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Abstract. All rings are commutative with identity and all modules
are unital. The tensor product of projective (resp. flat, multiplication)
modules is a projective (resp. flat, multiplication) module but not con-
versely. In this paper we give some conditions under which the converse
is true. We also give necessary and sufficient conditions for the tensor
product of faithful multiplication Dedekind (resp. Prüfer, finitely co-
generated, uniform) modules to be a faithful multiplication Dedekind
(resp. Prüfer, finitely cogenerated, uniform) module. Necessary and
sufficient conditions for the tensor product of pure (resp. invertible,
large, small, join principal) submodules of multiplication modules to be
a pure (resp. invertible, large, small, join principal) submodule are also
considered.
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0. Introduction

Let R be a commutative ring with identity and M an R-module. M is a multi-
plication module if every submodule N of M has the form IM for some ideal I
of R. Equivalently, N = [N : M ]M, [9]. A submodule K of M is multiplication if
and only if N ∩K = [N : K]K for all submodules N of M, [22, Lemma 1.3].
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Anderson [8], defined θ(M) =
∑

m∈M

[Rm : M ] and showed the usefulness of

this ideal in studying multiplication modules. He proved for example that if
M is multiplication then M = θ(M)M , and a finitely generated module M is
multiplication if and only if θ(M) = R, [8, Proposition 1 and Theorem 1]. M is
multiplication if and only if R = θ(M) + ann(m) for each m ∈ M , equivalently,
Rm = θ(M)m for each m ∈ M , [4, Corollary 1.2] and [24, Theorem 2].

Let P be a maximal ideal of R. An R-module M is called P -torsion provided
for each m ∈ M there exists p ∈ P such that (1− p) m = 0. On the other hand M
is called P -cyclic provided there exist x ∈ M and q ∈ P such that (1− q) M ⊆ Rx.
El-Bast and Smith, [11, Theorem 1.2], showed that M is multiplication if and only
if M is P -torsion or P -cyclic for each maximal ideal P of R. If M is a faithful
multiplication R-module then it is easily verified that annN = ann [N : M ] for
every submodule N of M .

Let R be a ring and M an R-module. Then M is faithfully flat if M is flat
and for all R-modules N , N ⊗M = 0 implies that N = 0, equivalently, M is flat
and PM 6= M for each maximal ideal P of R, [18, Theorem 7.2]. Faithfully flat
modules are faithful flat but not conversely. The Z-module Q is faithful flat but
not faithfully flat. Finitely generated faithful multiplication modules are faithfully
flat, [4, Corollary 2.7], [19, Theorem 4.1] and [24, Corollary 2 to Theorem 9].

A submodule N of an R-module M is called pure in M if the sequence 0 →
N ⊗ E → M ⊗ E is exact for every R-module E, [18]. Let N be a submodule
of a flat R-module M . Then N is pure in M if and only if AN = AM ∩ N for
all ideals A of R, [12, Corollary 11.21]. In particular, an ideal I of R is pure if
and only if AI = A ∩ I for all ideals A of R. Consequently, an ideal I of R is
pure if and only if A = AI for all ideals A ⊆ I. Pure ideals are locally either zero
or R. Pure submodules of flat modules are flat, from which it follows that pure
ideals are flat ideals. It is shown, [4, Corollary 2.7] and [19, Theorem 4.1], that
if M is a multiplication module with pure annihilator then M is flat. Anderson
and Al Shaniafi, [7, Theorem 2.3], showed that if M is a faithful multiplication
module then θ (M) is a pure ideal of R, equivalently, θ (M) is multiplication and
idempotent, [3, Theorem 1.1].

The trace ideal of an R-module M is Tr(M) =
∑

f∈Hom(M,R)

f(M), [13]. If M is

projective then M = Tr(M)M, annM = annTr(M), and Tr(M) is a pure ideal of
R, [12, Proposition 3.30]. It is shown, [7, Theorem 2.6], that if M is a faithful mul-
tiplication module then θ(M) = Tr(M). If M is a finitely generated multiplication
R-module such that annM = Re for some idempotent e, then M is projective,
[24, Theorem 11]. In particular, finitely generated faithful multiplication modules
are projective.

Let R be a ring and M an R-module. M is called finitely cogenerated if for
every non-empty collection of submodules Nλ (λ ∈ Λ) of M with

⋂
λ∈Λ

Nλ = 0, there

exists a finite subset Λ′ of Λ such that
⋂

λ∈Λ′
Nλ = 0. A submodule N of M is

called large (or essential) in M if for all submodules K of M , K ∩N = 0 implies
K = 0. Dually, N is small (or superfluous) in M if for all submodules K of M ,
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K + N = M implies K = M . For properties of finitely cogenerated, large and
small modules, see [15].

Let R be a commutative ring with identity. Generalizing the case for ideals,
an R-module M is defined to be a cancellation module if IM = JM for ideals
I and J of R implies I = J , [6] and [20]. Examples of cancellation modules
include invertible ideals, free modules and finitely generated faithful multiplication
modules. It is easy to check that if M is a finitely generated faithful multiplication
(hence cancellation) module, then I [N : M ] = [IN : M ] for each submodule N of
M and each ideal I of R. It is also defined that M is a weak cancellation module
if IM = JM implies I + annM = J + annM and M is a restricted cancellation
module if IM = JM 6= 0 implies I = J . An R-module M is cancellation if
and only if it is a faithful weak cancellation module. A submodule N of M
is said to be join principal if for all ideals A of R and all submodules K of
M, [(AN + K) : N ] = A + [K : N ]. Setting K = 0, N becomes weak cancellation.

In Section 1 we show that the tensor product of faithful multiplication (resp.
faithfully flat) modules is a faithful multiplication (resp. faithfully flat) module,
Theorem 2. We also give sufficient conditions on the tensor product of modules
for them to be finitely generated (resp. multiplication, flat, finitely generated pro-
jective, faithfully flat), Proposition 3. Theorem 11 gives necessary and sufficient
conditions for the tensor product of faithful multiplication Dedekind (resp. Prüfer)
modules to be a faithful multiplication Dedekind (resp. Prüfer) module.

In Section 2 we investigate large and small submodules of multiplication mod-
ules. Several properties of these modules are given in Proposition 12. We also
give necessary and sufficient conditions for the tensor product of large (resp. small,
finitely cogenerated, uniform) modules to be a large (resp. small, finitely cogen-
erated, uniform) module, Corollary 13 and Proposition 17.

Section 3 is concerned with join principal submodules. Propositions 18, 19,
21 and 22 give necessary and sufficient conditions for the product, intersection,
sum and tensor product of join principal submodules (ideals) of multiplication
modules to be join principal modules.

All rings considered in this paper are commutative with 1 and all modules are
unital. For the basic concepts used, we refer the reader to [12]–[16] and [18].

1. Projective, flat and multiplication modules

It is well known that the tensor product of projective (flat) R-modules is projective
(flat), see for example [12, pp. 431, 435]. In [4, Theorem 2.1] it is proved that
the tensor product of multiplication R-modules is multiplication. The converses
of these statements are not necessarily true. Let M be the maximal ideal of a
non-discrete rank one valuation ring R, [8, p. 466]. Then M is an idempotent
but not a multiplication ideal of R. Note that R/M ⊗ M ∼= M/M2 = 0 is a
multiplication module. Let R = Z4 and I = R2. Then I is not a projective ideal
of R, and the R-module M = I ⊕ I is not projective (in fact it is not flat), but
M ⊗M is a projective and flat R-module. In this note we give some conditions
under which the converse is true.
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We begin with the following lemma that collects results from [2, Propositions
2.2 and 3.7], [17, Lemma 1.4], and [24, Theorem 10].

Lemma 1. Let R be a ring and N a submodule of a finitely generated faithful
multiplication R-module M .

(1) N is finitely generated if and only if [N : M ] is a finitely generated ideal of
R.

(2) N is multiplication if and only if [N : M ] is a multiplication ideal of R.

(3) N is flat if and only if [N : M ] is a flat ideal of R.

(4) If N is finitely generated then N is projective if and only if [N : M ] is a
projective ideal of R.

Let M be a flat R-module. Then IM ∼= I⊗M for each ideal I of R, [12, Theorem
11.20]. The condition that M is flat can not be discarded. For let R = Z, M = Z2

and I = 2Z. Then IM = 0 but I⊗M = 2Z⊗ Z2
∼= Z⊗ Z2

∼= Z2. Suppose that R
is a ring and M1, M2 flat (in particular, faithful multiplication) R-modules. Then

(I ⊗ J) (M1 ⊗M2) ∼= IM1 ⊗ JM2
∼= JM1 ⊗ IM2

for all ideals I and J of R. The next theorem shows that the tensor product of
faithful multiplication (resp. faithfully flat) modules is a faithful multiplication
(resp. faithfully flat) module.

Theorem 2. Let R be a ring and M1, M2 R-modules.

(1) If M1 and M2 are faithful multiplication then so too is M1 ⊗M2.

(2) If M1 and M2 are faithfully flat then so too is M1 ⊗M2.

(3) If M1 and M2 are finitely generated faithful multiplication then so too is
M1 ⊗M2.

Proof. (1) The fact that M1⊗M2 is a multiplication R-module can be found in
[1, Theorem 2.3], see also [4, Theorem 2.1]. We show that M1⊗M2 is faithful.
We obtain from [8, Proposition 1] and [7, Theorem 2.6], that Mi = Tr (Mi) Mi for
i = 1, 2. Since annTr (Mi) = annMi for i = 1, 2, we infer that Tr (M1) Tr (M2) is
a faithful ideal of R. Next,

M1 ⊗M2 = Tr (M1) M1 ⊗ Tr (M2) M2
∼= (Tr (M1)⊗ Tr (M2)) (M1 ⊗M2) .

And Tr (M1 ⊗M2) ∼= Tr (M1)⊗Tr (M2). For, if f ∈Hom(M1, R), g∈Hom (M2, R) ,
m1 ∈ M1, m2 ∈ M2, (f ⊗ g) (m1 ⊗m2) = f (m1) ⊗ g (m2), [12, Proposition 11.3]
and [15, p. 19]. Since Tr (M2) is idempotent and multiplication, [7, Theorem 2.3],
and hence pure, [3, Theorem 1.1], it follows that Tr (M2) is a flat ideal of R and
hence

Tr (M1) Tr (M2) ∼= Tr (M1)⊗ Tr (M2) ∼= Tr (M1 ⊗M2) .

Let r ∈ ann (M1 ⊗M2). Then r (M1 ⊗M2) = 0, and hence rTr (M1 ⊗M2) =
Tr (r (M1 ⊗M2)) = 0. This implies that r ∈ annTr (M1 ⊗M2) = ann (Tr (M1) Tr
(M2)) = 0. Hence M1 ⊗M2 is faithful.
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(2) M1⊗M2 is a flat R-module. Let N be any R-module such that (M1 ⊗M2)⊗
N = 0. Then M1 ⊗ (M2 ⊗N) = 0, and hence M2 ⊗ N = 0 which implies that
N = 0. Hence M1 ⊗M2 is faithfully flat.

(3) If M1 and M2 are finitely generated R-modules then so too is M1 ⊗M2. By
(1), M1⊗M2 is faithful multiplication. Alternatively, since M1and M2 are finitely
generated multiplication modules, we infer from [8, Theorem1] that θ (M1) =
R = θ (M2). It is easily verified that θ (M1) ⊗ θ (M2) ⊆ θ (M1 ⊗M2). Hence
R ∼= R ⊗ R = θ (M1 ⊗M2), and again by [8, Theorem 1], M1 ⊗M2 is a finitely
generated multiplication R-module. Now, M1 and M2 are faithfully flat and by
(2) M1 ⊗M2 is faithfully flat. Hence M1 ⊗M2 is faithful. �

Theorem 2 has two corollaries which we wish to mention. The first one gives some
basic properties of the tensor product of finitely generated faithful multiplication
modules. It will be useful for our results in this paper.

Corollary 3. Let R be a ring and M1, M2 finitely generated faithful multiplication
R-modules. Let K be a submodule of M1 and N a submodule of M2.

(1) [K ⊗N : M1 ⊗M2] ∼= [K : M1] ⊗ [N : M2]. If K or N is flat then
[K ⊗N : M1 ⊗M2] ∼= [K : M1] [N : M2] .

(2) [K ⊗M2 : M1 ⊗M2] ∼= [K : M1] .

(3) K ⊗M2
∼= N ⊗M1 if and only if K ∼= N .

Proof. By Theorem 2, M1 ⊗ M2 is a finitely generated faithful multiplication
R-module, hence it is cancellation.

(1) [K ⊗N : M1 ⊗M2] = [[K : M1] M1 ⊗ [N : M2] M2 : M1 ⊗M2] ∼= ([K : M1] ⊗
[N : M2]) (M1 ⊗M2) : M1 ⊗M2 = [K : M1]⊗ [N : M2]. For the second assertion,
suppose N is flat. By Lemma 1, [N : M2] is flat and the result follows.

(2) Follows by (1).

(3) By (2), K⊗M2
∼= N⊗M1 if and only if [K ⊗M2 : M1 ⊗M2] ∼= [N ⊗M1 : M1⊗

M2] if and only if [K : M1] ∼= [N : M2] if and only if K = [K : M1] M1
∼=

[N : M2] M2 = N . �

Corollary 4. Let R be a ring and M an R-module.

(1) If M is faithfully flat then for all flat R-modules K and N , K⊗M ∼= N⊗M
implies annK = annN .

(2) Let M be finitely generated, faithful and multiplication. A submodule L of
M is faithfully flat if and only if [L : M ] is a faithfully flat ideal of R.

Proof. (1) Let K ⊗M ∼= N ⊗M . Then

(annN) K ⊗M = annN (K ⊗M) ∼= annN(N ⊗M) ∼= (annN) N ⊗M = 0.

Since M is faithfully flat, (annN) K = 0, and annN ⊆ annK. Similarly, annK ⊆
annN and hence annN = annK.
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(2) Suppose that L is faithfully flat. By Lemma 1, [L : M ] is a flat ideal of R.
Suppose P is a maximal ideal of R and P [L : M ] = [L : M ]. Then PL = L,
a contradiction. Hence P [L : M ] 6= [L : M ], and hence [L : M ] is faithfully flat.
Conversely, since M is finitely generated faithful multiplication, M is faithfully
flat. The result follows by Theorem 2 since L = [L : M ] M ∼= [L : M ]⊗M . �

The condition that each of K and N are flat and M is faithfully flat is required.
For example, for any positive integers m 6= n, Zn⊗Q ∼= Zm⊗Q = 0, but mZ 6= nZ.

Proposition 5. Let R be a ring and M1 a finitely generated faithful multiplication
R-module. Let N be a finitely generated faithful multiplication submodule of a
multiplication R-module M2.

(1) For all submodules K of M1, if K⊗N is a finitely generated R-module then
so too is K.

(2) For all submodules K of M1, if K ⊗N is a multiplication R-module then so
too is K.

(3) For all submodules K of M1, if K ⊗N is a flat R-module then so too is K.

(4) For all finitely generated submodules K of M1, if K ⊗ N is a projective
R-module then so too is K.

(5) For all submodules K of M1, if K ⊗N is a faithfully flat R-module then so
too is K.

Proof. By [7, Lemma 1.1], N = θ (M2) N . Since N is a finitely generated faithful
multiplication module, it is cancellation and hence R = θ (M2). It follows by [8,
Theorem 1], that M2 is finitely generated. As annM2 ⊆ annN = 0, M2 is faith-
ful. Alternatively, since annN = 0 = annM2, we infer from, [17, Corollary 1 to
Lemma 1.5] and [19, Theorem 3.1], that M2 is finitely generated. By Theorem
2, M1 ⊗ M2 is a finitely generated faithful multiplication R-module. Suppose
K ⊗ N is a finitely generated (resp. multiplication, flat, finitely generated pro-
jective, faithfully flat) submodule of M1 ⊗ M2. By Lemma 1 and Corollary 3,
[K : M1] [N : M2] ∼= [K ⊗N : M1 ⊗M2] is a finitely generated (resp. multipli-
cation, flat, finitely generated projective, faithfully flat) ideal of R. By Lemma
1, [N : M2] is a finitely generated faithful multiplication ideal of R, and hence
[K : M1] = [[K : M1] [N : M2] : [N : M2]] is a finitely generated (resp. multipli-
cation, flat, finitely generated projective, faithfully flat) ideal of R. Again by
Lemma 1, K is a finitely generated (resp. multiplication, flat, finitely generated
projective, faithfully flat) submodule of M1. �

A presentation of an R-module M is an exact sequence of R-modules

0 → K → F
π→ M → 0

with F free. The proof of the next lemma can be found in [23, Theorem 2.1] and
[12, Proposition 11.27].

Lemma 6. Let R be a ring and M an R-module.
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(1) M is projective if and only if for each such presentation of M , there exists
an R-homomorphism θ : F → F such that πθ = π and ker θ = ker π.

(2) For any such presentation of M , the following conditions are equivalent.

(i) M is flat.

(ii) For any u ∈ K, there exists θu : F → F such that πθu = π, and
θu(u) = 0.

(iii) For any u1, . . . , un ∈ K, there exists θ : F → F such that πθ = π and
θ(ui) = 0 for all i.

Proposition 7. Let R be a ring and M1, M2 R-modules. Let L be a finitely
generated faithful submodule of M1. Then for all finitely generated flat submodules
N of M2, if N ⊗ L is a projective R-module, then so too is N .

Proof. Let
0 → K → F

π→ N → 0

be a presentation of N . Since N is flat, we infer that

0 → K ⊗ L → F ⊗ L
π⊗1L→ N ⊗ L → 0

is exact. As N ⊗L is finitely generated projective, this sequence splits and K⊗L
is finitely generated, say K ⊗ L =

∑n
i=1R(ki ⊗ li) where ki ∈ K and li ∈ L. By

Lemma 6(2), there exists an R-homomorphism θ : F → F such that πθ = π and
θ (ki) = 0 for all i. Clearly ker θ ⊆ ker π. On the other hand, for all k ∈ K = ker π,
if l ∈ L then

k ⊗ l =
n∑

i=1

ri (ki ⊗ li) =
n∑

i=1

ki ⊗ rili

for some ri ∈ R. Then (θ ⊗ 1l)(k ⊗ l) =
∑n

i=1θ (ki) ⊗ 1l (rili) = 0, and hence
θ (k) ⊗ l = 0. It remains to show that θ (k) = 0. Assume that {x1, . . . , xr} is a

basis of F , and that θ(k) =
r∑

i=1

aixi, with ai ∈ R. Then

0 = θ (k)⊗ l =
∑r

i=1aixi ⊗ l =
∑r

i=1xi ⊗ ail.

Since F is free, we infer from [15, p. 251] that ail = 0, and hence ai ∈ ann(l).
Since l is arbitrary, ai ∈ ∩

l∈L
annl = annL = 0 for all i. Thus θ(k) = 0, and by

Lemma 6(1), N is projective. This completes the proof. �

Suppose K is a finitely generated submodule of a finitely generated faithful mul-
tiplication R-module M1. Let N be a finitely generated faithful multiplication
submodule of a multiplication R-module M2 such that K⊗N is projective. Then
K ⊗N is flat, and by Proposition 5(2), K is flat. By the above proposition, K is
projective. This is an alternative proof of Proposition 5(3).

The following lemma extends [11, Corollary 1.7] to multiplication modules with
pure annihilators.
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Lemma 8. Let R be a ring and M an R-module. Let Iλ (λ ∈ Λ) be a non-
empty collection of ideals of R. If M is multiplication with pure annihilator then⋂
λ∈Λ

IλM =

( ⋂
λ∈Λ

Iλ

)
M .

Proof. By [11, Corollary 1.7],
⋂

λ∈Λ

IλM =

( ⋂
λ∈Λ

(Iλ + annM)

)
M . Let P be a

maximal ideal of R. Since annM is pure, it follows by [3, Theorem 1.1] that
either (annM)P = 0P or (annM)P = RP from which we obtain that MP = 0P .

Both cases show that the equality
⋂

λ∈Λ

IλM =

( ⋂
λ∈Λ

Iλ

)
M is true locally and hence

globally. �

The following lemma gives some properties of pure submodules of multiplication
modules.

Lemma 9. Let R be a ring and N a submodule of a multiplication R-module M
such that ann M is a pure ideal of R. Let I be an ideal of R.

(1) If I is a pure ideal of R and N is pure in M then IN is pure in M .

(2) If [N : M ] is a pure ideal of R then N is pure in M .

(3) Assuming further that M is finitely generated and faithful. If N is pure in
M then [N : M ] is a pure ideal of R.

Proof. Let A be an ideal of R.

(1) By Lemma 8 and [3, p. 69] we have that A (IN) = I (AN) = I (AM ∩N) =
I [AM : M ] M ∩ IN = (I ∩ [AM : M ]) M ∩ IN = IM ∩ [AM : M ] M ∩ IN =
AM ∩ IN, and IN is pure in M .

(2) Since [N : M ] is a pure ideal of R, A [N : M ] = A ∩ [N : M ] , and by Lemma
8 , we get that AN = A [N : M ] M = (A ∩ [N : M ]) M = AM ∩N, and N is pure
in M .

(3) Since N is pure in M, AN = AM ∩N . As M is multiplication, it follows by
[8, Theorem 2] that A [N : M ] M = (A ∩ [N : M ]) M . But M is finitely generated
faithful multiplication and hence cancellation. Thus A [N : M ] = A∩ [N : M ] and
[N : M ] is a pure ideal of R. �

In [3], we introduced idempotent submodules: A submodule N of M is an idempo-
tent in M if N = [N : M ] N . We proved that a submodule N of a multiplication
module M with pure annihilator is pure if and only if N is multiplication and
idempotent, [3, Theorem 1.1].

Proposition 10. Let R be a ring and M1, M2 faithful multiplication R-modules.
Let K be a submodule of M1 and N a submodule of M2.

(1) If K is pure in M1 and N is pure in M2 then K ⊗N is pure in M1 ⊗M2.

(2) Suppose that M1 is finitely generated and N is finitely generated, faithful
and multiplication. If K ⊗N is pure in M1 ⊗M2 then K is pure in M1.
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Proof. (1) Let A be an ideal of R. Since K and N are pure submodules of
faithful multiplication modules, K and N are flat R-modules. Hence

A (K ⊗N) ∼= AK ⊗N = (AM1 ∩K)⊗N,

and by [18, Theorem 7.4] and [16, p. 32], we obtain that

(AM1 ∩K)⊗N ∼= (AM1 ⊗N) ∩ (K ⊗N)
∼= (M1 ⊗ AN) ∩ (K ⊗N) ∼= (M1 ⊗ (AM2 ∩N)) ∩ (K ⊗N) .

Again M1 is faithful multiplication (hence flat). So

M1 ⊗ (AM2 ∩N) ∼= (M1 ⊗ AM2) ∩ (M1 ⊗N) ∼= A (M1 ⊗M2) ∩ (M1 ⊗N) ,

and this finally gives that A (K ⊗N) ∼= A(M1 ⊗M2) ∩ (K ⊗N). Since M1 ⊗M2

is faithful multiplication (and hence flat), K ⊗ N is pure in M1 ⊗ M2. Alter-
natively, K and N are multiplication. Hence by Theorem 2, K ⊗ N is mul-
tiplication. Also K is idempotent in M1 and N is idempotent in M2. It fol-
lows that K ⊗N = [K : M1] K ⊗ [N : M2] N ∼= ([K : M1]⊗ [N : M2]) (K ⊗N) ⊆
[K ⊗N : M1 ⊗M2] (K ⊗N) ⊆ K⊗N , so that K⊗N∼=[K⊗N :M1⊗M2] (K⊗N),
and K ⊗ N is idempotent in M1 ⊗M2. By [3, Theorem 1.1], K ⊗ N is pure in
M1 ⊗M2.

(2) As we have seen in the proof of Proposition 5, M2 is finitely generated and by
Theorem 2, M1⊗M2 is a finitely generated faithful and multiplication R-module.
If K ⊗N is pure in M1 ⊗M2 it follows by Lemma 9 and Corollary 3 that

[K : M1] [N : M2] ∼= [K ⊗N : M1 ⊗M2]

is a pure ideal of R. Let A be an ideal of R. Then A [K : M1] [N : M2] = A ∩
[K : M1] [N : M2] ⊇ A [N : M2] ∩ [K : M1] [N : M2] = (A ∩ [K : M1]) [N : M2].
Now, by Lemma 1, [N : M2] is a finitely generated faithful multiplication ideal
of R (and hence cancellation). It follows that A [K : M1] = A ∩ [K : M1], and
hence [K : M1] is a pure ideal of R. By Lemma 9, K is a pure submodule of M1.
Alternatively, by Lemma 9, [K ⊗N : M1 ⊗M2] ∼= [K : M1] [N : M2] is a pure
ideal of R. Since [N : M2] is a finitely generated faithful multiplication module,
we infer from Lemma 9 again that

[K : M1] = [[K : M1] [N : M2] : [N : M2]] ,

is a pure ideal of R. The result follows by Lemma 9(2). �

Let R be a commutative ring with identity. Let S be the set of non-zero divisors
of R and RS the total quotient ring of R. For a non-zero ideal I of R, let

I−1 = {x ∈ RS : xI ⊆ R} .

I is an invertible ideal of R if II−1 = R. Let M be an R-module and

T = {t ∈ S : for all m ∈ M, tm = 0 implies m = 0} .
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T is a multiplicatively closed subset of S, and if M is torsion free then T = S. In
particular, T = S if M is a faithful multiplication module, see [10, Lemma 4.1].
Also T = S if M is an ideal of R. Let N be a non-zero submodule of M , and let

N−1 = {x ∈ RT : xN ⊆ M} .

N−1 is an RS-submodule of RT , R ⊆ N−1, and NN−1 ⊆ M . Following [21], N
is invertible in M if NN−1 = M . If N is an invertible submodule of M then
annN = annM . For if r ∈ annN , then rN = 0, and hence rM = rNN−1 = 0.
Then annN ⊆ annM . The other inclusion is always true.

Naoum and Al-Alwan, [21], introduced invertibility of submodules general-
izing the concept for ideals and gave several properties and examples of such
submodules. It is shown, [21, Lemma 3.2], that if N is a non-zero submodule of
a multiplication R-module M such that [N : M ] is an invertible ideal of R then
N is invertible in M . The converse is true if we assume further that M is finitely
generated and faithful, [21, Lemma 3.3]. It is well-known that if I and J are ideals
of a ring R then IJ is invertible if and only if I and J are invertible. Suppose K
and N are submodules of finitely generated faithful multiplication R-modules M1

and M2 respectively. Suppose K is invertible in M1 and N is invertible in M2.
Then [K : M1] and [N : M2] are invertible ideals of R, and hence

[K : M1] [N : M2] ∼= [K : M1]⊗ [N : M2] ∼= [K ⊗N : M1 ⊗M2]

is an invertible ideal of R. This implies that K ⊗ N is an invertible submodule
of M1 ⊗M2. Conversely, let K ⊗N be invertible in M1 ⊗M2 such that N is flat.
Then [K ⊗N : M1 ⊗M2] ∼= [K : M1] [N : M2] is an invertible ideal of R. Hence
[K : M1] and [N : M2] are invertible ideals of R and this shows that K is invertible
in M1 and N is invertible in M2.

Following [21], an R-module M is called Dedekind (resp. Prüfer) if and only
if every non-zero (resp. non-zero finitely generated) submodule of M is invertible.
Faithful multiplication Dedekind (resp. Prüfer) modules are finitely generated.
For let 0 6= m ∈ M . Then Rm is invertible in M . By [4, Corollary 1.2], R =
θ (M) + ann (m) = θ (M) + annM = θ (M), and M is finitely generated, [8,
Theorem 1].

The next result gives necessary and sufficient conditions for the tensor product
of Dedekind (resp. Prüfer) modules to be Dedekind (resp. Prüfer).

Theorem 11. Let R be a ring and M1, M2 faithful multiplication R-modules. If
M1⊗M2 is a Dedekind (resp. Prüfer) R-module then so too are M1 and M2. The
converse is true if either M1 or M2 is Dedekind (resp. Prüfer).

Proof. Suppose M1 ⊗M2 is Dedekind (resp. Prüfer). By Theorem 2, M1 ⊗M2

is faithful multiplication and by the remark made before the theorem, M1 ⊗M2

is finitely generated. Suppose N is a non-zero (resp. non-zero finitely generated)
submodule of M1. Then N = [N : M1] M1, where [N : M1] is a non-zero (resp.
non-zero finitely generated) ideal of R, see [21, Note 3.7]. It follows that N ⊗M2
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is a non-zero (resp. non-zero finitely generated) submodule of M1 ⊗M2. For, if
N ⊗M2 = 0, we obtain from Corollary 3 that

0 = [0 : M1 ⊗M2] = [N ⊗M2 : M1 ⊗M2] ∼= [N : M1] ,

and hence N = [N : M2] M2 = 0, a contradiction. Since N ⊗ M2 is invertible
in M1 ⊗M2. we infer from Corollary 3 that [N : M1] ∼= [N ⊗M2 : M1 ⊗M2] is
an invertible ideal of R, and hence N is invertible in M1. This shows that M1

is a Dedekind (resp. Prüfer) module. Similarly, M2 is Dedekind (resp. Prüfer).
Conversely, suppose M1 is a Dedekind (resp. Prüfer) module. Since M1 is faithful
multiplication, M1 is finitely generated. Let K be a non-zero (resp. non-zero
finitely generated) submodule of M1 ⊗M2. Then K = I (M1 ⊗M2) ∼= IM1 ⊗M2

for some non-zero (resp. non-zero finitely generated) ideal I of R. Since IM1 is
a non-zero (resp. non-zero finitely generated) submodule of M1, IM1 is invertible
in M1 and hence I = [IM1 : M1] is an invertible ideal of R. Since M1 ⊗ M2

is a faithful (and hence non-zero) R-module, K = I (M1 ⊗M2) is invertible in
M1 ⊗ M2, [21, Remark 3.2], and hence M1 ⊗ M2 is a Dedekind (resp. Prüfer)
R-module. �

2. Large and small submodules

If I is a faithful ideal of a ring R then I is a large ideal of R. In particular, every
non-zero ideal of an integral domain R is large. For all submodules K and N of
M with K ⊆ N . If K is large in M then so too is N and if N is small in M
then so too is K. Let I be an ideal of R and K, N submodules of an R-module
M . Then K ∩ N is large in M if and only if K and N are large in M . If IN
is large in M then N is large in M and if we assume further that M is faithful
multiplication then I is a large ideal of R. Moreover, K + N is small in M if and
only if K and N are small in M and if N is small in M then IN is small in M .
In case that M is finitely generated, faithful and multiplication and I is a small
ideal of R then IN is small in M .

We start this section by the following result which gives several properties of
large and small submodules.

Proposition 12. Let R be a ring and M an R-module. Let I be an ideal of R
and N a submodule of M .

(1) If M is multiplication and N is faithful then N is large in M .

(2) If M is faithful multiplication and I is a large ideal of R then IM is large
in M .

(3) Let M be faithful multiplication. If N is large in M and I is faithful then
IN is large in M .

(4) Let M be multiplication. If I is a large ideal of R and N is faithful then IN
is large in M .

(5) Let M be faithful multiplication. Then N is large in M if and only if [N : M ]
is a large ideal of R.
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(6) Let M be finitely generated faithful. If IM is small in M then I is a small
ideal of R.

(7) Let M be finitely generated. If M is faithful and N is a small in M then
[N : M ] is small ideal of R. The converse is true if M is multiplication.

Proof. (1) Suppose K is a submodule of M such that K ∩ N = 0. Since N is
faithful, M is faithful and hence

[K : M ] [N : M ] ⊆ [K : M ] ∩ [N : M ] = [(K ∩N) : M ] = 0.

It follows that [K : M ] ⊆ ann [N : M ] = annN = 0, so that [K : M ] = 0, and
hence K = [K : M ] M = 0 and N is large in M .

(2) Suppose K is a submodule of M such that K ∩ IM = 0. Since M is mul-
tiplication, it follows by, [8, Theorem 2], that 0 = K ∩ IM = ([K : M ] ∩ I) M ,
and hence ([K : M ] ∩ I) ⊆ annM = 0. It follows that [K : M ]∩ I = 0, and hence
[K : M ] = 0. This gives that K = [K : M ]M = 0, and IM is large in M .

(3) Suppose K is a submodule of M such that K ∩ IN = 0. Then I (K ∩N) ⊆
IK ∩ IN ⊆ K ∩ IN = 0, so that I (K ∩N) = 0. Hence

I [(K ∩N) : M ] ⊆ [I (K ∩N) : M ] = annM = 0,

and hence [(K∩N) : M ]⊆annI =0. This implies that K∩N =[(K ∩N) : M ] M =
0. Since N is large in M , K = 0 and IN is large in M .

(4) Suppose K is a submodule of M such that K∩IN =0. Then [N :M ] (K∩IM)⊆
[N : M ] K ∩ I [N : M ] M = [N : M ] K ∩ IN ⊆ K ∩ IN = 0, so that [N :
M ] (K ∩ IM) = 0. Hence K ∩ IM ⊆ ann [N : M ] = annN = 0. This implies that
K ∩ IM = 0. By (2), IM is large in M and hence K = 0 and IN is large in M .

(5) Assume N is large in M and I an ideal of R such that I ∩ [N : M ] = 0. It
follows by, [11, Corollary 1.7] and [8, Theorem 2], that

0 = (I ∩ [N : M ]) M = IM ∩ [N : M ] M = IM ∩N.

Hence IM = 0 and hence I ⊆ annM = 0. It follows that [N : M ] is a large ideal
of R. The converse follows by (2).

(6) Suppose IM is small in M . Let J be an ideal of R such that J + I = R.
Then JM + IM = M , and hence JM = M . It follows by, [14, Theorem 76], that
R = J + annM = J , and hence I is a small ideal of R.

(7) Suppose M is finitely generated multiplication and [N : M ] is a small ideal
of R. Let K be a submodule of M such that K + N = M . It follows by, [24,
Corollary 3 to Theorem 1], that

R = [(K + N) : M ] = [K : M ] + [N : M ].

Hence R = [K : M ] and then K = M . This shows that N is small in M . The
converse follows by (6). �

The next result gives necessary and sufficient conditions for the tensor product of
large (resp. small) submodules of multiplication modules to be large (resp. small).
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Corollary 13. Let R be a ring and M1, M2 finitely generated faithful multiplica-
tion R-modules. Let K be a submodule of M1 and N a flat submodule of M2.

(1) If K ⊗N is large in M1 ⊗M2 then K is large in M1 and N is large in M2.

(2) If K is faithful and N is large in M2 then K ⊗N is large in M1 ⊗M2.

(3) If K is small in M1 then K ⊗N is small in M1 ⊗M2.

(4) If K ⊗M2 is small in M1 ⊗M2, then K is small in M1.

In case that M1 and M2 are faithful multiplication (not necessarily finitely gener-
ated) modules and K is large in M1 then K ⊗M2 is large in M1 ⊗M2.

Proof. (1) By Corollary 3 and Proposition 12, [K : M1] [N : M2] ∼= [K
⊗N : M1 ⊗M2] is a large ideal of R. Hence [K : M1] and [N : M2] are large
ideals of R and by Proposition 12, K is large in M1 and N is large in M2.

(2) Suppose K is faithful and N is large in M2. Then [K : M1] is a faithful ideal
of R and by Proposition 12, [N : M2] is a large ideal of R. By Proposition 12 and
Corollary 3, [K : M1][N : M2] ∼= [K ⊗N : M1 ⊗M2] is a large ideal of R. The
result follows again by Proposition 12.

The proofs of (3) and (4) are similar to that of (1) and (2) by using Lemma 1,
Corollary 3 and Proposition12.

Finally, suppose M1 and M2 are faithful multiplication (not necessarily finitely
generated) modules. Let K be large in M1. Let L be a submodule of M1 ⊗M2

such that L ∩ (K ⊗M2) = 0. Then L = I (M1 ⊗M2) for some ideal I of R.
It follows that (I ∩ [K : M1]) (M1 ⊗M2) = I (M1 ⊗M2) ∩ [K : M1] (M1 ⊗M2) ∼=
L ∩ ([K : M1] M1 ⊗M2) = L ∩ (K ⊗M2) = 0. Since M1 ⊗ M2 is faithful, I ∩
[K : M1] = 0. As K is large in M1, we obtain from Proposition 12, that [K : M1]
is a large ideal of R and hence I = 0. This implies that L = 0 and K ⊗M2 is
large in M1 ⊗M2. �

An R-module M is called uniform if the intersection of any two non-zero submod-
ules of M is non-zero, and M has finite uniform dimension if it does not contain
an infinite direct sum of non-zero submodules.

The next result gives some properties of finitely cogenerated and uniform
modules.

Proposition 14. Let R be a ring and M a multiplication R-module with pure
annihilator. Let N be a submodule of M such that annN = ann [N : M ].

(1) N is finitely cogenerated if and only if [N : M ] is finitely cogenerated.

(2) N is uniform if and only if [N : M ] is uniform.

(3) N has finite uniform dimension if and only if [N : M ] has finite uniform
dimension.

Proof. Let Iλ (λ ∈ Λ) be a non-empty collection of ideals of R contained in
[N : M ] such that

⋂
λ∈Λ

Iλ = 0. It follows by Lemma 8 that
⋂

λ∈Λ

IλM = 0. For

all λ ∈ Λ, IλM ⊆ [N : M ] M = N . Hence there exists a finite subset Λ′ of
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Λ such that
⋂

λ∈Λ′
IλM = 0. It follows that

( ⋂
λ∈Λ′

Iλ

)
M =

⋂
λ∈Λ′

IλM = 0, and

hence
⋂

λ∈Λ′
Iλ ⊆ annM . As annM is a pure ideal of R, we infer that

⋂
λ∈Λ′

Iλ =( ⋂
λ∈Λ′

Iλ

)
annM ⊆ [N : M ] annN = [N : M ] ann [N : M ] = 0, so that

⋂
λ∈Λ′

Iλ = 0,

and [N : M ] is finitely cogenerated. Conversely, suppose Kλ (λ ∈ Λ) be a non-
empty collection of submodules of N with

⋂
λ∈Λ

Kλ = 0. Then
⋂

λ∈Λ

[Kλ : M ] =[( ⋂
λ∈Λ

Kλ

)
: M

]
= annM . Since annM is pure and hence an idempotent, we

obtain that⋂
λ∈Λ

[Kλ : M ] =

( ⋂
λ∈Λ

[Kλ : M ]

)
annM ⊆ [N : M ] annN = [N : M ] ann [N : M ] = 0,

so that
⋂

λ∈Λ

[Kλ : M ] = 0. As [N : M ] is finitely cogenerated, there exists a finite

subset Λ′ of Λ such that
⋂

λ∈Λ′
[Kλ : M ] = 0. It follows by Lemma 8 that 0 =( ⋂

λ∈Λ′
[Kλ : M ]

)
M =

⋂
λ∈Λ′

[Kλ : M ] M =
⋂

λ∈Λ′
Kλ, and N is finitely cogenerated.

(2) Follows by (1).

(3) Suppose N has finite uniform dimension. If [N : M ] contains a direct sum of
ideals Iλ (λ ∈ Λ) , then by Lemma 8 it follows that

∑
λ∈Λ

IλM is direct sum, and hence

all but a finite number of the submodules IλM of N are zero. If IλM = 0, then
Iλ ⊆ annM and hence Iλ = IλannM ⊆ [N : M ] annN = [N : M ] ann [N : M ] = 0.
So that Iλ = 0 and [N : M ] has finite uniform dimension. Conversely, suppose [N :
M ] has finite uniform dimension. Suppose N contains a direct sum of submodules
Kλ (λ ∈ Λ). Since

⋂
λ∈Λ

[Kλ : M ] ⊆ annM , we have that

⋂
λ∈Λ

[Kλ : M ]=

( ⋂
λ∈Λ

[Kλ : M ]

)
annM ⊆ [N : M ] annN =[N : M ] ann [N : M ]=0.

So that
⋂

λ∈Λ

[Kλ : M ] = 0. Hence
∑
λ∈Λ

[Kλ : M ] is direct and hence all but a finite

number of ideals [Kλ : M ] ⊆ [N : M ] are zero. If [Kλ : M ] = 0, then Kλ =
[Kλ : M ] M = 0, and N has a finite uniform dimension. �

As a consequence of the above result we state the following corollary.

Corollary 15. Let R be a ring and N a submodule of a faithful multiplication
R-module. Then N is finitely cogenerated (resp. uniform, has finite uniform di-
mension) if and only if [N : M ] is finitely cogenerated (resp. uniform, has finite
uniform dimension).

Let R be a ring and M a flat R-module. Let Ni (1 ≤ i ≤ n) be a finite collection

of submodules of an R-module N . Then

(
n⋂

i=1

Ni

)
⊗M ∼=

n⋂
i=1

(Ni ⊗M) , [16, p.
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32] and [18, Theorem 7.4]. This property is not true for an arbitrary collection
of submodules of N . The next lemma gives some conditions under which this
property of flat modules is true in general. It will be useful for our next result.

Lemma 16. Let R be a ring and M1, M2 faithful multiplication R-modules. Then
for all non-empty collection Nλ (λ ∈ Λ) of submodules of M1,( ⋂

λ∈Λ

Nλ

)
⊗M2

∼=
⋂

λ∈Λ

(Nλ ⊗M2) .

Proof. By Theorem 2, M1 ⊗M2 is a faithful multiplication R-module. It follows
by, [10, Corollary 1.7], that( ⋂

λ∈Λ

Nλ

)
⊗M2 =

( ⋂
λ∈Λ

[Nλ : M1] M1

)
⊗M2 =

( ⋂
λ∈Λ

[Nλ : M1]

)
M1 ⊗M2

∼=
( ⋂

λ∈Λ

[Nλ : M1]

)
(M1 ⊗M2) =

⋂
λ∈Λ

([Nλ : M1] (M1 ⊗M2))

∼=
⋂

λ∈Λ

(([Nλ : M1] M1)⊗M2) ∼=
⋂

λ∈Λ

(Nλ ⊗M2) . �

The following result gives necessary and sufficient conditions for the tensor product
of finitely cogenerated (resp. uniform, has finite uniform dimension) to be a finitely
cogenerated (resp. uniform, has finite uniform dimension) module.

Proposition 17. Let R be a ring and M1, M2 faithful multiplication R-modules.

(1) If M1⊗M2 is finitely cogenerated then so too are M1 and M2. The converse
is true if either M1 or M2 is finitely cogenerated.

(2) If M1 ⊗M2 is uniform then so too are M1 and M2. The converse is true if
either M1 or M2 is uniform.

(3) If M1⊗M2 has finite uniform dimension then so too have M1 and M2. The
converse is true if either M1 or M2 has finite uniform dimension.

Proof. (1) Suppose M1 ⊗M2 is finitely cogenerated. Let Nλ (λ ∈ Λ) be a non-
empty collection of submodules of M1 such that

⋂
λ∈Λ

Nλ = 0. It follows by Lemma

16 that 0 =

( ⋂
λ∈Λ

Nλ

)
⊗M2

∼=
⋂

λ∈Λ

(Nλ ⊗M2), where Nλ ⊗M2 are submodules of

M1 ⊗M2. Hence there exists a finite subset Λ′ of Λ such that

0 =
⋂

λ∈Λ′
(Nλ ⊗M2) ∼=

( ⋂
λ∈Λ′

Nλ

)
⊗M2 =

( ⋂
λ∈Λ′

[Nλ : M1] M1

)
⊗M2

=

( ⋂
λ∈Λ′

[Nλ : M1]

)
M1 ⊗M2

∼=
( ⋂

λ∈Λ′
[Nλ : M1]

)
(M1 ⊗M2) .

Since M1 ⊗M2 is faithful,
⋂

λ∈Λ′
[Nλ : M1] = 0, and hence

⋂
λ∈Λ′

Nλ =
⋂

λ∈Λ′
[Nλ : M1] M1 =

( ⋂
λ∈Λ′

[Nλ : M1]

)
M1 = 0,
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and M1 is finitely cogenerated. Similarly, M2 is finitely cogenerated. Conversely,
suppose M1 is finitely cogenerated and let Kλ (λ ∈ Λ) be a non-empty collection
of submodules of M1 ⊗M2 such that

⋂
λ∈Λ

Kλ = 0. As M1 ⊗M2 is a multiplication

R-module, Kλ = Iλ (M1 ⊗M2) for some ideals Iλ of R. Since M1 ⊗M2 is faithful
multiplication, it follows that

0 =
⋂

λ∈Λ

Kλ =
⋂

λ∈Λ

Iλ (M1 ⊗M2) ∼=
( ⋂

λ∈Λ

Iλ

)
(M1 ⊗M2) ,

and hence
⋂

λ∈Λ

Iλ = 0. Since M1 is faithful multiplication, we infer that 0 =( ⋂
λ∈Λ

Iλ

)
M1 =

⋂
λ∈Λ

IλM1, and hence there exists a finite subset Λ′ of Λ such that⋂
λ∈Λ′

IλM1 = 0. It follows that

0 =

( ⋂
λ∈Λ′

IλM1

)
⊗M2

∼=
⋂

λ∈Λ′
(IλM1 ⊗M2) ∼=

⋂
λ∈Λ′

Iλ (M1 ⊗M2) =
⋂

λ∈Λ′
Kλ,

and M1 ⊗M2 is finitely cogenerated.

(2) Follows by (1).

(3) Suppose M1⊗M2 has finite uniform dimension. Suppose M1 contains a direct
sum of submodules Nλ (λ ∈ Λ). Since M2 is faithful multiplication and hence flat,
it follows that

⊕
λ∈Λ

Nλ⊗M2 =
⊕
λ∈Λ

(Nλ ⊗M2), [18, p. 267], and hence
∑
λ∈Λ

Nλ⊗M2 is

direct sum (see also the proof of part (1)). Hence all but a finite number of Nλ⊗M2

are zero. If Nλ ⊗M2 = 0, then 0 = [Nλ : M1] M1 ⊗M2
∼= ([Nλ : M1]) (M1 ⊗M2).

Since M1 ⊗ M2 is faithful, [Nλ : M1] = 0, and hence 0 = [Nλ : M1] M1 = Nλ,
and M1 has finite uniform dimension. Similarly, M2 has finite uniform dimen-
sion. Conversely, suppose M1 has finite uniform dimension and suppose M1⊗M2

contains a direct sum of submodules Kλ (λ ∈ Λ). As M1 ⊗M2 is multiplication,
Kλ = Iλ(M1 ⊗ M2) for some ideals Iλ of R. As we have seen in the proof of
the first part,

∑
λ∈Λ

IλM1 is direct sum of submodules of M1. Since M1 has finite

uniform dimension, all but a finite number of IλM are zero. If IλM = 0, Iλ = 0
and hence Kλ = 0 and M1 ⊗M2 has finite uniform dimension. �

3. Join principal submodules

Let R be a ring and M an R-module. A submodule N of M is called join principal
if for all ideals A of R and all submodules K of M , [(AN + K) : N ] = A+[K : N ],
[6] and [10]. It is easy to see that the following conditions are equivalent for a
submodule N of M :

(1) N is a join principal submodule of M .

(2) For all ideals A and B of R and all submodules K of M , [(AN + K) : BN ] =
[(A + [K : N ]) : B].
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(3) For all ideals A and B of R and all submodules K and L of M , AN + K =
BN + L implies A + [K : N ] = B + [L : N ].

It is obvious from the above statements that join principal submodules are weak
cancellation. The converse is not true. Let R be an almost Dedekind domain but
not Dedekind. Hence R has a maximal ideal P that is not finitely generated. So
P is a cancellation ideal (hence weak cancellation), but P is not join principal,
[6].

We start this section by the following result which gives necessary and suffi-
cient conditions for the product of join principal submodules (ideals) to be join
principal.

Proposition 18. Let R be a ring and M an R-module. Let I be an ideal of R
and N a submodule of M .

(1) If I is join principal and N is join principal (resp. weak cancellation) then
IN is join principal (resp. weak cancellation).

(2) Let M be finitely generated, faithful and multiplication. If I is weak cancel-
lation and N is join principal then IN is weak cancellation.

(3) If N is cancellation and IN is join principal (resp. weak cancellation) then
I is join principal (resp. weak cancellation).

(4) Let M be finitely generated, faithful and multiplication. If I is cancellation
and IN is join principal (resp. weak cancellation) then N is join principal
(resp. weak cancellation).

Proof. Let A and B be ideals of R and K a submodule of M .

(1)

[(A (IN) + K) : IN ] = [[((AI) N + K) : N ] : I]

= [(AI + [K : N ]) : I] = A + [[K : N ] : I] = A + [K : IN ]

and IN is join principal. The proof of weak cancellation submodules case follows
by letting K = 0.

(2) Let M be finitely generated, faithful and multiplication. Then

[AIN : IN ] = [[AIN : M ] M : [IN : M ] M ] = [[AIN : M ] : [IN : M ]]

= [IA [N : M ] : I [N : M ]] = [[IA [N : M ] : I] : [N : M ]]

= [(A [N : M ] + annI) : [N : M ]] ⊆ [(AN + (annI) M) : N ]

= A + [(annI) M : N ] ⊆ A + ann (IN) .

The reverse inclusion is clear and IN is weak cancellation.

(3) [(AI + B) : I] ⊆ [(AIN + BN) : IN ] = A + [BN : IN ] = A + [B : I]. The
reverse inclusion is always true and I is join principal. The proof of the weak
cancellation ideal case is obvious by assuming B = 0.
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(4) Let M be finitely generated, faithful and multiplication. Then

[(AN + K) : N ] ⊆ [(AIN + IK) : IN ] = A + [IK : IN ]

= A + [[IK : M ] M : [IN : M ] M ] = A + [[IK : M ] : [IN : M ]]

= A + [I [K : M ] : I [N : M ]] = A + [[K : M ] : [N : M ]]

= A + [[K : M ] M : [N : M ] M ] = A + [K : N ] ,

and N is join principal. The proof of the weak cancellation submodule case is
clear by setting K = 0. �

The next result gives necessary and sufficient conditions for the intersection and
sum of join principal submodules to be join principal.

Proposition 19. Let R be a ring and M an R-module. Let Ni (1 ≤ i ≤ n) be a
finite collection of submodules of M such that

[Ni : Nj] + [Nj : Ni] = R for all i < j.

Let N =
n⋂

l=1

Nl and S =
n∑

l=1

Nl.

(1) If each Ni is a join principal (resp. weak cancellation) submodule of M then
N is join principal (resp. weak cancellation).

(2) If each Ni+Nj is a finitely generated join principal (resp. weak cancellation)
submodule of M then S is join principal (resp. weak cancellation).

(3) Suppose Ni are finitely generated and N is join principal. If Ni + Nj are
join principal (resp. weak cancellation) then Ni are join principal (resp. weak
cancellation).

(4) Suppose Ni are finitely generated and S is join principal. If Ni∩Nj are join
principal (resp. weak cancellation) then Ni are join principal (resp. weak
cancellation).

Proof. We only do the proof of the join principal submodules case.

(1) Only one implication requires proof. Let A be an ideal of R and K a submodule
of M . It follows by [5, Corollary 1.2] that

[(AN + K) : N ] =
n∑

i=1

[(AN + K) : Ni] ⊆
n∑

i=1

[(ANi + K) : Ni]

=
n∑

i=1

A + [K : Ni] = A +
n∑

i=1

[K : Ni] = A + [K : N ] .

(2) By [5, Corollary 1.2] we have that
n∑

i=1

[Ni : S] = R. Hence

n∑
i,j=1
i6=j

[(Ni + Nj) : S] = R.
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Using the fact that a finitely generated submodule N is join principal (resp. weak
cancellation) if and only if N is locally join principal (resp. locally weak can-
cellation), [20, Proposition 2.3], it is enough to prove the result locally. Thus,
we assume that R is a local ring. It follows that S = (Ni0 + Nj0) for some
1 ≤ i0, j0 ≤ n, i0 6= j0, and S is join principal.

(3) It is also enough to assume that R is a local ring. It follows by [5, Corollary

1.2], that R =
n∑

i=1

[N : Ni0 ]. There exists i0 ∈ {1, . . . , n} such that [N : Ni0 ] = R

and hence Ni0 = N is join principal. Let j 6= i0. By [5, Corollary 2.4], [22,
Corollary 3.4] and [24, Proposition 12], Ni0 ∩ Nj is finitely generated. Since
[N : Ni0 ] = R, [N : Ni0 ∩Nj] = R. Hence Ni0 ∩ Nj = N is join principal. Since
[Ni0 : Nj]+ [Nj : Ni0 ] = R, we infer that [(Ni0 ∩Nj) : Nj]+ [Nj : (Ni0 + Nj)] = R.
Hence either [Ni0 ∩Nj : Nj] = R and hence Nj = Ni0 ∩Nj or [Nj : Ni0 + Nj] = R
and hence Nj = Ni0 + Nj. Both cases give that Nj is join principal.

(4) Again it is enough to prove the result locally. Thus we assume that R is

local. By [5, Corollary 1.2], R =
n∑

i=1

[Ni : S] and hence there exists i0 ∈ {1, . . . , n}

such that [Ni0 : S] = R. Hence Ni0 = S is join principal. Let j 6= i0. Then
[Ni0 + Nj : S] = R and hence Ni0 + Nj = S is join principal. Since Ni0 ∩ Nj

(which is finitely generated) is join principal, the result follows. �

We conjecture that the last three parts of the above result are true even if Ni

are not necessarily finitely generated. It is proved by Anderson, [6, Theorem 5.3],
that if R is a one-dimensional integral domain then an R-module M is cancellation
if and only if it is locally cancellation. Hence the last three parts of the above
result are true for cancellation modules (not necessarily finitely generated) over
one-dimensional integral domains.

Before we give our results on the tensor product of join principal submodules,
we need the following lemma.

Lemma 20. Let R be a ring and N a submodule of a finitely generated faithful
multiplication R-module M .

(1) N is join principal (resp. weak cancellation) if and only if [N : M ] is a join
principal (resp. weak cancellation) ideal of R.

(2) N is cancellation if and only if [N : M ] is a cancellation ideal of R.

(3) N is restricted cancellation if and only if [N : M ] is a restricted cancellation
ideal of R.

Proof. (1) We prove the join principal submodules case. Let N be join principal.
Let A and B be ideals of R. Then

[(A [N : M ] + B) : [N : M ]] = [(A [N : M ] M + BM) : [N : M ] M ]

= [(AN + BM) : N ] = A + [BM : N ] = A + [B : [N : M ]] ,
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and [N : M ] is join principal. Conversely, suppose [N : M ] is a join principal ideal
of R. Let A be an ideal of R and K a submodule of M . Then

[(AN + K) : N ] = [(A [N : M ] + [K : M ]) M : [N : M ] M ]

= [(A [N : M ] + [K : M ]) : [N : M ]]

= A + [[K : M ] : [N : M ]] = A + [K : N ] .

(2) Using the fact that annN = ann [N : M ] = 0, the result follows by (1) since a
submodule N of M is cancellation if and only if it is faithful weak cancellation.

(3) Again, using annN = ann [N : M ] and the fact that a submodule N of M is re-
stricted cancellation if and only if N is weak cancellation and annN is comparable
to every ideal of R, [6, Theorem 2.5], the result follows by (2). �

Proposition 21. Let R be a ring and M1, M2 finitely generated faithful multi-
plication R-modules. Let K be a submodule of M1 and N a flat submodule of
M2.

(1) If K and N are join principal then K ⊗N is a join principal submodule of
M1 ⊗M2.

(2) If K is join principal and N is weak cancellation then N ⊗ K is a weak
cancellation submodule of M1 ⊗M2.

(3) If K is weak cancellation and N is cancellation then K ⊗ N is a weak
cancellation submodule of M1 ⊗M2.

(4) If K and N are cancellation then K ⊗ N is a cancellation submodule of
M1 ⊗M2.

Proof. (1) Let A be an ideal of R and L a submodule of M1 ⊗M2. It follows by
Corollary 3 that

[(A(K ⊗N) + L) : K ⊗N ] = [(A[K ⊗N : M1 ⊗M2]+

[L : M1 ⊗M2]) (M1 ⊗M2) : [K ⊗N : M1 ⊗M2](M1 ⊗M2)]

= [(A [K ⊗N : M1 ⊗M2] + [L : M1 ⊗M2]) : [K ⊗N : M1 ⊗M2]]
∼= [(A [K : M1] [N : M2] + [L : M1 ⊗M2]) : [K : M1] [N : M2]] .

By Lemma 20, [K : M1] and [N : M2] are join principal and by Proposition 18,
[K : M1] [N : M2] is join principal. It follows that

[(A(K ⊗N) + L) : N ⊗K] = [A + [[L : M1 ⊗M2] : [K : M1] [N : M2]]]
∼= A + [[L : M1 ⊗M2] : [K ⊗N : M1 ⊗M2]]

= A + [[L : M1 ⊗M2] (M1 ⊗M2) : [K ⊗N : M1 ⊗M2] (M1 ⊗M2)]

= A + [L : K ⊗N ] ,

and K ⊗N is join principal.

(2) Follows from (1) by letting L = 0.
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(3) Let A be an ideal of R. Then

[A (K ⊗N) : K ⊗N ] ∼= [A [K : M1] [N : M2] : [K : M1] [N : M2]] .

Since [K : M1] [N : M2] is a weak cancellation ideal of R, we infer that

[A (K ⊗N) : K ⊗N ] ∼= A + ann ([K : M1] [N : M2])
∼= A + ann [K ⊗N : M1 ⊗M2] = A + ann (K ⊗N) ,

and K ⊗N is weak cancellation.

(4) Follows by (3). �

The converse of Proposition 21 is not true in general. Let M be the maximal ideal
of a non-discrete rank one valuation ring R. Then M is not finitely generated,
not weak cancellation (and hence not join principal). Otherwise, since M = M2,
we would have R = [M2 : M ] = M + annM , and hence M is finitely generated
(in fact M is principal and generated by idempotent), a contradiction. Now, M is
not join principal but R/M ⊗M ∼= M/M2 = 0 is join principal. Our final result
gives conditions under which the converse of Proposition 21 is true.

Proposition 22. Let R be a ring and M1 a finitely generated faithful multiplica-
tion R-module. Let N be a finitely generated faithful multiplication submodule of
a multiplication R-module M2.

(1) For all submodules K of M1, if K ⊗ N is a join principal submodule of
M1 ⊗M2 then K is join principal.

(2) For all submodules K of M1, if K ⊗N is a weak cancellation submodule of
M1 ⊗M2 then K is weak cancellation.

(3) For all submodules K of M1, if K⊗N is a cancellation submodule of M1⊗M2

then K is cancellation.

(4) For all submodules K of M1, if K⊗N is a restricted cancellation submodule
of M1 ⊗M2 then K is restricted cancellation.

Proof. M2 is finitely generated and faithful and hence M1⊗M2 is a finitely gen-
erated faithful multiplication R-module. See the proof of Proposition 5. It follows
by Corollary 3 and Lemma 20 that [K : M1] [N : M2] ∼= [K ⊗N : M1 ⊗M2] is
join principal and hence by Proposition 18 we have that [K : M1] is join principal.
By Lemma 20, K is join principal and the first part is proved. The proofs of the
other parts of the result follow by the same argument by using Proposition 18 and
Lemma 20. �
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