Rank of Matrices and the Pexider Equation

Józef Kalinowski
Uniwersytet Ślaski, Instytut Matematyki
ul. Bankowa 14, 40-007 Katowice, Poland
e-mail: kalinows@ux2.math.us.edu.pl

Abstract

The paper [1] gives a characterization of those linear operators which preserve the rank of matrices over \mathbb{R}. In this paper we characterize the operators of type (1) having this property, without making the linearity assumption. For matrices from $M_{n, m}$ and $\min \{n, m\} \geq 3$ the operator must be linear and of the form from [1]. If $1 \leq \min \{n, m\} \leq 2$, then the operator may be nonlinear.

MSC2000: 15A03
Keywords: rank of matrices

Introduction

Let \mathbb{R} denote the set of real numbers and \mathbb{N} the set of positive integers. Let $m, n \in \mathbb{N}$ be constants. Let $M_{m, n}$ be the set of $m \times n$ real matrices, i.e. $M \in \mathbb{R}^{m \times n}$ and $M_{n}=M_{n, n}$, where $m, n \in \mathbb{N}$.

First of all let us introduce
Definition 1. We say that an operator

$$
\begin{equation*}
F=\left[f_{i}\right], \quad \text { where } f_{i}: \mathbb{R} \longrightarrow \mathbb{R} \text { for } i=1,2, \ldots, m \tag{1}
\end{equation*}
$$

preserves the rank of matrices from $M_{m, n}$ if for every matrix $A \in M_{m, n}$ the equation

$$
\begin{equation*}
\operatorname{rank}(A)=\operatorname{rank}(F(A)) \tag{2}
\end{equation*}
$$

holds, where the matrix $F(A):=\left[f_{i}\left(a_{i, j}\right)\right]$ for $i=1,2, \ldots, m ; j=1,2, \ldots, n$.
0138-4821/93 \$ 2.50 © 2006 Heldermann Verlag

The problem of the form of operators defined on the space of matrices over \mathbb{R} into itself was studied by many authors under assumption that the operator is linear (see references of [1]).

In this paper, using the Pexider type additive functional equation, we obtain without a linearity assumption some results for the operator of the form (1). We prove, that if $\min \{m, n\} \geq 3$, then a rank preserving operator must be linear and of the form from paper [1]. If the cases $1 \leq \min \{m, n\} \leq 2$ the operator may be nonlinear.

Main results

Remark 1. An operator F of the form (1) preserves the rank of matrices from M_{1} if and only if

$$
f_{1}(x)=0 \quad \Longleftrightarrow \quad x=0
$$

We prove the following
Lemma 1. Let an operator F of the form (1) be an operator preserving the rank of matrices from M_{n} for $n \geq 2$. Then the equivalence

$$
\begin{equation*}
x=0 \quad \Longleftrightarrow \quad f_{i}(x)=0 \quad \text { for } \quad i=1,2, \ldots, n \tag{3}
\end{equation*}
$$

is true.
Proof. For the matrix $B_{1} \in M_{n}$ with all entries equal to zero, $\operatorname{rank}\left(B_{1}\right)=0$. If the operator F is an operator preserving the rank of matrices, then $\operatorname{rank}\left(F\left(B_{1}\right)\right)=0$ and it follows that $f_{i}(x)=0$ for $i=1,2, \ldots, n$, i.e.

$$
\begin{equation*}
x=0 \quad \Longrightarrow \quad f_{i}(x)=0 \quad \text { for } \quad i=1,2, \ldots, n \tag{4}
\end{equation*}
$$

Consider the matrix

$$
B_{2}=\operatorname{diag}(x, x, \ldots, x),
$$

where $x \in \mathbb{R}$ and $x \neq 0$. Using implication (4) we obtain

$$
F\left(B_{2}\right)=\operatorname{diag}\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

for arbitrary $x \in \mathbb{R}$.
Let us observe that $\operatorname{rank}\left(B_{2}\right)=n$. If the operator F is an operator preserving the rank of matrices from M_{n}, then $\operatorname{rank}\left(F\left(B_{2}\right)\right)=n$ and $\operatorname{det}\left(F\left(B_{2}\right)\right) \neq 0$, i.e. $f_{1}(x) \cdot f_{2}(x) \cdots f_{n}(x) \neq 0$. Then $f_{i}(x) \neq 0$ for $i=1,2, \ldots, n$.

We obtain the implication

$$
x \neq 0 \quad \Longrightarrow \quad f_{i}(x) \neq 0 \quad \text { for } \quad i=1,2, \ldots, n .
$$

Then the equivalent implication

$$
\begin{equation*}
f_{i}(x)=0 \quad \Longrightarrow \quad x=0 \quad \text { for } \quad i=1,2, \ldots, n \tag{5}
\end{equation*}
$$

holds.
From (4) and (5) the equivalence (3) is true.
We prove
Theorem 1. An operator F of the form (1) is an operator preserving the rank of matrices from M_{2} if and only if there exist constants $c_{i} \neq 0, i=1,2$, such that

$$
\begin{equation*}
f_{i}(x)=c_{i} \cdot g(x), \quad x \in \mathbb{R} \tag{6}
\end{equation*}
$$

Then the function g is an injective solution of the multiplicative functional Cauchy equation

$$
\begin{equation*}
g(x \cdot y)=g(x) \cdot g(y) \quad \text { for } \quad x, y \in \mathbb{R} \tag{7}
\end{equation*}
$$

such that

$$
\begin{equation*}
g(x)=0 \quad \Longleftrightarrow \quad x=0 \tag{8}
\end{equation*}
$$

Proof. Let F be an operator preserving the rank of matrices from M_{2} and $c_{i}=$ $f_{i}(1)$ for $i=1,2$. From Lemma 1 we obtain $c_{i} \neq 0$ for $i=1,2$.

First consider the matrix

$$
B_{3}=\left[\begin{array}{ll}
x & 1 \\
x & 1
\end{array}\right]
$$

for arbitrary $x \in \mathbb{R}$. Then $\operatorname{rank}\left(F\left(B_{3}\right)\right)=1$ and $\operatorname{det}\left(F\left(B_{3}\right)\right)=0$. Now

$$
\begin{equation*}
f_{1}(x) \cdot c_{2}=c_{1} \cdot f_{2}(x) \quad \text { for } \quad x \in \mathbb{R} \tag{9}
\end{equation*}
$$

Define new functions

$$
g_{i}(x)=\frac{f_{i}(x)}{c_{i}} \quad \text { for } \quad x \in \mathbb{R}
$$

for $i=1,2$.
Then from (9) we define the function

$$
\begin{equation*}
g(x):=g_{1}(x)=g_{2}(x) \quad \text { for } \quad x \in \mathbb{R} \tag{10}
\end{equation*}
$$

Next consider the matrix

$$
B_{4}=\left[\begin{array}{cc}
1 & x \\
y & x \cdot y
\end{array}\right]
$$

for arbitrary $x, y \in \mathbb{R}$. Then $\operatorname{rank}\left(F\left(B_{4}\right)\right)=1$ and $\operatorname{det}\left(F\left(B_{4}\right)\right)=0$. Now

$$
c_{1} \cdot f_{2}(x \cdot y)=f_{1}(x) \cdot f_{2}(y)
$$

Dividing both sides by $c_{1} \cdot c_{2} \neq 0$ and using the definition (10) we obtain

$$
\begin{equation*}
g_{2}(x \cdot y)=g_{1}(x) \cdot g_{2}(y) \quad \text { for } \quad x, y \in \mathbb{R} \tag{11}
\end{equation*}
$$

From (10) and (11) the function g satisfies the multiplicative functional Cauchy equation (7).

Consider the matrix

$$
B_{5}=\left[\begin{array}{ll}
x & 1 \\
y & 1
\end{array}\right]
$$

for arbitrary $x, y \in \mathbb{R}, x \neq y$. Then $\operatorname{det}\left(B_{5}\right) \neq 0$ and $\operatorname{rank}\left(B_{5}\right)=2$. Then $\operatorname{rank}\left(F\left(B_{5}\right)\right)=2$ and $\operatorname{det}\left(F\left(B_{5}\right)\right) \neq 0$, i.e. $f_{1}(x) \cdot c_{2}-f_{2}(y) \cdot c_{1} \neq 0$, then from (10)

$$
g(x) \neq g(y) \quad \text { for } \quad x \neq y, \quad x, y \in \mathbb{R}
$$

This means that the function g is injective. Condition (8) follows from Lemma 1.
Let us assume that an operator F is of the form (1), with functions f_{i} for $i=1,2$. The injective function g fulfils the multiplicative functional Cauchy equation (7) and the coefficients $c_{i} \neq 0$ for $i=1,2$. We prove that F is an operator preserving the rank of matrices from M_{2}.

Let us consider an arbitrary matrix $H \in M_{2}$ of the form

$$
H=\left[\begin{array}{ll}
u & v \\
w & z
\end{array}\right]
$$

where $u, v, w, z \in \mathbb{R}$.
Consider three possible cases:
$1^{\circ} \operatorname{rank}(H)=2$:
Then $\operatorname{det}(H) \neq 0$ and $u \cdot z-v \cdot w \neq 0$, i.e. $u \cdot z \neq v \cdot w$. From injectivity of the function g we obtain that $g(u \cdot z) \neq g(v \cdot w)$. The function g fulfils the multiplicative functional Cauchy equation (7), so we obtain $g(u) \cdot g(z) \neq g(v) \cdot g(w)$. Multiplying both sides of the above relation by $c_{1} \cdot c_{2} \neq 0$ we obtain

$$
c_{1} \cdot g(u) \cdot c_{2} \cdot g(z) \neq c_{1} \cdot g(v) \cdot c_{2} \cdot g(w)
$$

and from definition (3)

$$
f_{1}(u) \cdot f_{2}(z)-f_{1}(v) \cdot f_{2}(w) \neq 0 .
$$

Then $\operatorname{det}(F(H)) \neq 0$ and $\operatorname{rank}(F(H))=2$.
$2^{\circ} \operatorname{rank}(H)=1$:
Then $\operatorname{det}(H)=0$ and $u \cdot z-v \cdot w=0$, i.e. $u \cdot z=v \cdot w$. From the injectivity of the function g we obtain that $g(u \cdot z)=g(v \cdot w)$. The function g fulfils the multiplicative functional Cauchy equation (4), so we obtain $g(u) \cdot g(z)=g(v) \cdot g(w)$. Multiplying both sides of the above relation by $c_{1} \cdot c_{2} \neq 0$ we obtain

$$
c_{1} \cdot g(u) \cdot c_{2} \cdot g(z)=c_{1} \cdot g(v) \cdot c_{2} \cdot g(w)
$$

and from definition (3)

$$
f_{1}(u) \cdot f_{2}(z)-f_{1}(v) \cdot f_{2}(w)=0 .
$$

Thus $\operatorname{det}(F(H))=0$. The rank of the matrix H is one, so at least one of the entries u, v, w, z is nonzero. Then from injectivity of the function g at least one of the
numbers $g(u), g(v), g(w), g(z)$ is nonzero. Multiplying these numbers by nonzero coefficients $c_{1}, c_{1}, c_{2}, c_{2}$, respectively, we obtain that at least one of the entries $f_{1}(u), f_{1}(v), f_{2}(w), f_{2}(z)$ of the matrix $F(H)$ is nonzero and has $\operatorname{rank}(F(H))=1$. $3^{\circ} \operatorname{rank}(H)=0$:
Then $u=v=w=z=0$. From Lemma 1 and definition (6) we obtain that $f_{1}(u)=f_{1}(v)=f_{2}(w)=f_{2}(z)=0$ and $\operatorname{rank}(F(H))=0$.

A few simple numerical examples will illustrate the role of the injectivity of the function g in Theorem 1 .

Example 1. The operator F defined by formulae $f_{1}(x)=x^{3}, f_{2}(x)=2 x^{3}$ for $x \in \mathbb{R}$ fulfils the assumptions of Theorem 1. It is the nonlinear operator of the form (1) preserving the rank of matrices from M_{2}.
Without the assumption of injectivity on the function g Theorem 1 is not true.
Example 2. Let $g(x)=x^{2}$, and $x \in \mathbb{R}$ a non-injective solution of the multiplicative functional Cauchy equation (7). Let $f_{1}(x)=f_{2}(x)=x^{2}$ and consider the matrices

$$
B_{6}=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] \quad \text { and } \quad F\left(B_{6}\right)=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] .
$$

Observe that $\operatorname{det}\left(B_{6}\right)=2$ and $\operatorname{rank}\left(B_{6}\right)=2, \operatorname{det}\left(F\left(B_{6}\right)\right)=0$ and $\operatorname{rank}\left(F\left(B_{6}\right)\right)=1$. The operator F is not an operator preserving the rank of matrices from M_{2}.

Let us observe that the result obtained in Theorem 1 for $n=2$ is not true for $n=3$. Consider the following

Example 3. Let $g(x)=x^{3}$, and $x \in \mathbb{R}$ an injective solution of the functional multiplicative Cauchy equation (7). Let $f_{1}(x)=f_{3}(x)=x^{3}, f_{2}(x)=2 x^{3}$ and consider the matrices

$$
B_{7}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
2 & 1 & 1
\end{array}\right] \quad \text { and } \quad F\left(B_{7}\right)=\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 0 & 2 \\
8 & 1 & 1
\end{array}\right]
$$

Observe that $\operatorname{det}\left(B_{7}\right)=0$ and $\operatorname{rank}\left(B_{7}\right)=2, \operatorname{det}\left(F\left(B_{7}\right)\right)=12$ and $\operatorname{rank}\left(F\left(B_{7}\right)\right)=3$. The operator F is not an operator preserving the rank of matrices from M_{3}.

For $n=3$ we prove
Theorem 2. An operator F of the form (1) is an operator preserving the rank of matrices from M_{3} if and only if there exist constants $c_{i} \neq 0, i=1,2,3$ such that

$$
\begin{equation*}
f_{i}(x)=c_{i} \cdot x, \quad x \in \mathbb{R} \tag{12}
\end{equation*}
$$

Proof. Let F be an operator preserving the rank of matrices from M_{3}. From Lemma 1 it follows that the equivalence (3) holds. Let the constants $c_{i}:=f_{i}(1) \neq 0$ for $i=1,2,3$.

First consider the matrices

$$
B_{8}=\left[\begin{array}{ccc}
x & 1 & 0 \\
y & 0 & 1 \\
x+y & 1 & 1
\end{array}\right] \quad \text { and } \quad F\left(B_{8}\right)=\left[\begin{array}{ccc}
f_{1}(x) & c_{1} & 0 \\
f_{2}(y) & 0 & c_{2} \\
f_{3}(x+y) & c_{3} & c_{3}
\end{array}\right]
$$

for arbitrary $x, y \in \mathbb{R}$. Then

$$
\operatorname{det}\left(F\left(B_{8}\right)\right)=c_{1} \cdot c_{2} \cdot f_{3}(x+y)-f_{1}(x) \cdot c_{2} \cdot c_{3}-f_{2}(y) \cdot c_{1} \cdot c_{3} .
$$

Because $\operatorname{rank}\left(B_{8}\right)=2$, we have $\operatorname{rank}\left(F\left(B_{8}\right)\right)=2$ and $\operatorname{det}\left(F\left(B_{8}\right)\right)=0$, so the following equation is satisfied:

$$
c_{1} \cdot c_{2} \cdot f_{3}(x+y)=f_{1}(x) \cdot c_{2} \cdot c_{3}+f_{2}(y) \cdot c_{1} \cdot c_{3}
$$

for all $x, y \in \mathbb{R}$. From the above and $c_{1} \cdot c_{2} \cdot c_{3} \neq 0$ we obtain

$$
\frac{f_{3}(x+y)}{c_{3}}=\frac{f_{1}(x)}{c_{1}}+\frac{f_{2}(y)}{c_{2}}
$$

for $x, y \in \mathbb{R}$. We define new functions

$$
\begin{equation*}
h_{i}(x):=\frac{1}{c_{i}} \cdot f_{i}(x) \quad \text { for } \quad x \in \mathbb{R}, \tag{13}
\end{equation*}
$$

where $i=1,2,3$. In other words, the Pexider type additive functional equation

$$
h_{3}(x+y)=h_{1}(x)+h_{2}(y) \quad \text { for } x, y \in \mathbb{R}
$$

is fulfilled by $h_{i}, i=1,2,3$.
By [2, Theorem 1, p. 317] the functions

$$
h_{1}(x)=h(x)+\alpha_{1}, \quad h_{2}(x)=h(x)+\alpha_{2}, \quad h_{3}(x)=h(x)+\alpha_{1}+\alpha_{2}
$$

are the solution, where h is an additive function with constants $\alpha_{1}, \alpha_{2} \in \mathbb{R}$. For an additive function h it follows $h(0)=0$ and from (3) we obtain $\alpha_{1}=\alpha_{2}=0$. Then $h_{1}=h_{2}=h_{3}=h$ and the additive functional Cauchy equation

$$
\begin{equation*}
h(x+y)=h(x)+h(y) \quad \text { for all } \quad x, y \in \mathbb{R} \tag{14}
\end{equation*}
$$

is fulfilled.
For any square matrix

$$
B_{9}=\left[\begin{array}{ccc}
1 & x & 0 \\
y & x \cdot y & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad F\left(B_{9}\right)=\left[\begin{array}{ccc}
c_{1} & f_{1}(x) & 0 \\
f_{2}(y) & f_{2}(x \cdot y) & 0 \\
0 & 0 & c_{3}
\end{array}\right],
$$

where $x, y \in \mathbb{R}$, we obtain $\operatorname{rank}\left(B_{9}\right)=2$ and also $\operatorname{rank}\left(F\left(B_{9}\right)\right)=2$. Thus $\operatorname{det}\left(F\left(B_{9}\right)\right)=c_{3} \cdot\left[c_{1} \cdot f_{2}(x \cdot y)-f_{1}(x) \cdot f_{2}(y)\right]=0$. From the above and $c_{1} \cdot c_{2} \cdot c_{3} \neq 0$, together with $h_{1}=h_{2}=h$, the function h satisfies the multiplicative functional Cauchy equation

$$
\begin{equation*}
h(x \cdot y)=h(x) \cdot h(y) \quad \text { for all } \quad x, y \in \mathbb{R} \tag{15}
\end{equation*}
$$

Now, from [2; Theorem 1, p. 356], it follows that the only functions satisfying simultaneously (14) and (15), i.e. the additive and the multiplicative functional Cauchy equations are $h=0$ and $h=\mathrm{id}$, where id denotes the identity function on \mathbb{R}. Since $h(1)=1$, we see that in our case $h(x)=x$ for $x \in \mathbb{R}$.

From definition (11) we obtain for $i=1,2,3$ that

$$
f_{i}(x)=c_{i} \cdot h_{i}(x)=c_{i} \cdot h(x)=c_{i} \cdot x \quad \text { for all } \quad x \in \mathbb{R}
$$

where $c_{i}=f_{i}(1) \neq 0$ and the functions $f_{i}, i=1,2,3$, are of the form (13).
From the properties of determinants it follows that the operators F the form (1) preserve the rank of matrices from M_{3}.

We prove a theorem which describes all operators of the form (1) preserving the rank of real matrices from M_{n} for $n \geq 3$.

Theorem 3. An operator F of the form (1) preserves the rank of matrices from M_{n} for $n \geq 3$ if and only if $f_{i}(x)=c_{i} \cdot x, i=1,2, \ldots, n$, where $c_{i} \neq 0$ are constants.

Proof. Assume that the operator F preserves the rank of any matrix H from M_{n}, where $n \geq 3$.

For $n=3$ the assertion was proved in Theorem 2 .
For $n>3$ consider the matrices $D_{i} \in M_{n}$ with a minor of degree 3 of the form

$$
H_{i}=\left[\begin{array}{ccc}
a_{i, i} & a_{i, i+1} & a_{i, i+2} \\
a_{i+1, i} & a_{i+1, i+1} & a_{i+1, i+2} \\
a_{i+2, i} & a_{i+2, i+1} & a_{i+2, i+2}
\end{array}\right]
$$

for $i=1,2, \ldots, n-2$ and other entries equal to zero. Observe that $\operatorname{rank}\left(D_{i}\right)=$ $\operatorname{rank}\left(H_{i}\right)$. For an operator F preserving the rank of matrices from M_{n} it follows that $\operatorname{rank}\left(F\left(D_{i}\right)\right)=\operatorname{rank}\left(F_{i}\left(H_{i}\right)\right)$, where $F_{i}=\left[f_{i}, f_{i+1}, f_{i+2}\right]$ for $i=1,2, \ldots, n-2$. From Theorem 2 we obtain that there exist constants $c_{k} \neq 0$ such that $f_{k}(x)=c_{k} \cdot x$ for $k=i, i+1, i+2$, where $k=1,2, \ldots, n-2$. Then the operator F is of the form (1).

From the properties of determinants it follows that the operators of the form (1) preserve the rank of matrices from M_{n} for $n \geq 3$.

Remark 2. If we define an operator $F(A):=\left[f_{j}\left(a_{i, j}\right)\right]$ for $i=1,2, \ldots, m, j=$ $1,2, \ldots, n$ for matrices $A \in M_{m, n}$, then results analogous to those in Theorems 1 , 2 and 3 are valid.

Corollary. If $m>n$, then results analogous to those in Theorems 1, 2 and 3 are valid for matrices from $M_{m, n}$.

Remark 3. The results in Theorems 1, 2 and 3 were obtained without assumptions on the operator F (i.e. continuity, measurability or others).

In the paper [1] a similar problem and result are presented. Let $F: M_{m, n} \longrightarrow$ $M_{m, n}$ be a linear operator. By [1, Theorem 3.1] we obtain that $\operatorname{rank}(F(A))=$ $\operatorname{rank}(A)$ for all $A \in M_{m, n}$ if and only if there exist invertible matrices $M \in M_{m}$ and $N \in M_{n}$ such that $F(A)=M A N$ or if $m=n$ then $F(A)=M A^{t} N$, where A^{t} denotes transposition of the matrix A.

Let us observe that using Remark 2 in case $\min \{m, n\} \geq 3$ the result obtained for operators of the form (1) is the same as that in Theorem 3. The M is the diagonal matrix $M=\operatorname{diag}\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ and $N=I_{n}$, where $I_{n} \in M_{n}$ is the unit matrix.

In case $n=2$ we obtain a better result: operators F of the form (1) preserving the rank of matrices from M_{2} may be linear or nonlinear (see Example 1).

Acknowledgement. I would like to express my thanks to professors Roman Ger and Mieczysław Kula for their valuable suggestions and remarks.

References

[1] Li, Chi-Kwong; Pierce, S.: Linear Preserver Problems. Am. Math. Monthly 108 (2001), 591-605.

Zbl 0991.15001
[2] Kuczma, M.: An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality. Uniwersytet Śląski, Katowice, Polish Sci. Publ., Warsaw 1985.

Zbl 0555.39004

Received June 10, 2005

