^{1}(\pi)=\hat{\mathbb{J}}^{1}(\pi)$ by definition. By the very definition of n-preconnection, the projections $\hat{\mathbb{\pi}}_{n+1, n}: \hat{\mathbb{J}}^{n+1}(\pi) \rightarrow \hat{\mathbb{J}}^{n}(\pi)$ are naturally restricted to mappings $\underline{\pi}_{n+1, n}: \mathbb{J}^{n+1}(\pi) \rightarrow \mathbb{J}^{n}(\pi)$. Similarly for $\underline{\pi}_{n}: \mathbb{J}^{n}(\pi) \rightarrow M$ and $\underline{\pi}_{n, m}: \mathbb{J}^{n}(\pi) \rightarrow \mathbb{J}^{m}(\pi)$ with $m \leq n$.

Proposition 1.5. Let m, n be natural numbers with $m \leq n$. Let k_{1}, \ldots, k_{m} be positive integers with $k_{1}+\cdots+k_{m}=n$. For any $\nabla_{x} \in \mathbb{J}^{n}(\pi)$, any $\gamma \in \mathbf{T}_{\pi(x)}^{m}(M)$ and any $\sigma \in \mathfrak{S}_{n}$ we have

$$
\begin{align*}
& \nabla_{x}\left(\left(d_{1}, \ldots, d_{n}\right) \in D^{n}\right. \longmapsto \gamma\left(d_{\sigma(1)} \ldots d_{\sigma\left(k_{1}\right)},\right. \\
&\left.\left.d_{\sigma\left(k_{1}+1\right)} \ldots d_{\sigma\left(k_{1}+k_{2}\right)}, \ldots, d_{\sigma\left(k_{1}+\cdots+k_{m-1}+1\right)} \ldots \sigma(n)\right)\right) \\
&=\left(d_{1}, \ldots, d_{n}\right) \in D^{n} \longmapsto \underline{\pi}_{n, m}\left(\nabla_{x}\right)(\gamma)\left(d_{\sigma(1)} \ldots d_{\sigma\left(k_{1}\right)}, d_{\sigma\left(k_{1}+1\right)} \ldots\right. \tag{1.13}\\
&\left.d_{\sigma\left(k_{1}+k_{2}\right)}, \ldots, d_{\sigma\left(k_{1}+\cdots+k_{m-1}+1\right)} \ldots d_{\sigma(n)}\right)
\end{align*}
$$

Proof. This follows simply from repeated use of (1.3) and (1.12).
The following proposition will be used in the proof of Proposition 3.6.
Proposition 1.6. Let $\nabla_{x} \in \mathbb{J}^{n}(\pi), t \in \mathbf{T}_{\pi(x)}^{1}(M)$ and $\gamma, \gamma_{+}, \gamma_{-} \in \mathbf{T}_{\pi(x)}^{n}(M)$ with $\left.\gamma_{+}\right|_{D(n ; n)}=$ $\left.\gamma_{-}\right|_{D(n ; n)}$. Then we have

$$
\begin{array}{r}
\nabla_{x}\left(\gamma_{+}\right) \dot{-} \nabla_{x}\left(\gamma_{-}\right)=\underline{\pi}_{n, 1}\left(\nabla_{x}\right)\left(\gamma_{+} \dot{-} \gamma_{-}\right) \\
\underline{\pi}_{n, 1}\left(\nabla_{x}\right)(t) \dot{+} \nabla_{x}(\gamma)=\nabla_{x}(t \dot{+} \gamma) . \tag{1.15}
\end{array}
$$

Proof. It is an easy exercise of affine geometry to show that (1.14) and (1.15) are equivalent. Here we deal only with (1.14) in case of $n=2$. For any $d_{1}, d_{2} \in D$, we have

$$
\left(\nabla_{x}\left(\gamma_{+}\right) \dot{-} \nabla_{x}\left(\gamma_{-}\right)\right)\left(d_{1} d_{2}\right)=\left(\left(\nabla_{x}\left(\gamma_{+}\right)-\nabla_{x}\left(\gamma_{-}\right)\right)-\left(\mathbf{s}_{1} \circ \mathbf{d}_{1}\right)\left(\nabla_{\mathbf{x}}\left(\gamma_{+}\right)\right)\right)\left(d_{1}, d_{2}\right)
$$

[By Proposition 0.3.9]

$$
=\nabla_{x}\left(\left(\gamma_{+}^{-} \gamma_{-}\right)-\left(\mathbf{s}_{1} \circ \mathbf{d}_{1}\right)\left(\gamma_{+}\right)\right)\left(d_{1}, d_{2}\right)
$$

[By (1.2) and Proposition 1.3]

$$
=\nabla_{x}\left(\left(\left(e_{1}, e_{2}\right) \in D^{2} \longmapsto\left(\gamma_{+} \dot{-} \gamma_{-}\right)\left(e_{1} e_{2}\right)\right)\right)\left(d_{1}, d_{2}\right)
$$

[By Proposition 0.3.9 again]

$$
=\underline{\pi}_{2,1}\left(\nabla_{x}\right)\left(\gamma_{+} \dot{-} \gamma-\right)\left(d_{1} d_{2}\right)
$$

[By Proposition 1.5],
so that (1.14) in case of $n=2$ obtains.
Proposition 1.7. Let $\nabla_{x}^{+}, \nabla_{x}^{-} \in \mathbb{J}_{x}^{n+1}(\pi)$ with $\hat{\underline{\tilde{t}}}_{n+1, n}\left(\nabla_{x}^{+}\right)=\underline{\underline{\underline{ }}}_{n+1, n}\left(\nabla_{x}^{-}\right)$. Then the assignment $\gamma \in \mathbf{T}_{\pi(x)}^{n+1}(M) \longmapsto \nabla_{x}^{+}(\gamma) \dot{-} \nabla_{x}^{-}(\gamma)$ belongs to $\mathbf{S}_{\pi(x)}^{n+1}\left(M ; v_{\pi}\right)$.

Proof. Since

$$
\begin{align*}
\pi_{*}\left(\nabla_{x}^{+}(\gamma) \dot{-} \nabla_{x}^{-}(\gamma)\right) & =\pi_{*}\left(\nabla_{x}^{+}(\gamma)\right) \dot{-} \pi_{*}\left(\nabla_{x}^{-}(\gamma)\right) \quad[\text { By Proposition 0.3.3] } \tag{1.17}\\
& =0 \quad[(1.1)],
\end{align*}
$$

$\nabla_{x}^{+}(\gamma) \dot{-} \nabla_{x}^{-}(\gamma)$ belongs in $\mathbf{V}_{x}^{1}(\pi)$. For any $\alpha \in \mathbb{R}$ and any natural number i with $1 \leq 1 \leq n+1$, we have

$$
\begin{align*}
\nabla_{x}^{+}(\alpha \cdot \gamma)_{i} \dot{-} \nabla_{x}^{-}(\alpha \dot{i}) & =\alpha \cdot \nabla_{x}^{+}(\gamma) \dot{-} \alpha \cdot \nabla_{x}^{-}(\gamma) & & {[(1.2)] } \tag{1.18}\\
& =\alpha\left(\nabla_{x}^{+}(\gamma) \dot{-} \nabla_{x}^{-}(\gamma)\right) & & {[(0.3 .3)] }
\end{align*}
$$

which implies that the assignment $\gamma \in \mathbf{T}_{\pi(x)}^{n+1}(M) \longmapsto \nabla_{x}^{+}(\gamma) \dot{-} \nabla_{x}^{-}(\gamma)$ abides by (0.4.1). For any $\sigma \in \mathfrak{S}_{n+1}$ we have

$$
\begin{array}{rlr}
\nabla_{x}^{+}\left(\Sigma_{\sigma}(\gamma)\right) \dot{-} \nabla_{x}^{-}\left(\Sigma_{\sigma}(\gamma)\right) & =\Sigma_{\sigma}\left(\nabla_{x}^{+}(\gamma)\right) \dot{-} \Sigma_{\sigma}\left(\nabla_{x}^{-}(\gamma)\right) & {[(1.3)]} \\
& =\Sigma_{\sigma}\left(\nabla_{x}^{+}(\gamma) \dot{-} \nabla_{x}^{-}(\gamma)\right) & {[(0.3 .5)]} \tag{1.19}
\end{array}
$$

which implies that the assignment $\gamma \in \mathbf{T}_{\pi(x)}^{n+1}(M) \longmapsto \nabla_{x}^{+}(\gamma)-\nabla_{x}^{-}(\gamma)$ abides by (0.4.2). It remains to show that the assignment $\gamma \in \mathbf{T}_{\pi(x)}^{n+1}(M) \longmapsto \nabla_{x}^{+}(\gamma) \dot{-} \nabla_{x}^{-}(\gamma)$ abides by (0.4.3), which follows directly from (1.12) and the assumption that $\hat{\underline{\tilde{n}}}_{n+1, n}\left(\nabla_{x}^{+}\right)=\hat{\underline{\tilde{n}}}_{n+1, n}\left(\nabla_{x}^{-}\right)$.

Proposition 1.8. Let $\nabla_{x} \in \mathbb{J}_{x}^{n+1}(\pi)$ and $\omega \in \mathbf{S}_{\pi(x)}^{n+1}\left(M ; v_{\pi}\right)$. Then the assignment $\gamma \in$ $\mathbf{T}_{\pi(x)}^{n+1}(M) \longmapsto \omega(\gamma) \dot{+} \nabla_{x}(\gamma)$ belongs to $\mathbb{J}_{x}^{n+1}(\pi)$.

Proof. Since

$$
\begin{align*}
\pi_{*}\left(\omega(\gamma) \dot{+} \nabla_{x}(\gamma)\right) & =\pi_{*}(\omega(\gamma)) \dot{+} \pi_{*}\left(\nabla_{x}(\gamma)\right) \quad[(0.3 .2)] \tag{1.20}\\
& =\gamma \quad[(1.1)],
\end{align*}
$$

the assignment $\gamma \in \mathbf{T}_{\pi(x)}^{n+1}(M) \longmapsto \omega(\gamma) \dot{+} \nabla_{x}(\gamma)$ stands to (1.1). For any $\alpha \in \mathbb{R}$ and any natural number i with $1 \leq i \leq n+1$, we have

$$
\begin{align*}
\omega\left(\alpha_{i} \gamma\right)_{i} \dot{+} \nabla_{x}\left(\alpha_{i} \gamma\right) & =\alpha \omega(\gamma) \dot{+} \alpha_{i} \nabla_{x}(\gamma) \quad[(0.4 .1) \text { and (1.2)] } \tag{1.21}\\
& =\alpha_{i}\left(\omega(\gamma)_{i} \dot{+} \nabla_{x}(\gamma)\right) \quad[(0.3 .4)],
\end{align*}
$$

so that the assignment $\gamma \in \mathbf{T}_{\pi(x)}^{n+1}(M) \longmapsto \omega(\gamma) \dot{+} \nabla_{x}(\gamma)$ stands to (1.2). For any $\sigma \in \mathfrak{S}_{n+1}$ we have

$$
\begin{align*}
\omega\left(\Sigma_{\sigma}(\gamma)\right)+\nabla_{x}\left(\Sigma_{\sigma}(\gamma)\right) & =\omega(\gamma) \dot{+} \Sigma_{\sigma}\left(\nabla_{x}(\gamma)\right) & {[(0.4 .2) \text { and }(1.2)] } \\
& =\Sigma_{\sigma}\left(\omega(\gamma) \dot{+} \nabla_{x}(\gamma)\right) & {[(0.3 .6)], } \tag{1.22}
\end{align*}
$$

so that the assignment $\gamma \in \mathbf{T}_{\pi(x)}^{n+1}(M) \longmapsto \omega(\gamma) \dot{+} \nabla_{x}(\gamma)$ stands to (1.3). That the assignment $\gamma \in \mathbf{T}_{\pi(x)}^{n+1}(M) \longmapsto \omega(\gamma) \dot{+} \nabla_{x}(\gamma)$ stands to (1.11) follows from the simple fact that the image of the assignment under $\underline{\hat{\pi}}_{n+1, n}$ coincides with $\underline{\underline{\tilde{T}}}_{n+1, n}\left(\nabla_{x}\right)$, which is consequent upon Proposition 0.4.1. It remains to show that the assignment $\gamma \in \mathbf{T}_{\pi(x)}^{n+1}(M) \longmapsto \omega(\gamma) \dot{+} \nabla_{x}(\gamma)$ abides by (1.12), which follows directly from (0.4.3) and (1.12).

For any $\nabla_{x}^{+}, \nabla_{x}^{-} \in \mathbb{J}^{n+1}(\pi)$ with $\hat{\underline{\pi}}_{n+1, n}\left(\nabla_{x}^{+}\right)=\hat{\underline{\pi}}_{n+1, n}\left(\nabla_{x}^{-}\right)$, we define $\nabla_{x}^{+}-\nabla_{x}^{-} \in \mathbf{S}_{\pi(x)}^{n+1}\left(M ; v_{\pi}\right)$ to be

$$
\begin{equation*}
\left(\nabla_{x}^{+}-\nabla_{x}^{-}\right)(\gamma)=\nabla_{x}^{+}(\gamma) \dot{-} \nabla_{x}^{-}(\gamma) \tag{1.23}
\end{equation*}
$$

for any $\gamma \in \mathbf{T}_{\pi(x)}^{n+1}(M)$. This is well defined by dint of Lemma 1.4 and Propositions 0.3.5 and 0.3.6. For any $\omega \in \mathbf{S}_{\pi(x)}^{n+1}\left(M ; v_{\pi}\right)$ and any $\nabla_{x} \in \mathbb{J}^{n+1}(\pi)$ we define $\omega \dot{+} \nabla_{x} \in \mathbb{J}_{x}^{n+1}(\pi)$ to be

$$
\begin{equation*}
\left(\omega \dot{+} \nabla_{x}\right)(\gamma)=\omega(\gamma) \dot{+} \nabla_{x}(\gamma) \tag{1.24}
\end{equation*}
$$

for any $\gamma \in \mathbf{T}_{\pi(x)}^{n+1}(M)$. This is well defined by dint of Propositions 0.3.5 and 0.3.6
With these two operations defined in (1.23) and (1.24) it is easy to see that
Theorem 1.9 (cf. Saunders [1989, Theorem 6.2.9]). The bundle $\underline{\pi}_{n+1, n}: \mathbb{J}^{n+1}(\pi) \rightarrow \mathbb{J}^{n}(\pi)$ is an affine bundle over the vector bundle $\mathbb{J}^{n}(\pi) \times{ }_{M} \mathbf{S}^{n+1}\left(M ; v_{\pi}\right) \rightarrow \mathbb{J}^{n}(\pi)$.

An n-connection ∇ over π is simply an assignment of an n-preconnection ∇_{x} over π at x to each point x of E, in which we will often write $\nabla(\gamma, x)$ in place of $\nabla_{x}(\gamma)$. 1-preconnections over π (at $x \in E$) in this paper were called simply preconnections over π (at $x \in E$) in Nishimura [2001].

Let f be a morphism of bundles over M from π to π^{\prime}. We say that an n-preconnection ∇_{x} over π at a point x of E is f-related to an n-preconnection ∇_{y} over π^{\prime} at a point $y=f(x)$ of E^{\prime} provided that

$$
\begin{equation*}
f \circ \nabla_{x}(\gamma)=\nabla_{y}(\gamma) \tag{1.25}
\end{equation*}
$$

for any $\gamma \in \mathbf{T}_{a}^{n}(M)$ with $\mathrm{a}=\pi(x)=\pi^{\prime}(y)$.

Now we recall the construction of $\mathbf{J}^{n}(\pi)^{\prime} s$ in Nishimura [2003]. By convention we let $\mathbf{J}^{0}(\pi)=\mathbb{J}^{0}(\pi)=E$ with $\pi_{0,0}=\underline{\pi}_{0,0}=i d_{E}$ and $\pi_{0}=\underline{\pi}_{0}=\pi$. We let $\mathbf{J}^{1}(\pi)=\mathbb{J}^{1}(\pi)$ with $\pi_{1,0}=\underline{\pi}_{1,0}$ and $\pi_{1}=\underline{\pi}_{1}$. Now we are going to define $\overline{\mathbf{J}}^{n+1}(\pi)$ together with the canonical mapping $\pi_{n+1, n}: \mathbf{J}^{n+1}(\pi) \rightarrow \mathbf{J}^{n}(\pi)$ by induction on $n \geq 1$. These are intended for holonomic jet bundles (cf. Saunders [1989, Chapter 5]). We define $\mathbf{J}^{n+1}(\pi)$ to be the subspace of $\mathbf{J}^{1}\left(\pi_{n}\right)$ consisting of $\nabla_{x}^{\prime} s$ with $x=\nabla_{y} \in \mathbf{J}^{n}(\pi)$ pursuant to the following two conditions:

$$
\begin{equation*}
\nabla_{x} \text { is } \pi_{n, n-1}-\text { related to } \nabla_{y} . \tag{1.26}
\end{equation*}
$$

Let $d_{1}, d_{2} \in D$ and γ a microsquare on M with

$$
\begin{align*}
\gamma(0,0) & =\pi_{n}(x) . \text { Let it be that } \\
z & =\nabla_{y}(\gamma(\cdot, 0))\left(d_{1}\right) \tag{1.27.1}\\
w & =\nabla_{y}(\gamma(0, \cdot))\left(d_{2}\right) \tag{1.27.2}\\
\nabla_{z} & =\nabla_{x}(\gamma(\cdot, 0))\left(d_{1}\right) \tag{1.27.3}\\
\nabla_{w} & =\nabla_{x}(\gamma(0, \cdot))\left(d_{2}\right) \tag{1.27.4}
\end{align*}
$$

Then we have

$$
\begin{equation*}
\nabla_{z}\left(\gamma\left(d_{1}, \cdot\right)\right)\left(d_{2}\right)=\nabla_{w}\left(\gamma\left(\cdot, d_{2}\right)\right)\left(d_{1}\right) \tag{1.27.5}
\end{equation*}
$$

We define $\pi_{n+1, n}$ to be the restriction of $\left(\pi_{n}\right)_{1,0}: \mathbf{J}^{1}\left(\mathbf{J}^{n}(\pi)\right) \rightarrow \mathbf{J}^{n}(\pi)$ to $\mathbf{J}^{n+1}(\pi)$. We let $\pi_{n+1}=\pi_{n} \circ \pi_{n+1, n}$

2. Translation of repeated 1-jets into higher-order Preconnections

Mappings $\varphi_{n}: \mathbf{J}^{n}(\pi) \rightarrow \mathbb{J}^{n}(\pi)(n=0,1)$ shall be the identity mappings. We are going to define $\varphi_{n}: \mathbf{J}^{n}(\pi) \rightarrow \mathbb{J}^{n}(\pi)$ for any natural number n by induction on n. Let $x_{n}=\nabla_{x_{n-1}} \in$ $\mathbf{J}^{n}(\pi)$ and $\nabla_{x_{n}} \in \mathbf{J}^{n+1}(\pi)$. We define $\varphi_{n+1}\left(\nabla_{x_{n}}\right)$ as follows:

$$
\begin{equation*}
\varphi_{n+1}\left(\nabla_{x_{n}}\right)(\gamma)\left(d_{1}, \ldots, d_{n+1}\right)=\varphi_{n}\left(\nabla_{x_{n}}(\gamma(0, \ldots, 0, \cdot))\left(d_{n+1}\right)\right)\left(\gamma\left(\cdot, \ldots, \cdot, d_{n+1}\right)\right)\left(d_{1}, \ldots, d_{n}\right) \tag{2.1}
\end{equation*}
$$

for any $\gamma \in \mathbf{T}_{\pi_{n}\left(x_{n}\right)}^{n+1}(M)$ and any $\left(d_{1}, \ldots, d_{n+1}\right) \in D^{n+1}$. Then we have
Lemma 2.1. $\varphi_{n+1}\left(\nabla_{x_{n}}\right) \in \hat{\mathbb{J}}^{n+1}(\pi)$.
Proof. It suffices to show that for any $\gamma \in \mathbf{T}_{\pi_{n}\left(x_{n}\right)}^{n+1}(M)$, any $\alpha \in \mathbb{R}$ and any $\sigma \in \mathfrak{S}_{n+1}$ we have

$$
\begin{align*}
\pi \circ \varphi_{n+1}\left(\nabla_{x_{n}}\right)(\gamma) & =\gamma \tag{2.2}\\
\varphi_{n+1}\left(\nabla_{x_{n}}\right)(\alpha \cdot \gamma) & =\alpha \cdot \varphi_{i+1}\left(\nabla_{x_{n}}\right)(\gamma) \quad(1 \leq i \leq n+1) \tag{2.3}\\
\varphi_{n+1}\left(\nabla_{x_{n}}\right)\left(\Sigma_{\sigma}(\gamma)\right) & =\Sigma_{\sigma}\left(\varphi_{n+1}\left(\nabla_{x_{n}}\right)(\gamma)\right) \tag{2.4}
\end{align*}
$$

We proceed by induction on n. First we deal with (2.2)

$$
\begin{aligned}
& \pi \circ \varphi_{n+1}\left(\nabla_{x_{n}}\right)(\gamma)\left(d_{1}, \ldots, d_{n+1}\right)=\pi\left(\varphi_{n+1}\left(\nabla_{x_{n}}\right)(\gamma)\left(d_{1}, \ldots, d_{n+1}\right)\right) \\
& \quad=\pi\left(\varphi_{n}\left(\nabla_{x_{n}}(\gamma(0, \ldots, 0, \cdot))\left(d_{n+1}\right)\right)\left(\gamma\left(\cdot, \ldots, \cdot, d_{n+1}\right)\right)\left(d_{1}, \ldots, d_{n}\right)\right)
\end{aligned}
$$

[By the definition of $\varphi_{\mathrm{n}+1}$]
$=\pi \circ \varphi_{n}\left(\nabla_{x_{n}}(\gamma(0, \ldots, 0, \cdot))\left(d_{n+1}\right)\right)\left(\gamma\left(\cdot, \ldots, \cdot, d_{n+1}\right)\right)\left(d_{1}, \ldots, d_{n}\right)$
$=\gamma\left(\cdot, \ldots, \cdot, d_{n+1}\right)\left(d_{1}, \ldots, d_{n}\right)$
[By induction hypothesis]
$=\gamma\left(d_{1}, \ldots, d_{n+1}\right)$
$i=n+1$. For the former case we have

$$
\begin{aligned}
& \varphi_{n+1}\left(\nabla_{x_{n}}\right)(\alpha \cdot \gamma)\left(d_{i}, \ldots, d_{n+1}\right) \\
& \quad=\varphi_{n}\left(\nabla_{x_{n}}\left(\alpha_{i} \gamma(0, \ldots, 0, \cdot)\right)\left(d_{n+1}\right)\right)\left(\alpha_{i} \gamma\left(\cdot, \ldots, \cdot, d_{n+1}\right)\right)\left(d_{1}, \ldots, d_{n}\right)
\end{aligned}
$$

[By the definition of φ_{n+1}]
$=\alpha_{i} \varphi_{i}\left(\nabla_{x_{n}}(\gamma(0, \ldots, 0, \cdot))\left(d_{n+1}\right)\right)\left(\gamma\left(\cdot, \ldots, \cdot, d_{n+1}\right)\right)\left(d_{1}, \ldots, d_{n}\right)$
[By induction hypothesis]

$$
\begin{aligned}
& =\varphi_{n}\left(\nabla_{x_{n}}(\gamma(0, \ldots, 0, \cdot))\left(d_{n+1}\right)\right)\left(\gamma\left(\cdot, \ldots, \cdot, d_{n+1}\right)\right)\left(d_{1}, \ldots, d_{i-1}, \alpha d_{i}, d_{i+1}, \cdots, d_{n}\right) \\
& =\varphi_{n+1}\left(\nabla_{x_{n}}\right)(\gamma)\left(d_{1}, \ldots, d_{i-1}, \alpha d_{i}, d_{i+1}, \cdots, d_{n+1}\right) \\
& =\alpha_{i} \varphi_{i}\left(\nabla_{x_{n}}\right)(\gamma)\left(d_{1}, \ldots, d_{n+1}\right)
\end{aligned}
$$

For the latter case of our treatment of (2.3) we have

$$
\begin{align*}
& \varphi_{n+1}\left(\nabla_{x_{n}}\right)\left(\alpha_{n+1} \gamma\right)\left(d_{1}, \ldots, d_{n+1}\right) \\
& \quad=\varphi_{n}\left(\nabla_{x_{n}}\left(\alpha_{n+1} \gamma(0, \ldots, 0, \cdot)\right)\left(d_{n+1}\right)\right)\left(\alpha_{n+1} \gamma\left(\cdot, \ldots, \cdot, d_{n+1}\right)\right)\left(d_{1}, \ldots, d_{n}\right) \tag{2.7}
\end{align*}
$$

[By the definition of $\varphi_{\mathrm{n}+1}$]

Finally we deal with (2.4), for which it suffices to handle $\sigma=<i, i+1>(1 \leq i \leq n)$. The treatment of the simple case of $i \leq n-1$ can safely be left to the reader. Here we deal with (2.4) in case of $\sigma=<n, n+1>$. Let it be that

$$
\begin{align*}
y_{n-1} & =\nabla_{x_{n-1}}(\gamma(0, \ldots, 0, \cdot))\left(d_{n+1}\right) \tag{2.8}\\
z_{n-1} & =\nabla_{x_{n-1}}(\gamma(0, \ldots, 0, \cdot, 0))\left(d_{n}\right) \tag{2.9}\\
\nabla_{y_{n-1}} & =\nabla_{x_{n}}(\gamma(0, \ldots, 0, \cdot))\left(d_{n+1}\right) \tag{2.10}\\
\nabla_{z_{n-1}} & =\nabla_{x_{n}}(\gamma(0, \ldots, 0, \cdot, 0))\left(d_{n}\right) \tag{2.11}
\end{align*}
$$

On the one hand we have

$$
\begin{aligned}
& \varphi_{n+1}\left(\nabla_{x_{n}}\right)\left(\Sigma_{<n, n+1>}(\gamma)\right)\left(d_{1}, \ldots, d_{n+1}\right) \\
& =\varphi_{n}\left(\nabla_{x_{n}}\left(\Sigma_{<n, n+1>}(\gamma)(0, \ldots, 0, \cdot)\right)\left(d_{n+1}\right)\right)\left(\Sigma_{<n, n+1>}(\gamma)\left(\cdot, \ldots, \cdot, d_{n+1}\right)\right)\left(d_{1}, \ldots, d_{n}\right)
\end{aligned}
$$

[By the definition of $\varphi_{\mathrm{n}+1}$]
$=\varphi_{n}\left(\nabla_{x_{n}}(\gamma(0, \ldots, 0, \cdot, 0))\left(d_{n+1}\right)\right)\left(\gamma\left(\cdot, \ldots, \cdot, d_{n+1}, \cdot\right)\right)\left(d_{1}, \ldots, d_{n}\right)$
$=\varphi_{n-1}\left(\nabla_{z_{n-1}}\left(\gamma\left(0, \ldots, 0, d_{n+1}, \cdot\right)\left(d_{n}\right)\right)\left(\gamma\left(\cdot, \ldots, \cdot, d_{n+1}, d_{n}\right)\right)\left(d_{1}, \ldots, d_{n-1}\right)\right.$
[By the definition of φ_{n}]

$$
\begin{aligned}
= & \varphi_{n-1}\left(\nabla_{y_{n-1}}\left(\gamma\left(0, \ldots, 0, \cdot, d_{n}\right)\left(d_{n+1}\right)\right)\left(\gamma\left(\cdot, \ldots, \cdot, d_{n+1}, d_{n}\right)\right)\left(d_{1}, \ldots, d_{n-1}\right)\right. \\
& {[(1.27 .5)] }
\end{aligned}
$$

On the other hand we have

$$
\begin{aligned}
& \Sigma_{<n, n+1>}\left(\varphi_{n+1}\left(\nabla_{x_{n}}\right)(\gamma)\right)\left(d_{1}, \ldots, d_{n+1}\right) \\
& =\varphi_{n+1}\left(\nabla_{x_{n}}\right)(\gamma)\left(d_{1}, \ldots, d_{n-1}, d_{n+1}, d_{n}\right) \\
& =\varphi_{n}\left(\nabla_{x_{n}}(\gamma(0, \ldots, 0, \cdot))\left(d_{n}\right)\right)\left(\gamma\left(\cdot, \ldots, \cdot, d_{n}\right)\right)\left(d_{1}, \ldots, d_{n-1}, d_{n+1}\right)
\end{aligned}
$$

[By the definition of $\varphi_{\mathrm{n}+1}$]

$$
=\varphi_{n-1}\left(\nabla_{y_{n-1}}\left(\gamma\left(0, \ldots, 0, \cdot, d_{n}\right)\left(d_{n+1}\right)\right)\left(\gamma\left(\cdot, \ldots, \cdot, d_{n+1}, d_{n}\right)\right)\left(d_{1}, \ldots, d_{n-1}\right)\right.
$$

[By the definition of φ_{n}]
It follows from (2.12) and (2.13) that

$$
\begin{equation*}
\varphi_{n+1}\left(\nabla_{x_{n}}\right)\left(\Sigma_{<n, n+1>}(\gamma)\right)=\Sigma_{<n, n+1>}\left(\varphi_{n+1}\left(\nabla_{x_{n}}\right)(\gamma)\right) \tag{2.14}
\end{equation*}
$$

This completes the proof.
Lemma 2.2. The diagram

$$
\begin{array}{rll}
\mathbf{J}^{n+1}(\pi) \tag{2.15}\\
\pi_{n+1, n} & \varphi_{n+1} & \hat{\mathbb{J}}^{n+1}(\pi) \\
\mathbf{J}^{n}(\pi) & & \downarrow \\
\varphi_{n} & \hat{\mathbb{J}}^{n}(\pi)
\end{array}
$$

is commutative.
Proof. Let $\nabla_{x_{n}} \in \mathbf{J}^{n+1}(\pi)$ and $x_{n}=\nabla_{x_{n-1}} \in \mathbf{J}^{n}(\pi)$. For any $\gamma \in \mathbf{T}_{\pi_{n-1}\left(x_{n-1}\right)}^{n}(M)$ and any $\left(d_{1}, \ldots, d_{n}\right) \in D^{n}$ we have

$$
\begin{align*}
& \left(\left(\underline{\pi}_{n+1, n} \circ \varphi_{n+1}\right)\left(\nabla_{x_{n}}\right)\right)(\gamma)\left(d_{1}, \ldots, d_{n}\right) \\
& =\left(\varphi_{n+1}\left(\nabla_{x_{n}}\right)\right)\left(\mathbf{s}_{n+1}(\gamma)\right)\left(d_{1}, \ldots, d_{n}, 0\right) \tag{2.16}
\end{align*}
$$

[By the definition of $\underline{\pi}_{\mathrm{n}+1, \mathrm{n}}$]
$=\varphi_{n}\left(\nabla_{x_{n}}\left(\mathbf{s}_{n+1}(\gamma)(0, \ldots, 0, \cdot)\right)(0)\right)\left(\mathbf{s}_{n+1}(\gamma)(\cdot, \ldots, \cdot, 0)\right)\left(d_{1}, \ldots, d_{n}\right)$
[By the definition of $\varphi_{\mathrm{n}+1}$]
$=\varphi_{n}\left(\nabla_{x_{n-1}}\right)(\gamma)\left(d_{1}, \ldots, d_{n}\right)$,
which shows the commutativity of the diagram (2.15).
Lemma 2.1 can be strengthened as follows:
Lemma 2.3. $\varphi_{n+1}\left(\nabla_{x_{n}}\right) \in \mathbb{J}^{n+1}(\pi)$.
Proof. With due regard to Lemmas 2.1 and 2.2, we have only to show that for any $\gamma \in$ $\mathbf{T}_{\pi_{n}\left(x_{n}\right)}^{n}(M)$, we have

$$
\begin{align*}
& \varphi_{n+1}\left(\nabla_{x_{n}}\right)\left(\left(\left(d_{1}, \ldots, d_{n+1}\right) \in D^{n+1} \longmapsto \gamma\left(d_{1}, \ldots, d_{n-1}, d_{n} d_{n+1}\right)\right)\right) \\
& =\left(d_{1}, \ldots, d_{n+1}\right) \in D^{n+1} \longmapsto \underline{\hat{\pi}}_{n+1, n}\left(\varphi_{n+1}\left(\nabla_{x_{n}}\right)\right)(\gamma)\left(d_{1}, \ldots, d_{n-1}, d_{n} d_{n+1}\right) \tag{2.17}
\end{align*}
$$

We proceed by induction on n. For $n=0$ there is nothing to prove. Let $\bar{\gamma}$ be the $(n+1)$ microcube $\left(d_{1}, \ldots, d_{n+1}\right) \in D^{n+1} \longmapsto \gamma\left(d_{1}, \ldots, d_{n-1}, d_{n} d_{n+1}\right)$. For any $d_{1}, \ldots, d_{n+1} \in D$ we have

$$
\begin{align*}
& \varphi_{n+1}\left(\nabla_{x_{n}}\right)(\bar{\gamma})\left(d_{1},,,, d_{n+1}\right) \\
& \left.=\varphi_{n}\left(\nabla_{x_{n}} \bar{\gamma}(0, \ldots, 0, \cdot)\right)\left(d_{n+1}\right)\right)\left(\bar{\gamma}\left(\cdot, \ldots, \cdot, d_{n+1}\right)\right)\left(d_{1}, \ldots, d_{n}\right) \\
& \quad\left[\text { By the definition of } \varphi_{\mathrm{n}+1}\right] \\
& =\varphi_{n}\left(\nabla_{x_{n-1}}\right)\left(\bar{\gamma}\left(\cdot, \ldots, \cdot, d_{n+1}\right)\right)\left(d_{1}, \ldots, d_{n}\right) \tag{2.18}\\
& =\varphi_{n}\left(\nabla_{x_{n-1}}\right)\left(d_{n+1_{n}} \cdot \bar{\gamma}\right)\left(d_{1}, \ldots, d_{n}\right) \\
& =d_{n+1} \cdot\left(\varphi_{n}\left(\nabla_{x_{n-1}}\right)(\bar{\gamma})\right)\left(d_{1}, \ldots, d_{n}\right) \quad[\text { By Lemma 2.1] } \\
& =\varphi_{n}\left(\nabla_{x_{n-1}}\right)(\bar{\gamma})\left(d_{1}, \ldots, d_{n-1}, d_{n} d_{n+1}\right)
\end{align*}
$$

Thus we have established the mappings $\varphi_{n}: \mathbf{J}^{n}(\pi) \rightarrow \mathbb{J}^{n}(\pi)$.

3. Preconnections in formal bundles

In this section we will assume that the bundle $\pi: E \rightarrow M$ is a formal bundle of fiber dimension q over the formal manifold of dimension p. For the exact definition of a formal bundle, the reader is referred to Nishimura [n.d.]. Since our considerations to follow are always infinitesimal, this means that we can assume without any loss of generality that $M=\mathbb{R}^{p}, E=\mathbb{R}^{p+q}$, and $\pi: \mathbb{R}^{p+q} \rightarrow \mathbb{R}^{p}$ is the canonical projection to the first p axes. We will let i with or without subscripts range over natural numbers between 1 and p (including endpoints), while we will let j with or without subscripts range over natural numbers between 1 and q (including endpoints). For any natural number n, we denote by $\mathcal{J}^{n}(\pi)$ the totality of $\left(x^{i}, y^{j}, \alpha_{i}^{j}, \alpha_{i_{1} i_{2}}^{j}, \ldots, \alpha_{i_{1} \ldots i_{n}}^{j}\right)^{\prime} s$ of $p+q+p q+p^{2} q+\cdots+p^{n} q$ elements of \mathbb{R} such that $\alpha_{i_{1} \ldots i_{k}}^{j} s$ are symmetric with respect to subscripts, i.e., $\alpha_{i_{\sigma(1)} \ldots i_{\sigma(k)}}^{j}=$ $\alpha_{i_{1} \ldots i_{k}}^{j}$ for any $\sigma \in \mathfrak{S}_{k}(2 \leq k \leq n)$. Therefore the number of independent components in $\left(x^{i}, y^{j}, \alpha_{i}^{j}, \alpha_{i_{1} i_{2}}^{j}, \ldots, \alpha_{i_{1} \ldots i_{n}}^{j}\right) \in \mathcal{J}^{n}(\pi)$ is $p+q \Sigma_{k=0}^{n}\left(\begin{array}{c}p+k-1\end{array}\right)=p+q\left({ }_{n}^{p+n}\right)$. The canonical projection $\left(x^{i}, y^{j}, \alpha_{i}^{j}, \alpha_{i_{1} i_{2}}^{j}, \ldots, \alpha_{i_{1} \ldots i_{n}}^{j}, \alpha_{i_{1} \ldots i_{n+1}}^{j}\right) \in \mathcal{J}^{n+1}(\pi) \longmapsto\left(x^{i}, y^{j}, \alpha_{i}^{j}, \alpha_{i_{1} i_{2}}^{j}, \ldots, \alpha_{i_{1} \ldots i_{n}}^{j}\right) \in$ $\mathcal{J}^{n}(\pi)$ is denoted by ${\underset{\sim}{n}}_{n+1, n}$. We will use Einstein's summation convention to suppress Σ.

The principal objective in this section is to define mappings $\widetilde{\theta}_{n}: \mathcal{J}^{n}(\pi) \rightarrow \mathbb{J}^{n}(\pi)$ and ${\underset{\sim}{\theta}}_{n}: \mathbb{J}^{n}(\pi) \rightarrow \mathcal{J}^{n}(\pi)$, which are to be shown to be the inverse of each other. Let $\widetilde{\theta}_{0}$ be the identity mapping. We define $\widetilde{\theta}_{1}: \mathcal{J}^{1}(\pi) \rightarrow \mathbb{J}^{1}(\pi)$ to be

$$
\begin{equation*}
\widetilde{\theta}_{1}\left(\left(x^{i}, y^{j}, \alpha_{i}^{j}\right)\right)\left(d \in D \longmapsto\left(x^{i}\right)+d\left(a^{i}\right)\right)=d \in D \longmapsto\left(x^{i}, y^{j}\right)+d\left(a^{i}, a^{i} \alpha_{i}^{j}\right) \tag{3.1}
\end{equation*}
$$

We define $\widetilde{\theta}_{2}: \mathcal{J}^{2}(\pi) \rightarrow \mathbb{J}^{2}(\pi)$ to be

$$
\begin{align*}
& \widetilde{\theta}_{2}\left(\left(x^{i}, y^{j}, \alpha_{i}^{j}, \alpha_{i_{1} i_{i}}^{j}\right)\right)\left(\left(d_{1}, d_{2}\right) \in D^{2}\right. \\
& \left.\longmapsto\left(x^{i}\right)+d_{1}\left(a_{1}^{i}\right)+d_{2}\left(a_{2}^{i}\right)+d_{1} d_{2}\left(a_{12}^{i}\right)\right) \\
& =\left(d_{1}, d_{2}\right) \in D^{2} \tag{3.2}\\
& \longmapsto\left(x^{i}, y^{j}\right)+d_{1}\left(a_{1}^{i}, a_{1}^{i} \alpha_{i}^{j}\right)+d_{2}\left(a_{2}^{i}, a_{2}^{i} \alpha_{i}^{j}\right)+d_{1} d_{2}\left(a_{12}^{i}, a_{1}^{i_{1}} a_{2}^{i_{2}} \alpha_{i_{1} i_{2}}^{j}+a_{12}^{i} \alpha_{i}^{j}\right)
\end{align*}
$$

Generally we define $\widetilde{\theta}_{n}: \mathcal{J}^{n}(\pi) \rightarrow \mathbb{J}^{n}(\pi)$ to be

$$
\begin{align*}
& \widetilde{\theta}_{n}\left(\left(x^{i}, y^{j}, \alpha_{i}^{j}, \alpha_{i_{1} i_{2}}^{j}, \ldots, \alpha_{i_{1} i_{2} \ldots i_{n}}^{j}\right)\right)\left(\left(d_{1}, \ldots, d_{n}\right) \in D^{n}\right. \\
& \left.\longmapsto\left(x^{i}\right)+\Sigma_{r=1}^{n} \Sigma_{1 \leq k_{1}<\cdots<k_{r} \leq n} d_{k_{1}} \ldots d_{k_{r}}\left(a_{k_{1} \ldots k_{r}}^{i}\right)\right) \\
& =\left(d_{1}, \ldots, d_{n}\right) \in D^{n} \tag{3.3}\\
& \left.\longmapsto\left(x^{i}, y^{j}\right)+\Sigma_{r=1}^{n} \Sigma_{1 \leq k_{1}<\cdots<k_{r} \leq n} d_{k_{1}} \ldots d_{k_{r}}\left(a_{k_{1} \ldots k_{r}}^{i}, \Sigma a_{\mathbf{J}_{1}}^{i_{\mathbf{J}_{1}}} \ldots a_{\mathbf{J}_{s}}^{i i_{s}} \alpha_{i_{\mathbf{J}_{1}} \ldots i_{\mathbf{J}_{s}}}^{j}\right)\right),
\end{align*}
$$

where the last Σ is taken over all partitions of the set $\left\{k_{1}, \ldots, k_{r}\right\}$ into nonempty subsets $\left\{\mathbf{J}_{1}, \ldots, \mathbf{J}_{s}\right\}$, and if $\mathbf{J}=\left\{k_{1}, \ldots, k_{t}\right\}$ is a set of natural numbers with $k_{1}<\cdots<k_{t}$, then $a_{\mathbf{J}}^{i_{\mathbf{J}}}$ denotes $a_{k_{1} \cdots k_{t}}^{i_{k_{1} \cdots k_{t}}}$.
First of all we note that
Proposition 3.1. For any $\left(x^{i}, y^{j}, \alpha_{i}^{j}, \ldots, \alpha_{i_{1} \ldots i_{n}}^{j}\right) \in \mathcal{J}^{n}(\pi)$, we have $\widetilde{\theta}_{n}\left(\left(x^{i}, y^{j}, \alpha_{i}^{j}, \ldots, \alpha_{i_{1} \ldots i_{n}}^{j}\right)\right) \in \widehat{\mathbb{J}}^{n}(\pi)$

Proof. For the sake of simplicity of notation we deal only with the case of $n=2$, leaving the general case safely to the reader. It should be obvious that $\widetilde{\theta}_{2}\left(\left(x^{i}, y^{j}, \alpha_{i}^{j}, \ldots, \alpha_{i_{1} \ldots i_{n}}^{j}\right)\right)$ satisfies conditions (1.1) and (1.2). To show that it abides also by (1.3), we note that given $\gamma \in \mathbf{T}^{2}(M)$ of the form $\left(d_{1}, d_{2}\right) \in D^{2} \longmapsto\left(x^{i}\right)+d_{1}\left(a_{1}^{i}\right)+d_{2}\left(a_{2}^{i}\right)+d_{1} d_{2}\left(a_{12}^{i}\right)$, we have

$$
\begin{align*}
& \widetilde{\theta}_{2}\left(\left(x^{i}, y^{j}, \alpha_{i}^{j}, \alpha_{i_{1} i_{2}}^{j}\right)\right)\left(\Sigma_{<1,2>}(\gamma)\right) \\
& =\left(d_{1}, d_{2}\right) \in D^{2} \\
& \longmapsto\left(x^{i}, y^{j}\right)+d_{2}\left(a_{1}^{i}, a_{1}^{i} \alpha_{i}^{j}\right)+d_{1}\left(a_{2}^{i}, a_{2}^{i} \alpha_{i}^{j}\right)+d_{1} d_{2}\left(a_{12}^{i}, a_{2}^{i_{1}} a_{1}^{i_{2}} \alpha_{i_{1} i_{2}}^{j}+a_{12}^{i} \alpha_{i}^{j}\right) \\
& =\left(d_{1}, d_{2}\right) \in D^{2} \tag{3.4}\\
& \longmapsto\left(x^{i}, y^{j}\right)+d_{2}\left(a_{1}^{i}, a_{1}^{i} \alpha_{i}^{j}\right)+d_{1}\left(a_{2}^{i}, a_{2}^{i} \alpha_{i}^{j}\right)+d_{1} d_{2}\left(a_{12}^{i}, a_{2}^{i_{1}} a_{1}^{i_{2}} \alpha_{i_{2} i_{1}}^{j}+a_{12}^{i} \alpha_{i}^{j}\right) \\
& \quad \quad\left[\text { since } \alpha_{i_{1} i_{2}}^{j}=\alpha_{i_{2} i_{1}}^{j}\right] \\
& =\Sigma_{<1,2>}\left(\widetilde{\theta}_{2}\left(\left(x^{i}, y^{j}, \alpha_{i}^{j}, \alpha_{i_{1} i_{2}}^{j}\right)\right)(\gamma)\right)
\end{align*}
$$

This completes the proof.
Proposition 3.2. The following diagram is commutative:

$\mathcal{J}^{n+1}(\pi)$	$\widetilde{\theta}_{n+1}$	$\hat{\mathbb{J}}^{n+1}(\pi)$
${\underset{\sim}{\pi}}_{n+1, n} \downarrow$		
	$\downarrow \hat{\underline{\pi}}_{n+1, n}$	
$\mathcal{J}^{n}(\pi)$	$\widetilde{\theta}_{n}$	$\hat{\mathbb{J}}^{n}(\pi)$

Proof. For the sake of simplicity of notation we deal only with the case of $n=1$, leaving the general case safely to the reader. Given $t \in \mathbf{T}^{1}(M)$ of the form $d \in D \longmapsto\left(x^{i}\right)+d\left(a^{i}\right), \mathbf{s}_{2}(t)$ is seen to be of the form $\left(d_{1}, d_{2}\right) \in D^{2} \longmapsto\left(x^{i}\right)+d_{1}\left(a^{i}\right)$, so that $\widetilde{\theta}_{2}\left(\left(x^{i}, y^{j}, \alpha_{i}^{j}, \alpha_{i_{1} i_{2}}^{j}\right)\right)\left(\mathbf{s}_{2}(t)\right)$ is of the form $\left(d_{1}, d_{2}\right) \in D^{2} \longmapsto\left(x^{i}, y^{j}\right)+d_{1}\left(a^{i}, a^{i} \alpha_{i}^{j}\right)$, which means the commutativity of the above diagram.

Proposition 3.3. For any $\left(x^{i}, y^{j}, \alpha_{i}^{j}, \ldots, \alpha_{i_{1} \ldots i_{n}}^{j}\right) \in \mathcal{J}^{n}(\pi)$, we have $\widetilde{\theta}_{n}\left(\left(x^{i}, y^{j}, \alpha_{i}^{j}, \ldots, \alpha_{i_{1} \ldots i_{n}}^{j}\right)\right) \in \mathbb{J}^{n}(\pi)$

Proof. With due regard to Proposition 3.1 we have only to deal with conditions (1.11) and (1.12). For $n=0$ and $n=1$ there is nothing to prove. For $n=2$ it is easy to see that

$$
\begin{align*}
& \widetilde{\theta}_{2}\left(\left(x^{i}, y^{j}, \alpha_{i}^{j}, \alpha_{i_{1} i_{2}}^{j}\right)\right)\left(\left(d_{1}, d_{2}\right) \in D^{2} \longmapsto\left(x^{i}\right)+d_{1} d_{2}\left(a^{i}\right)\right) \\
& =\left(d_{1}, d_{2}\right) \in D^{2} \longmapsto\left(x^{i}, y^{j}\right)+d_{1} d_{2}\left(a^{i}, a^{i} \alpha_{i}^{j}\right) \tag{3.5}\\
& =\left(d_{1}, d_{2}\right) \in D^{2} \longmapsto \widetilde{\theta}_{1}\left(\left(x^{i}, y^{j}, \alpha_{i}^{j}\right)\right)\left(d \in D \longmapsto\left(x^{i}\right)+d\left(a^{i}\right)\right)\left(d_{1} d_{2}\right),
\end{align*}
$$

from which (1.12) is easily seen to hold by dint of Proposition 3.2. The condition (1.11) holds trivially. We can continue by induction on n by dint of Proposition 3.2.

Now we are going to define mappings ${\underset{\sim}{\theta}}_{n}: \mathbb{J}^{n}(\pi) \rightarrow \mathcal{J}^{n}(\pi)$ by induction on n such that the diagram

is commutative. The mapping $\theta_{0}: \mathbb{J}^{0}(\pi) \rightarrow \mathcal{J}^{0}(\pi)$ shall be the identity mapping. Assuming that ${\underset{\sim}{\theta}}_{n}: \mathbb{J}^{n}(\pi) \rightarrow \mathcal{J}^{n}(\pi)$ is defined, we are going to define ${\underset{\sim}{\theta}}_{n+1}: \mathbb{J}^{n+1}(\pi) \rightarrow \mathcal{J}^{n+1}(\pi)$, for which it suffices by the required commutativity of the above diagram only to give $\alpha_{i_{1} \ldots i_{n+1}}^{j}$'s for each $\nabla_{x} \in \mathbb{J}^{n+1}(\pi)$ with $x=\left(x^{i}, y^{j}\right)$. Let \mathbf{e}_{i} denote $(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{R}^{p}$, where 1 is inserted at the i-th position while the other $p-1$ elements are fixed zero. By the general Kock axiom (cf. Lavendhomme [1996, §2.1.3]), $\nabla_{x}\left(\left(d_{1}, \ldots, d_{n+1}\right) \in D^{n+1} \longmapsto\right.$ $\left.\left.\left(x^{i}\right)+d_{1} \mathbf{e}_{i_{1}}+\cdots+d_{n+1} \mathbf{e}_{i_{n+1}}\right)\right)$ should be a polynomial of d_{1}, \ldots, d_{n+1}, in which the coefficient of $d_{1} \ldots d_{n+1}$ should be of the form $\left(0, \ldots, 0, \alpha_{i_{1} \ldots i_{n+1}}^{1}, \ldots, \alpha_{i_{1} \ldots i_{n+1}}^{q}\right) \in \mathbb{R}^{p+q}$ for some $\left(\alpha_{i_{1} \ldots i_{n+1}}^{1}, \ldots, \alpha_{i_{1} \ldots i_{n+1}}^{q}\right) \in \mathbb{R}^{q}$ and we choose them as our desired $\alpha_{i_{1} \ldots i_{n+1}}^{j}$'s. Now we have

Proposition 3.4. For any $\nabla_{\mathbf{x}} \in \mathbb{J}^{n}(\pi)$, we have $\underset{\sim}{\theta}\left(\nabla_{\mathbf{x}}\right) \in \mathcal{J}^{n}(\pi)$.
Proof. We have only to check the symmetric nature of $\alpha_{i_{1} \ldots i_{k}}^{j}$'s with respect to subscripts, which follows easily from (1.3) by induction on n.

It is easy to see that
Proposition 3.5. The composition $\underset{\sim_{n}}{\theta} \circ \widetilde{\theta}_{n}$ is the identity mapping of $\mathcal{J}^{n}(\pi)$.
Proof. Using the commutative diagram

we can easily establish the desired result by induction on n.
Proposition 3.6. The mapping ${\underset{\sim}{\theta}}_{n}: \mathbb{J}^{n}(\pi) \rightarrow \mathcal{J}^{n}(\pi)$ is one-to-one.
Proof. For $n=0,1$, there is nothing to prove. For $n=2$ we have

$$
\begin{align*}
& \left(d_{1}, d_{2}\right) \in D^{2} \longmapsto\left(x^{i}\right)+d_{1}\left(a_{1}^{i}\right)+d_{2}\left(a_{2}^{i}\right)+d_{1} d_{2}\left(a_{12}^{i}\right) \\
& =\left(d \in D \longmapsto\left(x^{i}\right)+d\left(a_{12}^{i}\right)\right) \dot{+}\left(\left(d_{1}, d_{2}\right) \in D^{2} \longmapsto\left(x^{i}\right)+d_{1}\left(a_{1}^{i}\right)+d_{2}\left(a_{2}^{i}\right)\right) \\
& \left.=\sum_{1=1}^{p} a_{12}^{i}\left(d \in D \longmapsto\left(x^{i}\right)+\mathbf{e}_{\mathbf{i}}\right)\right) \\
& \quad+\sum_{2}^{p} i_{i^{\prime \prime}=1}^{a_{2}^{i_{2}^{\prime \prime}} \cdot\left(\left(d_{1}, d_{2}\right) \in D^{2} \longmapsto\left(x^{i}\right)+d_{1}\left(a_{1}^{i}\right)+d_{2} \mathbf{e}_{i^{\prime \prime}}\right)} \tag{3.6}\\
& \left.=\sum_{i=1}^{p} a_{12}^{i}\left(d \in D \longmapsto \mathbf{e}_{i}\right)\right) \\
& \quad+\sum_{2}^{p} i_{i^{\prime \prime}=1}^{a_{2}^{i^{\prime \prime}}} \cdot\left(\sum_{i^{\prime}=1}^{p} a_{1}^{i} ;\left(\left(d_{1}, d_{2}\right) \in D^{2} \longmapsto\left(x^{i}\right)+d_{1} \mathbf{e}_{i^{\prime}}+d_{2} \mathbf{e}_{i^{\prime \prime}}\right)\right)
\end{align*}
$$

Therefore the desired statement follows from Proposition 1.6. We can continue to proceed by induction on n by using Propositions 1.3, 1.5 and 1.6.

These considerations finally yield the following main theorem of this section.
Theorem 3.7. The mappings ${\underset{\sim}{\theta}}_{n}: \mathbb{J}^{n}(\pi) \rightarrow \mathcal{J}^{n}(\pi)$ and $\widetilde{\theta}_{n}: \mathcal{J}^{n}(\pi) \rightarrow \mathbb{J}^{n}(\pi)$ are the inverse of each other. In particular, both of them are bijective.

Proof. This follows directly from Propositions 3.5 and 3.6.
By combining the above theorem with a main result of our previous paper (Nishimura [2003, Theorem 4.8]), we have

Theorem 3.8. Under the present assumption that the bundle $\pi: E \rightarrow M$ is a formal bundle of dimension q over the formal manifold of dimension p, the translation $\varphi_{n}: \mathbf{J}^{n}(\pi) \rightarrow \mathbb{J}^{n}(\pi)$ is a bijective correspondence.

References

[1] Bocharov, A. V.; Chetverikov, V. N.; Duzhin, S. V.; Khor'kova, N. G.; Krasil'shchik, I. S.; Samokhin, A. V.; Torkhov, Yu. N.; Verbovetsky, A. M.; Vinogradov, A. M.: Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. Translations of Mathematical Monographs, 182, American Mathematical Society, Providence, Rhode Island 1999.
[2] Gamkrelidze, R. V. (editor): Geometry I. Encyclopaedia of Mathematical Sciences 28, Springer-Verlag, Berlin and Heidelberg 1991.

Zbl 0741.00027
[3] Goerss, P. G.; Jardine, J. F.: Simplicial Homotopy Theory. Progress in Mathematics 174, Birkhäuser, Basel 1999.

Zbl 0949.55001
[4] Kock, A.: Formal manifolds and synthetic theory of jet bundles. Cah. Topol. Géom. Différ. 21 (1980), 227-246. Zbl 0434.18012
[5] Kock, A.: Synthetic Differential Geometry. London Mathematical Society Lecture Note Series 51, Cambridge University Press, Cambridge 1981. Zbl 0466.51008
[6] Kock, A.; Lavendhomme, R.: Strong infinitesimal linearity, with applications to strong difference and affine connections. Cah. Topol. Géom. Différ. 25 (1984), 311-324.

Zbl 0564.18009
[7] Krasil'shchik, I. S.; Lychagin, V. V.; Vinogradov, A. M.: Geometry of Jet Spaces and Nonlinear Partial Differential Equations. Gordon and Breach, London 1986.

Zbl 0722.35001
[8] Lavendhomme, R.: Basic Concepts of Synthetic Differential Geometry. Kluwer, Dordrecht 1996. Zbl 0866.58001
[9] Lavendhomme, R.; Nishimura, H.: Differential forms in synthetic differential geometry. Int. J. Theor. Phys. 37 (1998), 2823-2832. Zbl 0942.58008
[10] Moerdijk, I.; Reyes, G. E.: Models for Smooth Infinitesimal Analysis. Springer-Verlag, New York 1991. Zbl 0715.18001
[11] Nishimura, H.: Theory of microcubes. Int. J. Theor. Phys. 36 (1997), 1099-1131. Zbl 0884.18014
[12] Nishimura, H.: Nonlinear connections in synthetic differential geometry. J. Pure Appl. Algebra 131 (1998), 49-77. Zbl 0961.53011
[13] Nishimura, H.: General Jacobi identity revisited. Int. J. Theor. Phys. 38 (1999), 21632174.

Zbl 0942.58006
[14] Nishimura, H.: Synthetic differential geometry of jet bundles. Bull. Belg. Math. Soc.Simon Stevin 8 (2001), 639-650.

Zbl 1030.58001
[15] Nishimura, H.: Holonomicity in sythetic differential geometry of jet bundles. Beitr. Algebra Geom. 44 (2003), 471-481.

Zbl pre01973839
[16] Saunders, D. J.: The Geometry of Jet Bundles. London Mathematical Society Lecture Note Series 142, Cambridge University Press, Cambridge 1989.

Zbl 0665.58002
[17] Vinogradov, A. M.: An informal introduction to the geometry of jet bundles. Rend. Sem. Fac. Sci. Univ. Cagliari 58 (1988), 301-333.

Received April 4, 2003

