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Abstract. In this paper we use the Cayley-Bacharach theorem of clas-
sical algebraic geometry to construct several universal algebras on alge-
braic curves using divisors and complete intersection cycles and study
the equational identities valid for these synthetic constructions. These
results are not necessarily new; in fact, all of them may be “easily”
provable by resorting to such powerful tools as the Riemann-Roch the-
orem, the P-function of Weierstrass, the rigidity lemma, Euler num-
bers, Lefschetz fixed-point theorem, and so on. However, our equa-
tional proofs employ automated reasoning by transforming the Cayley-
Bacharach theorem into a formal implication. Besides being elementary,
this approach provides new examples for model theorists and computer
scientists designing theorem provers and gives new insights and inter-
pretations for these various geometric constructions.
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1. Introduction

Let C be a nonsingular cubic curve in the complex projective plane. If a and b
are two distinct points on the curve, let c = a ∗ b be the (unique) third point of
intersection with C of the line L(a, b) joining a and b. If b = a, then we naturally
take the line L(a, b) to be the tangent at a. More formally, the set {a, b, a ∗ b} is
the complete intersection cycle of the curve C with L(a, b) counting multiplicities.
If the ground field k is different from complex numbers, we insist that the points a
and b are k-rational points. In that case, the unique third point a ∗ b is obviously
k-rational, thus making the cubic curves very interesting. In fact, if e is chosen
to be an inflection point (again, k-rational if k 6= C), then the composite term
(a ∗ b) ∗ e is the classical Poincare group law on C. Clearly, the rational binary
operation “∗” viewed as a mapping from C × C to C (or from C(k) × C(k) to
C(k) if k is not algebraically closed) satisfies the following universal identities:
x ∗ y = y ∗ x, x ∗ (y ∗ x) = y. This is an example of a binary Steiner law and the
idempotents of ∗ are precisely the inflection points of the curve (see Figure 1).
More generally, an n-ary Steiner law f(x1, x2, . . . , xn) on a projective curve C over
k is a totally symmetric rational n-ary function f from Cn to C satisfying the
universal identity

f(x1, x2, . . . , xn−1, f(x1, x2, . . . , xn)) = xn.

An element e in C is called an idempotent for f if f(e, e, . . . , e) = e. In this
paper, we prove that if f and g are two n-ary Steiner laws on an elliptic curve
C sharing a common idempotent, then f = g. First, we extract a special case
of the inference rule (gL) – indeed, a fragment of the powerful rigidity lemma
– from the Cayley-Bacharach theorem of classical algebraic geometry. This rule
is implemented in Otter, a first-order theorem-proving program [6]. Then we
use Otter to automate the proofs of the uniqueness of the 5-ary Steiner laws
definable on an elliptic curves. Very much like the binary case, this theorem
provides algebraic characterizations of synthetic geometric constructions involving
the intersection cycles of cubics with algebraic curves of higher degrees. The well-
known theorem of the uniqueness of the group law on such a curve is an extreme
special case of this result. A set P of p points in PG(2, k), a projective plane
over a field k, is said to have the Cayley-Bacharach property (CB-property) of
degree d if any plane curve of degree d passing through all but one point of P
necessarily contains the whole of P . The Cayley-Bacharach theorem of algebraic
geometry (see, e.g., [1, 3]) says that if P is a set of mn points that is a complete
intersection cycle of two curves of degrees m and n, then P has the CB-property of
degree m + n− 3. This classical result is rife with rich rational universal algebras
(i.e., rational constructions that yield unique points). In this paper, we employ
the techniques of the Bezout theorem and the CB-theorem to prove that every
algebraic curve induces a rational Steiner operation on cubic curves via a complete
intersection cycle (see, e.g., Figure 1 for the binary linear process and Figure 4
for the 5-ary conic process).

All the proofs in this paper reside completely within the framework of first-order



R. Padmanabhan; W. McCune: Uniqueness of Steiner Laws on Cubic Curves 545

x

e=ee

z

xy
y=x(yx)

zz

Figure 1. Chord-tangent construction

logic with equality. First we show that the Cayley-Bacharach theorem implies the
validity of a formal implication that is a fragment of the rule (gL) or the “term
condition” – an algebraic avatar of the rigidity lemma of algebraic geometry. Then
we exploit this in finding interrelations among various algebraic laws of different
arities obtained via the Cayley-Bacharach constructions on algebraic curves. Nor-
mally, one would employ the parameters of the elliptic functions of Weierstrass,
the group law via the Riemann-Roch theorem or the so-called AF+BG theorem of
Max Noether to prove such results in the projective geometry over elliptic curves.
This paper (especially the proof of the basic (gL) implication) was inspired by
the excellent survey article [1] which gives a beautiful exposition of the Cayley-
Bacharach theorem, its origins, and modern evolutions.

2. Cayley-Bacharach theorem implies the =(gL)⇒ rule for cubics

Cayley-Bacharach Theorem. If P is a set of mn points that is a complete
intersection cycle of two curves of degrees m and n, then any plane curve of
degree m + n + 3 passing through all but one point of P necessarily contains the
whole of P .

Theorem 1. Let C be a nonsingular cubic curve over the complex projective
plane and let “∗” be the binary morphism of chord-tangent construction. Then
the algebra 〈C; ∗〉 satisfies the implication

(a ∗ b) ∗ c = (a ∗ d) ∗ e ⇒ (x ∗ b) ∗ c = (x ∗ d) ∗ e.

Proof. Let Q1 be the quartic formed by the four lines {1∪2∪3∪4}, let Q2 be the
quartic formed by the four lines {5∪6∪7∪8}, and let C be the given nonsingular
cubic curve. See Figure 2. We have

C ∩Q1 = {a, d, a ∗ d, c, a ∗ b, (a ∗ b) ∗ c, e, x ∗ d, (x ∗ d) ∗ e, x, b, x ∗ b},
C ∩Q2 = {e, a ∗ d, (a ∗ d) ∗ e, x, d, x ∗ d, a, b, a ∗ b, c, x ∗ b, (x ∗ b) ∗ c}.
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Figure 2. Basic (gL)

Hence, if (a ∗ b) ∗ c = (a ∗ d) ∗ e, then both Q1 and Q2 share 11 common points
with the base cubic C. Here both Q1 and Q2 are quartics; and so, by the Cayle-
Bacharach theorem they must share the 12th common point as well. Thus (x ∗
b) ∗ c = (x ∗ d) ∗ e. This completes the proof of the implication

(a ∗ b) ∗ c = (a ∗ d) ∗ e ⇒ (x ∗ b) ∗ c = (x ∗ d) ∗ e.

In what follows, we call this implication the “basic (gL) rule for cubics” or simply
“basic (gL)”. This is only a special case of the full version of the rule (gL), which
in turn is a modern avatar of the powerful rigidity lemma of complete varieties:
f(x, b) = c ⇒ f(x, z) = f(y, z) for all terms f in the mathematical structure
in question (see [7], page 37 and [11] for more details and references about the
related conditions like the term condition).

Theorem 2. Basic (gL) for cubics ⇒ the identity ((u∗v)∗w)∗t = ((t∗v)∗w)∗u.

Proof. (See the appendix for an Otter proof.) Thanks to the commutative and
Steiner laws, we have

(w ∗ ((t ∗ v) ∗ w)) ∗ t = (w ∗ ((u ∗ v) ∗ w)) ∗ u

because both sides reduce to the variable v. This equality looks like the left hand
side of the implication basic (gL) with the following identifications:

a = w, b = (t ∗ v) ∗ w, c = t, d = (u ∗ v) ∗ w, e = u.
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Hence, by the conclusion of the implication basic (gL), we have

(x ∗ b) ∗ c = (x ∗ d) ∗ e

for all points x on the cubic. In other words, we have

(x ∗ ((t ∗ v) ∗ w)) ∗ t = (x ∗ ((u ∗ v) ∗ w)) ∗ u.

Substituting x = t and simplifying, we get

(t ∗ v) ∗ w) = (t ∗ ((u ∗ v) ∗ w)) ∗ u,

which, modulo the commutative and Steiner laws, is the same as

((t ∗ v) ∗ w) ∗ u = ((u ∗ v) ∗ w) ∗ t.

Theorem 3. The binary Steiner law ∗ on a nonsingular cubic curve satisfies the
medial identity (x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u). (See Figure 3.)
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Figure 3. The medial identity

Proof. (See the Appendix for an Otter proof.) It is enough to derive the medial
law from the basic (gL). We work backward to show how naturally the implication
of basic (gL) works to prove such consequences. We want to derive the identity
(x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u). This equality looks exactly like the conclusion
of basic (gL) and hence all we need to do is to find a suitable term a = a(y, z, u)
such that the relation (a ∗ y) ∗ (z ∗ u) = (a ∗ z) ∗ (y ∗ u). The term a = y ∗ z would
do the job because in this case both sides reduce to u.

Historical Remark. The validity of the median law for ∗ was first proved
for plane cubics by Etherington [2]. See Knapp [4] for a different and a rather
complete proof including the cases where two or more points may coincide. The
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first automated proof of the median law using the rule (gL) was given in [11] and
[12]. To further demonstrate the impact of the Cayley-Bacharach theorem on the
geometry of the cubic curves, we show that the formal property of basic (gL) for a
binary Steiner law ∗ along with a mild grouplike homomorphism connection with
+, a binary law of composition, does characterize the + as the (unique) group
law. More precisely, we prove the following.

Theorem 4. Let Σ be

{x ∗ (y ∗ x) = y, x ∗ y = y ∗ x, e ∗ e = e, (x ∗ e) + (e ∗ y) = x ∗ y}.

Then Σ =(basic− gL)⇒ x + y = e ∗ (x ∗ y), where + is an Abelian group law.

Proof. (Found by Otter 3.0.5b in 1.94 seconds; see Section 3 for an explanation
of the proof notation.)

3 x ∗ (y ∗ x) = y
5 x ∗ y = y ∗ x
6 e ∗ e = e
8 (x ∗ e) + (e ∗ y) = x ∗ y
10 (x ∗ y) ∗ z = (x ∗ u) ∗ v → (w ∗ y) ∗ z = (w ∗ u) ∗ v

11 (x ∗ y) ∗ x = y [3 → 3]
13 (x ∗ y) ∗ y = x [3 → 5, flip]
16,15 x ∗ (x ∗ y) = y [5 → 3]
18,17 x + (e ∗ y) = (x ∗ e) ∗ y [13 → 8]
19 (x ∗ e) ∗ y = (e ∗ x) ∗ y [11 → 8 :18]
26 (e ∗ x) ∗ y = (x ∗ e) ∗ y [flip 19]
27 x + y = (x ∗ e) ∗ (e ∗ y) [15 → 17]
44 (x ∗ e) ∗ (y ∗ (e ∗ x)) = y [3 → 26, flip]
50 (x ∗ ((y ∗ z) ∗ u)) ∗ y = (x ∗ z) ∗ u [10,11]
296 (x ∗ (e ∗ y)) ∗ e = (x ∗ e) ∗ y [6 → 50]
303 (x ∗ y) ∗ z = (x ∗ e) ∗ (y ∗ (e ∗ z)) [44 → 50]
349 (x ∗ e) ∗ (y ∗ (e ∗ z)) = (x ∗ y) ∗ z [flip 303]
424,423 (x ∗ e) ∗ y = e ∗ (x ∗ (e ∗ y)) [5 → 296, flip]
445,444 (x ∗ y) ∗ z = e ∗ (x ∗ (e ∗ (y ∗ (e ∗ z)))) [349 :424, flip]
492 x + y = e ∗ (x ∗ y) [27 :445,16,16]

To complete the proof that + defines a group law, one notices that the associativity
is simply the identity of Theorem 2:

x + (y + z) = e ∗ (x ∗ (e ∗ (y ∗ z)))
= e ∗ (z ∗ (e ∗ (y ∗ x)))
= z + (y + x),

and hence the binary operation + is both associative and commutative. Clearly,
x+e = x. Finally, defining x′ as e∗x, we have x+x′ = x+(e∗x) = e∗(x∗(e∗x)) =
e ∗ e = e.

Remark. Contrast this with the results in the appendix.
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3. OTTER and the implementation of the rule (gL)

Let us now compare the basic (gL) rule with the rigidity lemma:

Basic (gL) for cubics: (a ∗ b) ∗ c = (a ∗ d) ∗ e ⇒ (x ∗ b) ∗ c = (x ∗ d) ∗ e.
Full (gL) for cubics: F (a, b) = F (a, c) ⇒ F (x, b) = F (x, c)

for all morphisms F of the curve.
Rigidity for cubics: F (x, b) = c ⇒ F (x, z) = F (y, z)

for all morphisms F of the curve.

Thus it is clear that while the basic (gL) for cubics deals only with the single binary
operation ∗, the full (gL) – equivalent to the rigidity lemma, see Theorem 3.3 of
[7] – involves all possible morphisms and thus provides the necessary glue that
binds together these various rational morphisms and gives new and elementary
equational proofs to show that all these synthetic operations of higher arities can
be obtained by ruler constructions. Unlike the full (gL), the basic (gL) for ∗ is of
little use if we assume no further connection between ∗ and other operations (see,
for example, the Appendix). Since we discuss the uniqueness of Steiner laws on
cubics, we employ the full (gL) as an inference rule as well as a rewrite rule.

Otter [6] is a computer program that attempts to prove theorems stated in
first-order logic with equality. Here we restrict our attention to its capabilities in
equational logic. The user inputs axioms and the denial of the goal(s), and Ot-
ter searches for a contradiction by working both forward from the axioms and
backward from the goal(s). Equational reasoning is accomplished by paramodula-
tion and demodulation. Paramodulation is an equality substitution rule extended
with unification: if the two terms in question can be made identical by instantiat-
ing variables, then equality substitution is applied to the corresponding instances.
Demodulation is the use of equalities as rewrite rules to simplify other equal-
ities. The following example illustrates the interplay between paramodulation
and demodulation. Consider {f(x, f(g(x), y)) = y, f(u, g(u)) = e, f(w, e) = w},
where e is a constant; Otter can infer x = g(g(x)) “in one step” by unifying
f(u, g(u)) and f(g(x), y)) (which instantiates u to g(x) and y to g(g(x))), replac-
ing f(g(x), g(g(x))) with e, and then demodulating with f(w, e) = w. The full
rule (gL) was implemented in Otter in two ways that are analogous to paramod-
ulation and demodulation. Let F [a1, x] represent a term that contains a subterm
a1 at a particular position, with x representing everything else in the term. Sup-
pose we have F [a1, x] = F [a2, y], (i.e., a1, and a2 are in corresponding positions),
with a1 and a2 unifiable. By (gL) we infer F [z, x′] = F [z, y′], where z is a new
variable, and x′ and y′ are the appropriate instances of x and y. For example,
from

f(f(x, y), f(z, f(x, z))) = f(u, f(y, u)),

we can (gL)-infer

f(f(x, y), f(z, w)) = f(f(x, z), f(y, w))
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by unifying u and f(x, z) and introducing the variable w. We also use (gL)
as a rewrite rule whenever possible. That is, we rewrite F [a, x] = F [a, y] to
F [z, x] = F [z, y] (again, z is a new variable).

OTTER proof notation. Each derived clause has a justification. The notation
“m → n” indicates paramodulation from m into n; “: i, j, k, . . .” indicates rewrit-
ing with the equations i, j, k, . . .; and “flip” indicates that equality was reversed
(usually so that the complex side occurs on the left). The justification “[(gL)”
indicates the use of =(gL)⇒ as an inference rule, and “:(gL)” indicates its use
as a rewrite rule.

4. Uniqueness of n-ary Steiner law on cubics

In this section, we show that a nonsingular cubic curve admits exactly one n-ary
Steiner law for every n congruent to 2(mod 3). If n = 2, this is the usual chord-
tangent process. We give a complete proof for the next case, n = 5 (the “conic
process”). The proof of the general case is similar and can be proved by induction.
Let C be a nonsingular cubic, and let x, y, z, t, u be five points on the curve. Let
Q be the unique conic determined by these 5 points. By the celebrated Bezout
theorem of classical geometry, we have |C ∩Q| = 6, counting multiplicities. Now
let f(x, y, z, t, u) be the 5-ary morphism on C defined by the complete intersection
cycle

C ∩Q = {x, y, z, t, u, f(x, y, z, t, u)}.

Then the unique sixth point f(x, y, z, t, u) can be found by a simple ruler con-
struction as shown in Figure 4. A formal proof using the rigidity lemma was given
by N. S. Mendelsohn, R. Padmanabhan, and B. Wolk in [8]. Here we would like to
characterize the above synthetic geometric process by means of equational iden-
tities. The 5-ary law is totally symmetric in all of its five arguments, and every
inflection point is an idempotent for f : f(e, e, e, e, e) = e. The geometric reason
for this is that the intersection multiplicity at a flex point e is six. Moreover,
it satisfies the Steiner identity f(e, e, e, x, f(e, e, e, x, y)) = y. We claim that a
nonsingular cubic curve over an algebraically closed field admits exactly one such
5-ary morphism.

Lemma 1.
f(x, y, z, u, v) = f(x, y, z, v, u)
f(e, e, e, e, e) = e
f(e, e, e, x, f(e, e, e, x, y)) = y

 =(gL)⇒ {f(u, v, w, x, f(u, v, w, x, y)) = y}.

Proof. (Found by Otter 3.0.5b on soot.mcs.anl.gov in 0.48 seconds, with a
specialized search strategy.)

3 f(x, y, z, u, v) = f(x, y, z, v, u)
4 f(e, e, e, e, e) = e
7,6 f(e, e, e, x, f(e, e, e, x, y)) = y
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9,8 f(e, e, e, x, f(e, e, e, y, x)) = y [3 → 6]
12 f(x, y, z, u, f(e, e, e, u, e)) = f(x, y, z, e, e) [6 → 4 :(gL) :(gL) :(gL), flip]
21 f(e, e, e, x, f(y, z, u, f(v, w, v6, e, e), x)) = f(v, w, v6, v7, f(y, z, u, v7, e))

[8 → 12 :(gL) :(gL) :(gL), flip]
485 f(x, y, z, f(x, y, z, e, e), u) = f(e, e, e, e, u) [(gL) 21, flip]
533 f(x, y, z, u, f(x, y, z, u, e)) = e [485 → 21 :9, flip]
613 f(u, v, w, x, f(u, v, w, x, y)) = y [6 → 533 :(gL) :7]

Lemma 2.
f(x, y, z, u, v) = f(x, y, z, v, u)
g(x, y, z, u, v) = g(x, y, z, v, u)
g(u, v, w, x, g(u, v, w, x, y)) = y
g(e, e, e, e, e) = e

 =(gL)⇒

{f(x, y, z, u, g(v, w, v6, u, v7)) = f(x, y, z, v8, g(v, w, v6, v8, v7))}

Proof. (Found by Otter 3.0.5b on soot.mcs.anl.gov in 0.85 seconds, with a
specialized search strategy.)

3 f(x, y, z, u, v) = f(x, y, z, v, u)
5 g(x, y, z, u, v) = g(x, y, z, v, u)
6 g(e, e, e, e, e) = e
7 g(u, v, w, x, g(u, v, w, x, y)) = y

9 f(x, y, z, u, g(e, e, e, e, e)) = f(x, y, z, e, u) [6 → 3]
10 f(x, y, z, e, g(u, v, w, v6, g(u, v, w, v6, v7))) = f(x, y, z, v7, g(e, e, e, e, e)) [7 → 9, flip]
13 f(x, y, z, e, g(u, v, w, v6, g(u, v, w, v7, v6))) = f(x, y, z, v7, g(e, e, e, e, e)) [5 → 10]
17 f(x, y, z, e, g(u, v, w, v6, g(u, v, w, e, v7))) = f(x, y, z, v7, g(e, e, e, v6, e)) [(gL) 10]
33 f(x, y, z, e, g(u, v, w, e, v6)) = f(x, y, z, v7, g(u, v, w, v7, v6))

[13 → 17 :(gL) :(gL) :(gL) :(gL)]
40 f(x, y, z, u, g(v, w, v6, u, v7)) = f(x, y, z, v8, g(v, w, v6, v8, v7)) [33 → 33]

Theorem 5. Let S be the set of identities of type (5, 5, 0) defined by

S =
{

f(e, e, e, e, e) = e, f is symmetric, f(e, e, e, x, f(e, e, e, x, y)) = y,
g(e, e, e, e, e) = e, g is symmetric, g(e, e, e, x, g(e, e, e, x, y)) = y.

}
Then S =(gL)⇒ {f(x, y, z, u, v) = g(x, y, z, u, v)}.

By Lemmas 1 and 2, we assume

f(u, v, w, x, f(u, v, w, x, y)) = y,
g(u, v, w, x, g(u, v, w, x, y)) = y,
f(x, y, z, u, g(v, w, v6, u, v7)) = f(x, y, z, v8, g(v, w, v6, v8, v7)).

Proof. (Found by Otter 3.0.5b on soot.mcs.anl.gov at 0.34 seconds, with a spe-
cialized search strategy.) Full symmetry of the operations causes an explosion in
the Otter search space; to constrain the search, we incompletely specify sym-
metry with deduction rule 2 below.
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2 g(x, y, z, u, v) = f(x, y, z, u, v) → g(y, z, u, v, x) = f(y, z, u, v, x)
3 f(e, e, e, e, e) = e
4 f(u, v, w, x, f(u, v, w, x, y)) = y
5 g(e, e, e, e, e) = e
6 g(u, v, w, x, g(u, v, w, x, y)) = y
7 f(x, y, z, u, g(v, w, v6, u, v7)) = f(x, y, z, v8, g(v, w, v6, v8, v7))

10 f(e, e, e, e, g(e, e, e, e, e)) = e [5 → 3]
11 f(e, e, e, x, g(e, e, e, x, e)) = e [7 → 10]
12 g(e, e, e, x, e) = f(e, e, e, x, e) [11 → 4, flip]
13 g(e, e, x, e, e) = f(e, e, x, e, e) [12,2]
15 f(e, e, x, e, g(e, e, x, e, e)) = e [13 → 4]
18 f(e, e, x, y, g(e, e, x, y, e)) = e [7 → 15]
19 g(e, e, x, y, e) = f(e, e, x, y, e) [18 → 4, flip]
20 g(e, x, y, e, e) = f(e, x, y, e, e) [19,2]
22 f(e, x, y, e, g(e, x, y, e, e)) = e [20 → 4]
25 f(e, x, y, z, g(e, x, y, z, e)) = e [7 → 22]
26 g(e, x, y, z, e) = f(e, x, y, z, e) [25 → 4, flip]
27 g(x, y, z, e, e) = f(x, y, z, e, e) [26,2]
29 f(x, y, z, e, g(x, y, z, e, e)) = e [27 → 4]
32 f(x, y, z, u, g(x, y, z, u, e)) = e [7 → 29]
33 g(x, y, z, u, e) = f(x, y, z, u, e) [32 → 4, flip]
34 g(x, y, z, e, u) = f(x, y, z, e, u) [33,2]
36 f(x, y, z, e, g(x, y, z, e, u)) = u [6 → 34, flip]
39 f(x, y, z, u, g(x, y, z, u, v)) = v [7 → 36]
40 g(x, y, z, u, v) = f(x, y, z, u, v) [6 → 39, flip]

Line 40 completes the proof of Theorem 5.

Corollary 1. f(x, u, z, t, u) = ((x∗y)∗(z∗t))∗u, where “∗” stands for the binary
morphism of secant-tangent construction on the cubic.

Proof. Define g(x, y, z, t, u) = ((x ∗ y) ∗ (z ∗ t)) ∗ u. It is clear that g is totally
symmetric and that every flex point is an idempotent for g. Moreover, g satisfies
the two-variable identity g(e, e, e, x, g(e, e, e, x, y)) = y. Hence by Theorem 5,
f = g. This gives the well-known ruler construction to locate the unique sixth
point f(x, y, z, t, u) on the cubic. See Figure 4.

Thus, in particular, a nonsingular cubic curve admits exactly one 5-ary totally
symmetric Steiner law with flex points as its idempotents. Using similar con-
structions, one can show that for every n ≡ 2(mod 3), a nonsingular cubic curve
admits exactly one totally symmetric n-ary Steiner law with flex points as its
idempotents. Indeed, such a Steiner law would be cut on a nonsingular cubic
by an algebraic curve of degree d = (n + 1)/3. Once again, the fact that these
operations are well defined follows immediately thanks to the Cayley-Bacharach
theorem. Let us quickly illustrate this for, say n = 11, the first nontrivial case
where the Cayley-Bacharach theorem really applies. If one takes a set of 11 points
of general position on a nonsingular cubic curve C, then there exist infinitely many
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Figure 4. The sixth point

quartic curves passing through these 11 points. If Q is one such quartic curve, it
has a 12th common point with the cubic curve, since |C ∩Q| = 12 by the Bezout
theorem (remember, throughout this paper we are denizens of the complex pro-
jective plane). Since this set P of 12 points is the complete intersection cycle of
two curves of degrees 3 and 4, respectively, it enjoys the CB-property of degree
3 + 4 − 3 = 4, meaning that every quartic passing through the initial 11 points
must pass through this last point as well! We now have a well-defined universal
algebra of arity 11. It is obvious that this is a totally symmetric Steiner law on the
cubic. The uniqueness and linear representation follow easily along the previous
lines. Indeed, using the full version of (gL), Otter proved the uniqueness of 8-ary
Steiner law without much difficulty. Humans can easily prove the uniqueness by
induction on the arity.

Theorem 6. Let f(x1, x2, . . . , xn−1, xn) and g(x1, x2, . . . , xn−1, xn) be two n-ary
Steiner laws on a nonsingular cubic curve C, and let both f and g share a common
idempotent, say e. Then f = g.

Proof. Let f and g be two n-ary Steiner laws on C, and let e be an idempotent
element for both f and g. Now specializing xn = e, we do obtain an (n − 1)-ary
Steiner law, since the resulting (n − 1)-ary law is totally symmetric in all the
n− 1 variables and it is still Steiner and similarly for g. Hence, by the induction
hypothesis, we have the universal equality

f(x1, x2, . . . , xn−1, e) = g(x1, x2, . . . , xn−1, e).

Now form a new n-ary composite function h on the curve C by the rule

h(x1, x2, . . . , xn) = f(x1, x2, . . . , xn−1, xn) ∗ (e ∗ g(x1, x2, . . . , xn−1, xn)).

Let us substitute xn = e to obtain h(x1, . . . , xn−1, e) = e. So the n-ary function h
does not depend upon the variable xn and, by total symmetry, does not depend
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upon xi for all i = 1, 2, . . . , n. Hence,

f ∗ (e ∗ g) = h(x1, x2, . . . , xn)
= h(e, e, . . . , e)
= e ∗ (e ∗ e)
= e.

In other words f ∗ (e ∗ g) = e = g ∗ (e ∗ g) and hence, by one right cancellation,
we obtain the desired equality f = g.

Remark. This aspect of formal derivability has been abstracted as the “overlay
principle” in [7, p.79].

Appendix

This appendix contains Otter proofs of Theorems 2 and 3, an example of a
ternary version of basic (gL), and an example showing that the full (gL) rule is
more powerful than the basic (gL) rule.

An Otter proof of Theorem 2

Proof. (Found by Otter 3.0.5b on soot.mcs.anl.gov in 0.58 seconds.)

3 x ∗ (y ∗ x) = y
5 x ∗ y = y ∗ x
6 (x ∗ y) ∗ z = (x ∗ u) ∗ v → (w ∗ y) ∗ z = (w ∗ u) ∗ v

7 (x ∗ y) ∗ x = y [3 → 3]
9 (x ∗ y) ∗ y = x [3 → 5, flip]
14 (x ∗ ((y ∗ z) ∗ u)) ∗ y = (x ∗ z) ∗ u [6,7]
35 (((x ∗ y) ∗ z) ∗ u) ∗ x = (u ∗ y) ∗ z [5 → 14]
1101 ((x ∗ y) ∗ z) ∗ u = ((u ∗ y) ∗ z) ∗ x [35 → 9]

An Otter Proof of Theorem 3

Proof. (Found by Otter 3.0.5b on soot.mcs.anl.gov in 0.09 seconds.)

3 x ∗ (y ∗ x) = y
6 (x ∗ y) ∗ z = (x ∗ u) ∗ v → (w ∗ y) ∗ z = (w ∗ u) ∗ v

7 (x ∗ y) ∗ x = y [3 → 3]
14 (x ∗ ((y ∗ z) ∗ u)) ∗ y = (x ∗ z) ∗ u [6,7]
23 (x ∗ (y ∗ z)) ∗ (u ∗ y) = (x ∗ u) ∗ z [7 → 14]
189 (x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u) [3 → 23]
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Ternary basic (gL)

This is an Otter proof of the associativity of the ternary Mal’cev operation using
a ternary version of basic (gL).

Theorem 7.
m(x, y, z) = m(x, u, v) →

m(w, y, z) = m(w, u, v)
m(x, y, y) = x
m(x, y, z) = m(z, y, x)

 ⇒ {m(x, y, m(z, u, v)) = m(m(x, y, z), u, v)}.

Proof. (Found by Otter 3.0.5b on soot.mcs.anl.gov in 0.13 seconds.)

3 m(x, y, z) = m(x, u, v) → m(w, y, z) = m(w, u, v)
4 m(x, y, y) = x
6 m(x, y, z) = m(z, y, x)

7 m(x, x, y) = y [4 → 6, flip]
9 m(x, y, m(y, z, u)) = m(x, z, u) [7,3]
11 m(x, y, m(z, u, y)) = m(x, u, z) [6 → 9]
13 m(m(x, y, z), x, u) = m(u, y, z) [6 → 9]
23 m(m(x, y, z), u, v) = m(m(v, u, x), y, z) [11 → 13]
241 m(x, y, m(z, u, v)) = m(m(x, y, z), u, v) [6 → 23]

Full (gL) vs. basic (gL)

As we mentioned in Section 3, the property of full (gL) – that is Mumford’s
rigidity lemma of complete varieties (see [10, p.45] or [9, p.104]) – is very powerful
and provides the necessary glue to bind the various morphisms definable on a
nonsingular cubic curve. In particular, if m(x, y) : C × C −→ C is an arbitrary
binary composition morphism admitting a two-sided identity, then it must be the
usual group law. We produce here a pure first-order proof of this result obtained
by Otter using the full (gL) rule:

Theorem 8. 
x + e = x
e + x = x
x ∗ (y ∗ x) = y
x ∗ y = y ∗ x

 =(gL)⇒ {x + y = e ∗ (x ∗ y)}.

Proof. (Found by Otter 3.0.5b on soot.mcs.anl.gov in 0.82 seconds.)

2 x + e = x
3 e + x = x
4 x ∗ (y ∗ x) = y
5 x ∗ y = y ∗ x
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11 (e + x) ∗ (y ∗ x) = y [3 → 4]
17 x ∗ (e + (y ∗ x)) = y [3 → 4]
28,27 e + (x ∗ y) = y ∗ x [3 → 5]
29 x ∗ (x ∗ y) = y [17 :28]
35 (x + y) ∗ (z ∗ y) = (x + u) ∗ (z ∗ u) [11 → 11 :(gL)]
53 x ∗ (y ∗ e) = (x + z) ∗ (y ∗ z) [2 → 35]
106 (x + y) ∗ ((x + z) ∗ y) = z [35 → 29]
180,179 (x + y) ∗ (z ∗ y) = x ∗ (e ∗ z) [5 → 53, flip]
194 x ∗ (e ∗ (x + y)) = y [106 :180]
225 e ∗ (x + y) = x ∗ y [194 → 29, flip]
231 x + y = e ∗ (x ∗ y) [225 → 29, flip]

As early as 1970, Mumford and Ramanujam proved a rather sweeping and beau-
tiful generalization of this result in the context of complete varieties – not just
cubic curves (see [10, p. 44]). This single theorem inspired the first author to look
into the formal aspects of equational proofs valid on cubic curves. To show that
the corresponding statement is not a theorem in basic (gL) we used MACE [5], a
program that looks for small models or counterexamples of first-order statements.
The statements

(x ∗ y) ∗ z = (x ∗ u) ∗ v → (w ∗ y) ∗ z = (w ∗ u) ∗ v
x + e = x
e + x = x
x ∗ (y ∗ x) = y
x ∗ y = y ∗ x
A + B 6= e ∗ (A ∗B)


have the following model (found by MACE 1.3.2 on ember.mcs.anl.gov in 5.97

seconds).

∗ 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

+ 0 1 2
0 0 1 2
1 1 0 0
2 2 0 0

e: 0
A: 1
B: 1

Web reference

The programs Otter and MACE, and the input files that produce the computer
proofs in this paper are available on the Web at

http://www.mcs.anl.gov/~mccune/papers/steiner.
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