On the Geometry of Symplectic Involutions

Mark Pankov
Department of Mathematics and Information Technology
University of Warmia and Mazury
Żolnierska 14A, 10-561 Olsztyn, Poland
e-mail: pankov@matman.uwm.edu.pl

Abstract

Let V be a $2 n$-dimensional vector space over a field F and Ω be a non-degenerate symplectic form on V. Denote by $\mathfrak{H}_{k}(\Omega)$ the set of all $2 k$-dimensional subspaces $U \subset V$ such that the restriction $\left.\Omega\right|_{U}$ is non-degenerate. Our main result (Theorem 1) says that if $n \neq 2 k$ and $\max (k, n-k) \geq 5$ then any bijective transformation of $\mathfrak{H}_{k}(\Omega)$ preserving the class of base subsets is induced by a semi-symplectic automorphism of V. For the case when $n \neq 2 k$ this fails, but we have a weak version of this result (Theorem 2). If the characteristic of F is not equal to 2 then there is a one-to-one correspondence between elements of $\mathfrak{H}_{k}(\Omega)$ and symplectic ($2 k, 2 n-2 k$)-involutions and Theorem 1 can be formulated as follows: for the case when $n \neq 2 k$ and $\max (k, n-k) \geq 5$ any commutativity preserving bijective transformation of the set of symplectic ($2 k, 2 n-2 k$)-involutions can be extended to an automorphism of the symplectic group.

MSC 2000: 51N30, 51A50
Keywords: hyperbolic symplectic geometry, symplectic group, Grassmannian

1. Introduction

Let W be an n-dimensional vector space over a division ring R and $n \geq 3$. We put $\mathcal{G}_{k}(W)$ for the Grassmannian of k-dimensional subspaces of W. The projective space associated with W will be denoted by $\mathcal{P}(W)$.

0138-4821/93 \$ 2.50 © 2006 Heldermann Verlag

Let us consider the set $\mathfrak{G}_{k}(W)$ of all pairs

$$
(S, U) \in \mathcal{G}_{k}(W) \times \mathcal{G}_{n-k}(W)
$$

where $S+U=W$. If B is a base for $\mathcal{P}(W)$ then the base subset of $\mathfrak{G}_{k}(W)$ associated with the base B consists of all (S, U) such that S and U are spanned by elements of B. If $n \neq 2 k$ then any bijective transformation of $\mathfrak{G}_{k}(W)$ preserving the class of base subsets is induced by a semi-linear isomorphism of W to itself or to the dual space W^{*} (for $n=2 k$ this fails, but some weak version of this result holds true). Using Mackey's ideas [7] J. Dieudonné [2] and C. E. Rickart [9] have proved this statement for $k=1, n-1$. For the case when $1<k<n-1$ it was established by author [8]. Note that adjacency preserving transformations of $\mathfrak{G}_{k}(W)$ were studied in [6].

Now suppose that the characteristic of R is not equal to 2 and consider an involution $u \in \mathrm{GL}(W)$. There exist two subspaces $S_{+}(u)$ and $S_{-}(u)$ such that

$$
u(x)=x \text { if } x \in S_{+}(u), \quad u(x)=-x \text { if } x \in S_{-}(u)
$$

and

$$
W=S_{+}(u)+S_{-}(u) .
$$

We say that u is a $(k, n-k)$-involution if the dimensions of $S_{+}(u)$ and $S_{-}(u)$ are equal to k and $n-k$, respectively. The set of $(k, n-k)$-involutions will be denoted by $\mathfrak{I}_{k}(W)$. There is the natural one-to-one correspondence between elements of $\mathfrak{I}_{k}(W)$ and $\mathfrak{G}_{k}(W)$ such that each base subset of $\mathfrak{G}_{k}(W)$ corresponds to a maximal set of mutually permutable ($k, n-k$)-involutions. Thus any commutativity preserving transformation of $\mathfrak{I}_{k}(W)$ can be considered as a transformation of $\mathfrak{G}_{k}(W)$ preserving the class of base subsets, and our statement shows that if $n \neq 2 k$ then any commutativity preserving bijective transformation of $\mathfrak{I}_{k}(W)$ can be extended to an automorphism of GL(W).

In the present paper we give symplectic analogues of these results.

2. Results

2.1.

Let V be a $2 n$-dimensional vector space over a field F and $\Omega: V \times V \rightarrow F$ be a non-degenerate symplectic form. The form Ω defines on the set of subspaces of V the orthogonal relation which will be denoted by \perp. For any subspace $S \subset V$ we put S^{\perp} for the orthogonal complement to S. A subspace $S \subset V$ is said to be non-degenerate if the restriction $\left.\Omega\right|_{S}$ is non-degenerate; for this case S is even-dimensional and $S+S^{\perp}=V$. We put $\mathfrak{H}_{k}(\Omega)$ for the set of non-degenerate $2 k$-dimensional subspaces. Any element of $\mathfrak{H}_{k}(\Omega)$ can be presented as the sum of k mutually orthogonal elements of $\mathfrak{H}_{1}(\Omega)$.

Let us consider the projective space $\mathcal{P}(V)$ associated with V. The points of this space are 1-dimensional subspaces of V, and each line consists of all 1dimensional subspaces contained in a certain 2-dimensional subspace.

A line of $\mathcal{P}(V)$ is called hyperbolic if the corresponding 2-dimensional subspace belongs to $\mathfrak{H}_{1}(\Omega)$; otherwise, the line is said to be isotropic.
Points of $\mathcal{P}(V)$ together with the family of isotropic lines form the well-known polar space.
Some results related with the hyperbolic symplectic geometry (spanned by points of $\mathcal{P}(V)$ and hyperbolic lines) can be found in [1], [4], [5].
A base $B=\left\{P_{1}, \ldots, P_{2 n}\right\}$ of $\mathcal{P}(V)$ is called symplectic if for any $i \in\{1, \ldots, 2 n\}$ there is unique $\sigma(i) \in\{1, \ldots, 2 n\}$ such that $P_{i} \not \not \not \perp P_{\sigma(i)}$. Then the set \mathfrak{S}_{1} consisting of all

$$
S_{i}:=P_{i}+P_{\sigma(i)}
$$

is said to be the base subset of $\mathfrak{H}_{1}(\Omega)$ associated with the base B. For any $k \in$ $\{2, \ldots, n-1\}$ the set \mathfrak{S}_{k} consisting of all $S_{i_{1}}+\cdots+S_{i_{k}}\left(S_{i_{1}}, \ldots, S_{i_{k}}\right.$ are different) will be called the base subset of $\mathfrak{H}_{k}(\Omega)$ associated with \mathfrak{S}_{1} (or defined by \mathfrak{S}_{1}).
Now suppose that the characteristic of F is not equal to 2 . An involution $u \in$ $\mathrm{GL}(V)$ is symplectic (belongs to the group $\mathrm{Sp}(\Omega)$) if and only if $S_{+}(u)$ and $S_{-}(u)$ are non-degenerate and $S_{-}(u)=\left(S_{+}(u)\right)^{\perp}$. We denote by $\mathfrak{I}_{k}(\Omega)$ the set of symplectic $(2 k, 2 n-2 k)$-involutions. There is the natural bijection

$$
i_{k}: \mathfrak{I}_{k}(\Omega) \rightarrow \mathfrak{H}_{k}(\Omega), \quad u \rightarrow S_{+}(u)
$$

We say that $\mathfrak{X} \subset \mathfrak{I}_{k}(\Omega)$ is an $M C$-subset if any two elements of \mathfrak{X} are commutative and for any $u \in \mathfrak{I}_{k}(\Omega) \backslash \mathfrak{X}$ there exists $s \in \mathfrak{X}$ such that $s u \neq u s$ (in other words, \mathfrak{X} is a maximal set of mutually permutable elements of $\mathfrak{I}_{k}(\Omega)$).

Fact 1. [2], [3] \mathfrak{X} is a MC-subset of $\mathfrak{I}_{k}(\Omega)$ if and only if $i_{k}(\mathfrak{X})$ is a base subset of $\mathfrak{H}_{k}(\Omega)$. For any two commutative elements of $\mathfrak{I}_{k}(\Omega)$ there is a MC-subset containing them.

Fact 1 shows that a bijective transformation f of $\mathfrak{H}_{k}(\Omega)$ preserves the class of base subsets if and only if $i_{k}^{-1} f i_{k}$ is commutativity preserving.

2.2.

If l is an element of $\Gamma \operatorname{Sp}(\Omega)$ (the group of semi-linear automorphisms which preserved Ω to within a non-zero scalar and an automorphism of F) then for each number $k \in\{1, \ldots, n-1\}$ we have the bijective transformation

$$
(l)_{k}: \mathfrak{H}_{k}(\Omega) \rightarrow \mathfrak{H}_{k}(\Omega), \quad U \rightarrow l(U)
$$

which preserves the class of base subsets. The bijection

$$
p_{k}: \mathfrak{H}_{k}(\Omega) \rightarrow \mathfrak{H}_{n-k}(\Omega), \quad U \rightarrow U^{\perp}
$$

sends base subsets to base subsets. We will need the following trivial fact.
Fact 2. Let f be a bijective transformation of $\mathfrak{H}_{k}(\Omega)$ preserving the class of base subsets. Then the same holds for the transformation $p_{k} f p_{n-k}$. Moreover, if $f=$ $(l)_{k}$ for certain $l \in \Gamma \operatorname{Sp}(\Omega)$ then $p_{k} f p_{n-k}=(l)_{n-k}$.

Two distinct elements of $\mathfrak{H}_{1}(\Omega)$ are orthogonal if and only if there exists a base subset containing them, thus for any bijective transformation f of $\mathfrak{H}_{1}(\Omega)$ the following condition are equivalent:

- f preserves the relation \perp,
- f preserves the class of base subsets.

It is not difficult to prove (see [2], p. 26-27 or [9], p. 711-712) that if one of these conditions holds then f is induced by an element of $\Gamma \mathrm{Sp}(\Omega)$. Fact 2 guarantees that the same is fulfilled for bijective transformations of $\mathfrak{H}_{n-1}(\Omega)$ preserving the class of base subsets. This result was exploited by J. Dieudonné [2] and C. E. Rickart [9] to determine automorphisms of the group $\operatorname{Sp}(\Omega)$.
Theorem 1. If $n \neq 2 k$ and $\max (k, n-k) \geq 5$ then any bijective transformation of $\mathfrak{H}_{k}(\Omega)$ preserving the class of base subsets is induced by an element of $\Gamma \operatorname{Sp}(\Omega)$.

Corollary 1. Suppose that the characteristic of F is not equal to 2 . If $n \neq 2 k$ and $\max (k, n-k) \geq 5$ then any commutativity preserving bijective transformation f of $\mathfrak{I}_{k}(\Omega)$ can be extended to an automorphism of $\operatorname{Sp}(\Omega)$.

Proof of Corollary. By Fact $1, i_{k} f i_{k}^{-1}$ preserves the class of base subsets. Theorem 1 implies that $i_{k} f i_{k}^{-1}$ is induced by $l \in \Gamma \operatorname{Sp}(\Omega)$. The automorphism $u \rightarrow l u l^{-1}$ is as required.

2.3.

For the case when $n=2 k$ Theorem 1 fails.
Example 1. Suppose that $n=2 k$ and \mathfrak{X} is a subset of $\mathfrak{H}_{k}(\Omega)$ such that for any $U \in \mathfrak{X}$ we have $U^{\perp} \in \mathfrak{X}$. Consider the transformation of $\mathfrak{H}_{k}(\Omega)$ which sends each $U \in \mathfrak{X}$ to U^{\perp} and leaves fixed all other elements. This transformation preserves the class of base subsets (any base subset of $\mathfrak{H}_{k}(\Omega)$ contains U together with U^{\perp}), but it is not induced by a semilinear automorphism if $\mathfrak{X} \neq \emptyset, \mathfrak{H}_{k}(\Omega)$.

If $n=2 k$ then we denote by $\overline{\mathfrak{H}}_{k}(\Omega)$ the set of all subsets $\left\{U, U^{\perp}\right\} \subset \mathfrak{H}_{k}(\Omega)$. Then every $l \in \Gamma \operatorname{Sp}(\Omega)$ induces the bijection

$$
(l)_{k}^{\prime}: \overline{\mathfrak{H}}_{k}(\Omega) \rightarrow \overline{\mathfrak{H}}_{k}(\Omega), \quad\left\{U, U^{\perp}\right\} \rightarrow\left\{l(U), l\left(U^{\perp}\right)=l(U)^{\perp}\right\} .
$$

The transformation from Example 1 gives the identical transformation of $\overline{\mathfrak{H}}_{k}(\Omega)$.
Theorem 2. Let $n=2 k \geq 14$ and f be a bijective transformation of $\mathfrak{H}_{k}(\Omega)$ preserving the class of base subsets. Then f preserves the relation \perp and induces a bijective transformation of $\overline{\mathfrak{H}}_{k}(\Omega)$. The latter mapping is induced by an element of $\Gamma \mathrm{Sp}(\Omega)$.

Corollary 2. Let $n=2 k \geq 14$ and f be a commutativity preserving bijective transformation of $\mathfrak{I}_{k}(\Omega)$. Suppose also that the characteristic of F is not equal to 2 . Then there exists an automorphism g of the group $\operatorname{Sp}(\Omega)$ such that $f(u)= \pm g(u)$ for any $u \in \mathfrak{I}_{k}(\Omega)$.

3. Inexact subsets

In this section we suppose that $n \geq 4$ and $1<k<n-1$.

3.1. Inexact subsets of $\mathfrak{G}_{k}(W)$

Let $B=\left\{P_{1}, \ldots, P_{n}\right\}$ be a base of $\mathcal{P}(W)$. For any $m \in\{1, \ldots, n-1\}$ we denote by \mathfrak{B}_{m} the base subset of $\mathfrak{G}_{m}(W)$ associated with B (the definition was given in Section 1).

If $\alpha=(M, N) \in \mathfrak{B}_{m}$ then we put $\mathfrak{B}_{k}(\alpha)$ for the set of all $(S, U) \in \mathfrak{B}_{k}$ where S is incident to M or N (then U is incident to N or M, respectively), the set of all $(S, U) \in \mathfrak{B}_{k}$ such that S is incident to M will be denoted by $\mathfrak{B}_{k}^{+}(\alpha)$.
A subset $\mathfrak{X} \subset \mathfrak{B}_{k}$ is called exact if there is only one base subset of $\mathfrak{G}_{k}(W)$ containing \mathfrak{X}; otherwise, \mathfrak{X} is said to be inexact.
If $\alpha \in \mathfrak{B}_{2}$ then $\mathfrak{B}_{k}(\alpha)$ is a maximal inexact subset of \mathfrak{B}_{k} (Example 1 in [8]). Conversely, we have the following:

Lemma 1. (Lemma 2 of [8]) If \mathfrak{X} is a maximal inexact subset of \mathfrak{B}_{k} then there exists $\alpha \in \mathfrak{B}_{2}$ such that $\mathfrak{X}=\mathfrak{B}_{k}(\alpha)$.

Lemma 2. (Lemmas 5 and 8 of [8]) Let g be a bijective transformation of \mathfrak{B}_{k} preserving the class of maximal inexact subsets. Then for any $\alpha \in \mathfrak{B}_{k-1}$ there exists $\beta \in \mathfrak{B}_{k-1}$ such that

$$
g\left(\mathfrak{B}_{k}(\alpha)\right)=\mathfrak{B}_{k}(\beta)
$$

moreover, we have

$$
g\left(\mathfrak{B}_{k}^{+}(\alpha)\right)=\mathfrak{B}_{k}^{+}(\beta)
$$

if $n \neq 2 k$.

3.2. Inexact subsets of $\mathfrak{H}_{\boldsymbol{k}}(\Omega)$

Let $\mathfrak{S}_{1}=\left\{S_{1}, \ldots, S_{n}\right\}$ be a base subset of $\mathfrak{H}_{1}(\Omega)$. For each number $m \in$ $\{2, \ldots, n-1\}$ we denote by \mathfrak{S}_{m} the base subset of $\mathfrak{H}_{m}(\Omega)$ associated with \mathfrak{S}_{1}.

Let $M \in \mathfrak{S}_{m}$. Then $M^{\perp} \in \mathfrak{S}_{n-m}$. We put $\mathfrak{S}_{k}(M)$ for the set of all elements of \mathfrak{S}_{k} incident to M or M^{\perp}. The set of all elements of \mathfrak{S}_{k} incident to M will be denoted by $\mathfrak{S}_{k}^{+}(M)$.
Let \mathfrak{X} be a subset of \mathfrak{S}_{k}. We say that \mathfrak{X} is exact if it is contained only in one base subset of $\mathfrak{H}_{k}(\Omega)$; otherwise, \mathfrak{X} will be called inexact. For any $i \in\{1, \ldots, n\}$ we denote by \mathfrak{X}_{i} the set of all elements of \mathfrak{X} containing S_{i}. If \mathfrak{X}_{i} is not empty then we define

$$
U_{i}(\mathfrak{X}):=\bigcap_{U \in \mathfrak{X}_{i}} U
$$

and $U_{i}(\mathfrak{X}):=\emptyset$ if \mathfrak{X}_{i} is empty. It is trivial that our subset is exact if $U_{i}(\mathfrak{X})=S_{i}$ for each i.

Lemma 3. \mathfrak{X} is exact if $U_{i}(\mathfrak{X}) \neq S_{i}$ only for one i.

Proof. Let $\mathfrak{S}_{1}^{\prime}$ be a base subset of $\mathfrak{H}_{1}(\Omega)$ which defines a base subset of $\mathfrak{H}_{k}(\Omega)$ containing \mathfrak{X}. If $j \neq i$ then $U_{j}(\mathfrak{X})=S_{j}$ implies that S_{j} belongs to $\mathfrak{S}_{1}^{\prime}$. Let us take $S^{\prime} \in \mathfrak{S}_{1}^{\prime}$ which does not coincide with any $S_{j}, j \neq i$. Since S^{\prime} is orthogonal to all such S_{j}, we have $S^{\prime}=S_{i}$ and $\mathfrak{S}_{1}^{\prime}=\mathfrak{S}_{1}$.

Example 2. Let $M \in \mathfrak{S}_{2}$. Then $M=S_{i}+S_{j}$ for some i, j. We choose orthogonal $S_{i}^{\prime}, S_{j}^{\prime} \in \mathfrak{H}_{1}(\Omega)$ such that $S_{i}^{\prime}+S_{j}^{\prime}=M$ and $\left\{S_{i}, S_{j}\right\} \neq\left\{S_{i}^{\prime}, S_{j}^{\prime}\right\}$. Then

$$
\left(\mathfrak{S}_{1} \backslash\left\{S_{i}, S_{j}\right\}\right) \cup\left\{S_{i}^{\prime}, S_{j}^{\prime}\right\}
$$

is a base subset of $\mathfrak{H}_{1}(\Omega)$ which defines another base subset of $\mathfrak{H}_{k}(\Omega)$ containing $\mathfrak{S}_{k}(M)$. Therefore, $\mathfrak{S}_{k}(M)$ is inexact. Any $U \in \mathfrak{S}_{k} \backslash \mathfrak{S}_{k}(M)$ intersects M by S_{i} or S_{j} and

$$
U_{p}\left(\mathfrak{S}_{k}(M) \cup\{U\}\right)=S_{p}
$$

if $p=i$ or j; the same holds for all $p \neq i, j$. By Lemma $3, \mathfrak{S}_{k}(M) \cup\{U\}$ is exact for any $U \in \mathfrak{S}_{k} \backslash \mathfrak{S}_{k}(M)$. Thus the inexact subset $\mathfrak{S}_{k}(M)$ is maximal.

Lemma 4. Let \mathfrak{X} be a maximal inexact subset of \mathfrak{S}_{k}. Then $\mathfrak{X}=\mathfrak{S}_{k}(M)$ for certain $M \in \mathfrak{S}_{2}$.

Proof. By the definition, there exists another base subset of $\mathfrak{H}_{k}(\Omega)$ containing \mathfrak{X}; the associated base subset of $\mathfrak{H}_{1}(\Omega)$ will be denoted by $\mathfrak{S}_{1}^{\prime}$. Since our inexact subset is maximal, we need to prove the existence of $M \in \mathfrak{S}_{2}$ such that $\mathfrak{X} \subset$ $\mathfrak{S}_{k}(M)$.

Let us consider $i \in\{1, \ldots, n\}$ such that U_{i} is not empty (from this moment we write U_{i} in place of $U_{i}(\mathfrak{X})$). We say that the number i is of first type if the inclusion $U_{j} \subset U_{i}, j \neq i$ implies that $U_{j}=\emptyset$ or $U_{j}=U_{i}$. If i is not of first type and the inclusion $U_{j} \subset U_{i}, j \neq i$ holds only for the case when $U_{j}=\emptyset$ or j is of first type then i is said to be of second type. Similarly, other types of numbers can be defined.

Suppose that there exists a number j of first type such that $\operatorname{dim} U_{j} \geq 4$. Then U_{j} contains certain $M \in \mathfrak{S}_{2}$. Since j is of first type, for any $U \in \mathfrak{X}$ one of the following possibilities is realized:
$-U \in \mathfrak{X}_{j}$ then $M \subset U_{j} \subset U$,
$-U \in \mathfrak{X} \backslash \mathfrak{X}_{j}$ then $U \subset U_{j}^{\perp} \subset M^{\perp}$.
This means that M is as required.
Now suppose that $U_{j}=S_{j}$ for all j of first type, so $S_{j} \in \mathfrak{S}_{1}^{\prime}$ if j is of first type. Consider any number i of second type. If $U_{i} \in \mathfrak{S}_{m}$ then $m \geq 2$ and there are exactly $m-1$ distinct j of first type such that $S_{j}=U_{j}$ is contained in U_{i}; since all such S_{j} belong to $\mathfrak{S}_{1}^{\prime}$ and U_{i} is spanned by elements of $\mathfrak{S}_{1}^{\prime}$, we have $S_{i} \in \mathfrak{S}_{1}^{\prime}$. Step by step we establish the same for other types. Thus $S_{i} \in \mathfrak{S}_{1}^{\prime}$ if U_{i} is not empty. Since \mathfrak{X} is inexact, Lemma 3 implies the existence of two distinct numbers i and j such that $U_{i}=U_{j}=\emptyset$. We define $M:=S_{i}+S_{j}$. Then any element of \mathfrak{X} is contained in M^{\perp} and we get the claim.

Let $\mathfrak{S}_{1}^{\prime}$ be another base subset of $\mathfrak{H}_{1}(\Omega)$ and $\mathfrak{S}_{m}^{\prime}, m \in\{2, \ldots, n-1\}$, be the base subset of $\mathfrak{H}_{m}(\Omega)$ defined by $\mathfrak{S}_{1}^{\prime}$.

Lemma 5. Let h be a bijection of \mathfrak{S}_{k} to $\mathfrak{S}_{k}^{\prime}$ such that h and h^{-1} send maximal inexact subsets to maximal inexact subsets. Then for any $M \in \mathfrak{S}_{k-1}$ there exists $M^{\prime} \in \mathfrak{S}_{k-1}^{\prime}$ such that

$$
h\left(\mathfrak{S}_{k}(M)\right)=\mathfrak{S}_{k}^{\prime}\left(M^{\prime}\right) ;
$$

moreover, we have

$$
h\left(\mathfrak{S}_{k}^{+}(M)\right)=\mathfrak{S}_{k}^{\prime+}\left(M^{\prime}\right)
$$

if $n \neq 2 k$.
Proof. Let $\mathfrak{B}_{m}, m \in\{1, \ldots, n-1\}$, be as in subsection 3.1.. For each m there is the natural bijection $b_{m}: \mathfrak{B}_{m} \rightarrow \mathfrak{S}_{m}$ sending $(S, U) \in \mathfrak{B}_{m}, S=P_{i_{1}}+\cdots+P_{i_{m}}$ to $S_{i_{1}}+\cdots+S_{i_{m}}$. For any $M \in \mathfrak{S}_{m}$ we have

$$
\mathfrak{S}_{k}(M)=b_{k}\left(\mathfrak{B}_{k}\left(b_{m}^{-1}(M)\right)\right) \text { and } \mathfrak{S}_{k}^{+}(M)=b_{k}\left(\mathfrak{B}_{k}^{+}\left(b_{m}^{-1}(M)\right)\right) .
$$

Let b_{m}^{\prime} be the similar bijection of \mathfrak{B}_{m} to $\mathfrak{S}_{m}^{\prime}$. Then $\left(b_{k}^{\prime}\right)^{-1} h b_{k}$ is a bijective transformation of \mathfrak{B}_{k} preserving the class of base subsets and our statement follows from Lemma 2.

4. Proof of Theorems 1 and 2

By Fact 2, we need to prove Theorem 1 only for $k<n-k$. Throughout the section we suppose that $1<k \leq n-k$ and $n-k \geq 5$; for the case when $n=2 k$ we require that $n \geq 14$.

4.1.

Let f be a bijective transformation of $\mathfrak{H}_{k}(\Omega)$ preserving the class of base subsets. The restriction of f to any base subset satisfies the condition of Lemma 5 .

For any subspace $T \subset V$ we denote by $\mathfrak{H}_{k}(T)$ the set of all elements of $\mathfrak{H}_{k}(\Omega)$ incident to T or T^{\perp}, the set of all elements of $\mathfrak{H}_{k}(\Omega)$ incident to T will be denoted by $\mathfrak{H}_{k}^{+}(T)$.

In this subsection we show that Theorems 1 and 2 are simple consequences of the following lemma.

Lemma 6. There exists a bijective transformation g of $\mathfrak{H}_{k-1}(\Omega)$ such that

$$
g\left(\mathfrak{H}_{k}^{+}(T)\right)=\mathfrak{H}_{k}^{+}(g(T)) \quad \forall T \in \mathfrak{H}_{k-1}(\Omega)
$$

if $n \neq 2 k$, and

$$
\left.g\left(\mathfrak{H}_{k}(T)\right)=\mathfrak{H}_{k}(g(T))\right) \quad \forall T \in \mathfrak{H}_{k-1}(\Omega)
$$

for the case when $n=2 k$.

The proof of Lemma 6 will be given later.
Let \mathfrak{S}_{k-1} be a base subset of $\mathfrak{H}_{k-1}(\Omega)$ and \mathfrak{S}_{k} be the associated base subset of $\mathfrak{H}_{k}(\Omega)$ (these base subsets are defined by the same base subset of $\mathfrak{H}_{1}(\Omega)$). By our hypothesis, $f\left(\mathfrak{S}_{k}\right)$ is a base subset of $\mathfrak{H}_{k}(\Omega)$; we denote by $\mathfrak{S}_{k-1}^{\prime}$ the associated base subset of $\mathfrak{H}_{k-1}(\Omega)$. It is easy to see that $g\left(\mathfrak{S}_{k-1}\right)=\mathfrak{S}_{k-1}^{\prime}$, so g maps base subsets to base subsets. Since f^{-1} preserves the class of base subset, the same holds for g^{-1}. Thus g preserves the class of base subsets.

Now suppose that $g=(l)_{k-1}$ for certain $l \in \Gamma \operatorname{Sp}(\Omega)$. Let U be an element of $\mathfrak{H}_{k}(\Omega)$. We take $M, N \in \mathfrak{H}_{k-1}(\Omega)$ such that $U=M+N$. If $n \neq 2 k$ then

$$
\{U\}=\mathfrak{H}_{k}^{+}(M) \cap \mathfrak{H}_{k}^{+}(N) \text { and }\{f(U)\}=\mathfrak{H}_{k}^{+}(l(M)) \cap \mathfrak{H}_{k}^{+}(l(N)),
$$

so $f(U)=l(M)+l(N)=l(U)$, and we get $f=(l)_{k}$. For the case when $n=2 k$ we have

$$
\left\{U, U^{\perp}\right\}=\mathfrak{H}_{k}(M) \cap \mathfrak{H}_{k}(N) \text { and }\left\{f(U), f(U)^{\perp}\right\}=\mathfrak{H}_{k}(l(M)) \cap \mathfrak{H}_{k}(l(N)) ;
$$

since $l(M)+l(N)=l(U)$ and $l(M)^{\perp} \cap l(N)^{\perp}=(l(M)+l(N))^{\perp}=l(U)^{\perp}$,

$$
\left\{f(U), f(U)^{\perp}\right\}=\left\{l(U), l(U)^{\perp}\right\}
$$

the latter means that $f=(l)_{k}^{\prime}$. Therefore, Theorem 1 can be proved by induction and Theorem 2 follows from Theorem 1.

To prove Lemma 6 we use the following:
Lemma 7. Let $M \in \mathfrak{H}_{m}(\Omega)$ and N be a subspace contained in M. Then the following assertions are fulfilled:
(1) If $\operatorname{dim} N>m$ then N contains an element of $\mathfrak{H}_{1}(\Omega)$.
(2) If $\operatorname{dim} N>m+2$ then N contains two orthogonal elements of $\mathfrak{H}_{1}(\Omega)$.
(3) If $\operatorname{dim} N>m+4$ then N contains three distinct mutually orthogonal elements of $\mathfrak{H}_{1}(\Omega)$.

Proof. The form $\left.\Omega\right|_{M}$ is non-degenerate. If $\operatorname{dim} N>m$ then the restriction of $\left.\Omega\right|_{M}$ to N is non-zero. This implies the existence of $S \in \mathfrak{H}_{1}(\Omega)$ contained in N. We have

$$
\operatorname{dim} N \cap S^{\perp} \geq \operatorname{dim} N-2,
$$

and for the case when $\operatorname{dim} N>m+2$ there is an element of $\mathfrak{H}_{1}(\Omega)$ contained in $N \cap S^{\perp}$. Similarly, (3) follows from (2).

4.2. Proof of Lemma 6 for $k<\boldsymbol{n}-\boldsymbol{k}$

Let $T \in \mathfrak{H}_{k-1}(\Omega)$ and $\mathfrak{S}_{1}=\left\{S_{1}, \ldots, S_{n}\right\}$ be a base subset of $\mathfrak{H}_{1}(\Omega)$ such that

$$
T^{\perp}=S_{1}+\cdots+S_{n-k+1} \text { and } T=S_{n-k+2}+\cdots+S_{n}
$$

We put \mathfrak{S}_{k} for the base subset of $\mathfrak{H}_{k}(\Omega)$ associated with \mathfrak{S}_{1}. Then $\mathfrak{S}_{k}^{+}(T)$ consists of all

$$
U_{i}:=T+S_{i}
$$

where $i \in\{1, \ldots, n-k+1\}$. By Lemma 5 , there exists $T^{\prime} \in \mathfrak{H}_{k-1}(\Omega)$ such that

$$
f\left(\mathfrak{S}_{k}^{+}(T)\right) \subset \mathfrak{H}_{k}^{+}\left(T^{\prime}\right)
$$

We need to show that $f\left(\mathfrak{H}_{k}^{+}(T)\right)$ coincides with $\mathfrak{H}_{k}^{+}\left(T^{\prime}\right)$.
Lemma 8. Let $U \in \mathfrak{H}_{k}^{+}(T)$. Suppose that there exist two distinct $M, N \in \mathfrak{H}_{k}^{+}(T)$ such that $f(M), f(N)$ belong to $\mathfrak{H}_{k}^{+}\left(T^{\prime}\right)$ and there is a base subset of $\mathfrak{H}_{k}(\Omega)$ containing M, N and U. Then $f(U)$ is an element of $\mathfrak{H}_{k}^{+}\left(T^{\prime}\right)$.
Proof. If there exists a base subset of $\mathfrak{H}_{k}(\Omega)$ containing M, N and U then T belongs to the associated base subset of $\mathfrak{H}_{k-1}(\Omega)$ and Lemma 5 implies the existence of $T^{\prime \prime} \in \mathfrak{H}_{k-1}(\Omega)$ such that $f(M), f(N)$ and $f(U)$ belong to $\mathfrak{H}_{k}^{+}\left(T^{\prime \prime}\right)$. On the other hand, $f(M)$ and $f(N)$ are different elements of $\mathfrak{H}_{k}^{+}\left(T^{\prime}\right)$ and $f(M) \cap f(N)$ coincides with T^{\prime}. Hence $T^{\prime}=T^{\prime \prime}$.

For any $U \in \mathfrak{H}_{k}^{+}(T)$ we denote by $S(U)$ the intersection of U and T^{\perp}, it is clear that $S(U)$ is an element of $\mathfrak{H}_{1}(\Omega)$.

If $S(U)$ is contained in $S_{1}+\cdots+S_{n-k-1}$ then $S(U), S_{n-k}, S_{n-k+1}$ are mutually orthogonal and there exists a base subset of $\mathfrak{H}_{k}(\Omega)$ containing U, U_{n-k}, U_{n-k+1}. All $f\left(U_{i}\right)$ belong to $\mathfrak{H}_{k}^{+}\left(T^{\prime}\right)$ and Lemma 8 shows that $f(U) \in \mathfrak{H}_{k}^{+}\left(T^{\prime}\right)$.

Let U be an element of $\mathfrak{H}_{k}^{+}(T)$ such that $S(U)$ is contained in $S_{1}+\cdots+S_{n-k}$. We have

$$
\operatorname{dim}\left(S_{1}+\cdots+S_{n-k-1}\right) \cap S(U)^{\perp} \geq 2(n-k-2)>n-k-1
$$

(the latter inequality follows from the condition $n-k \geq 5$) and Lemma 7 implies the existence of $S^{\prime} \in \mathfrak{H}_{1}(\Omega)$ contained in

$$
\left(S_{1}+\cdots+S_{n-k-1}\right) \cap S(U)^{\perp}
$$

Then $S(U), S^{\prime}, S_{n-k+1}$ are mutually orthogonal and there exists a base subset of $\mathfrak{H}_{k}(\Omega)$ containing $U, T+S^{\prime}, U_{n-k+1}$. It was proved above that $f\left(T+S^{\prime}\right)$ belongs to $\mathfrak{H}_{k}^{+}\left(T^{\prime}\right)$. Since $f\left(U_{i}\right) \in \mathfrak{H}_{k}^{+}\left(T^{\prime}\right)$ for each i, Lemma 8 guarantees that $f(U)$ is an element of $\mathfrak{H}_{k}^{+}\left(T^{\prime}\right)$.
Now suppose that $S(U)$ is not contained in $S_{1}+\cdots+S_{n-k}$. Since $n-k \geq 5$,

$$
\operatorname{dim}\left(S_{1}+\cdots+S_{n-k}\right) \cap S(U)^{\perp} \geq 2(n-k-1)>n-k+2
$$

By Lemma 7 , there exist two orthogonal $S^{\prime}, S^{\prime \prime} \in \mathfrak{H}_{1}(\Omega)$ contained in

$$
\left(S_{1}+\cdots+S_{n-k}\right) \cap S(U)^{\perp}
$$

Then $S^{\prime}, S^{\prime \prime}, S(U)$ are mutually orthogonal and there exists a base subset of $\mathfrak{H}_{k}(\Omega)$ containing $S^{\prime}+T, S^{\prime \prime}+T$ and U. We have shown above that $f\left(S^{\prime}+T\right), f\left(S^{\prime \prime}+T\right)$ belong to $\mathfrak{H}_{k}^{+}\left(T^{\prime}\right)$ and Lemma 8 shows that the same holds for $f(U)$.

So $f\left(\mathfrak{H}_{k}^{+}(T)\right) \subset \mathfrak{H}_{k}^{+}\left(T^{\prime}\right)$. Since f^{-1} preserves the class of base subsets, the inverse inclusion holds true. We define $g: \mathfrak{H}_{k-1}(\Omega) \rightarrow \mathfrak{H}_{k-1}(\Omega)$ by $g(T):=T^{\prime}$. This transformation is bijective (otherwise, f is not bijective).

4.3. Proof of Lemma 6 for $n=2 k$

We start with the following:
Lemma 9. If $n=2 k$ then $f\left(U^{\perp}\right)=f(U)^{\perp}$ for any $U \in \mathfrak{H}_{k}(\Omega)$.
Proof. We take a base subset \mathfrak{S}_{k} containing U. Then $U^{\perp} \in \mathfrak{S}_{k}$. Denote by \mathfrak{S}_{k-1} the base subset of $\mathfrak{H}_{k-1}(\Omega)$ associated with \mathfrak{S}_{k}. Let $\mathfrak{S}_{k-1}^{\prime}$ be the base subset of $\mathfrak{H}_{k-1}(\Omega)$ associated with $\mathfrak{S}_{k}^{\prime}:=f\left(\mathfrak{S}_{k}\right)$. We choose $M, N \in \mathfrak{S}_{k-1}$ such that $U=M+N$. Then

$$
\left\{U, U^{\perp}\right\}=\mathfrak{S}_{k}(M) \cap \mathfrak{S}_{k}(N)
$$

and Lemma 5 guarantees that

$$
\left\{f(U), f\left(U^{\perp}\right)\right\}=\mathfrak{S}_{k}^{\prime}\left(M^{\prime}\right) \cap \mathfrak{S}_{k}^{\prime}\left(N^{\prime}\right)
$$

for some $M^{\prime}, N^{\prime} \in \mathfrak{S}_{k-1}^{\prime}$. The set $\mathfrak{S}_{k}^{\prime}\left(M^{\prime}\right) \cap \mathfrak{S}_{k}^{\prime}\left(N^{\prime}\right)$ is not empty if one of the following possibilities is realized:
$-M^{\prime}+N^{\prime}$ and $M^{\perp} \cap N^{\prime \perp}$ are elements of $\mathfrak{H}_{k-1}(\Omega)$ and $\mathfrak{S}_{k}^{\prime}\left(M^{\prime}\right) \cap \mathfrak{S}_{k}^{\prime}\left(N^{\prime}\right)$ consists of these two elements.
$-M^{\prime} \subset N^{\prime \perp}$ and $N^{\prime} \subset M^{\prime \perp}$, then $\mathfrak{S}_{k}^{\prime}\left(M^{\prime}\right) \cap \mathfrak{S}_{k}^{\prime}\left(N^{\prime}\right)$ consists of 4 elements.
Thus

$$
\left\{f(U), f\left(U^{\perp}\right)\right\}=\left\{M^{\prime}+N^{\prime}, M^{\prime \perp} \cap N^{\prime \perp}\right\}
$$

Since $M^{\prime}+N^{\prime}$ and $M^{\perp} \cap N^{\prime \perp}$ are orthogonal, we get the claim.
Let $T \in \mathfrak{H}_{k-1}(\Omega)$. As in the previous subsection we consider a base subset $\mathfrak{S}_{1}=$ $\left\{S_{1}, \ldots, S_{n}\right\}$ of $\mathfrak{H}_{1}(\Omega)$ such that

$$
T^{\perp}=S_{1}+\cdots+S_{n-k+1} \text { and } T=S_{n-k+2}+\cdots+S_{n}
$$

We denote by \mathfrak{S}_{k} the base subset of $\mathfrak{H}_{k}(\Omega)$ associated with \mathfrak{S}_{1}. Then $\mathfrak{S}_{k}(T)$ consists of

$$
U_{i}:=T+S_{i}, \quad i \in\{1, \ldots, n-k+1\}
$$

and their orthogonal complements. Lemma 5 implies the existence of $T^{\prime} \in$ $\mathfrak{H}_{k-1}(\Omega)$ such that

$$
f\left(\mathfrak{S}_{k}(T)\right) \subset \mathfrak{H}_{k}\left(T^{\prime}\right) .
$$

We show that $f(U)$ belongs to $\mathfrak{H}_{k}\left(T^{\prime}\right)$ for any $U \in \mathfrak{H}_{k}(T)$.
We need to establish this fact only for the case when U is an element of $\mathfrak{H}_{k}^{+}(T)$. Indeed, if $U \in \mathfrak{H}_{k}^{+}\left(T^{\perp}\right)$ then U^{\perp} is an element of $\mathfrak{H}_{k}^{+}(T)$ and $f\left(U^{\perp}\right) \in \mathfrak{H}_{k}\left(T^{\prime}\right)$ implies that $f(U)=f\left(U^{\perp}\right)^{\perp}$ belongs to $\mathfrak{H}_{k}\left(T^{\prime}\right)$.

Lemma 10. Let $U \in \mathfrak{H}_{k}^{+}(T)$. Suppose that there exist distinct $M_{i} \in \mathfrak{H}_{k}^{+}(T)$, $i=1,2,3$ such that each $f\left(M_{i}\right)$ belongs to $\mathfrak{H}_{k}\left(T^{\prime}\right)$ and there is a base subset of $\mathfrak{H}_{k}(\Omega)$ containing M_{1}, M_{2}, M_{3} and U. Then $f(U) \in \mathfrak{H}_{k}\left(T^{\prime}\right)$.

Proof. By Lemma 5, there exists $T^{\prime \prime} \in \mathfrak{H}_{k-1}(\Omega)$ such that $f(U)$, all $f\left(M_{i}\right)$, and their orthogonal complements belong to $\mathfrak{H}_{k}\left(T^{\prime \prime}\right)$. For any $i=1,2,3$ one of the subspaces $f\left(M_{i}\right)$ or $f\left(M_{i}\right)^{\perp}$ is an element of $\mathfrak{H}_{k}^{+}\left(T^{\prime \prime}\right)$; we denote this subspace by M_{i}^{\prime}. Then

$$
T^{\prime \prime}=\bigcap_{i=1}^{3} M_{i}^{\prime} \quad \text { and } \quad T^{\prime \prime \perp}=M_{i}^{\perp \perp}+M_{j}^{\prime \perp}, i \neq j ;
$$

note also that the intersection of any M_{i}^{\prime} and M_{j}^{\perp} does not belong to $\mathfrak{H}_{k-1}(\Omega)$. Since all M_{i}^{\prime} and M_{i}^{\perp} belong to $\mathfrak{H}_{k}\left(T^{\prime}\right)$, we have $T^{\prime}=T^{\prime \prime}$.

As in the previous subsection for any $U \in \mathfrak{H}_{k}^{+}(T)$ we denote by $S(U)$ the intersection of U and T^{\perp}, it is an element of $\mathfrak{H}_{1}(\Omega)$.

If $S(U)$ is contained in $S_{1}+\cdots+S_{n-k-2}$ then $S(U), S_{n-k-1}, S_{n-k}, S_{n-k+1}$ are mutually orthogonal and there exists a base subset of $\mathfrak{H}_{k}(\Omega)$ containing U, U_{n-k-1}, U_{n-k}, U_{n-k+1}. Since $f\left(U_{i}\right) \in \mathfrak{H}_{k}\left(T^{\prime}\right)$ for each i, Lemma 10 shows that $f(U)$ belongs to $\mathfrak{H}_{k}\left(T^{\prime}\right)$.

Suppose that $S(U)$ is contained in $S_{1}+\cdots+S_{n-k-1}$. We have

$$
\operatorname{dim}\left(S_{1}+\cdots+S_{n-k-2}\right) \cap S(U)^{\perp} \geq 2(n-k-3)>n-k-2
$$

(since $k=n-k \geq 7$) and Lemma 7 implies the existence of $S^{\prime} \in \mathfrak{H}_{1}(\Omega)$ contained in

$$
\left(S_{1}+\cdots+S_{n-k-2}\right) \cap S(U)^{\perp}
$$

Then $S(U), S^{\prime}, S_{n-k}, S_{n-k+1}$ are mutually orthogonal, so $U, T+S^{\prime}, U_{n-k}, U_{n-k+1}$ are contained in a certain base subset of $\mathfrak{H}_{k}(\Omega)$. It was shown above that $f\left(T+S^{\prime}\right)$ is an element of $\mathfrak{H}_{k}\left(T^{\prime}\right)$ and Lemma 10 guarantees that $f(U) \in \mathfrak{H}_{k}\left(T^{\prime}\right)$ (recall that all $f\left(U_{i}\right)$ belong to $\left.\mathfrak{H}_{k}\left(T^{\prime}\right)\right)$.

Consider the case when $S(U)$ is contained in $S_{1}+\cdots+S_{n-k}$. We have

$$
\operatorname{dim}\left(S_{1}+\cdots+S_{n-k-1}\right) \cap S(U)^{\perp} \geq 2(n-k-2)>(n-k-1)+2
$$

(recall that $k=n-k \geq 7$) and there exist two orthogonal $S^{\prime}, S^{\prime \prime} \in \mathfrak{H}_{1}(\Omega)$ contained in

$$
\left.S_{1}+\cdots+S_{n-k-1}\right) \cap S(U)^{\perp}
$$

(Lemma 7). Then $S(U), S^{\prime}, S^{\prime \prime}, S_{n-k+1}$ are mutually orthogonal and there exists a base subset of $\mathfrak{H}_{k}(\Omega)$ containing $U, T+S^{\prime}, T+S^{\prime \prime}, U_{n-k+1}$. It follows from Lemma 10 that $f(U) \in \mathfrak{H}_{k}\left(T^{\prime}\right)$ (since $f\left(T+S^{\prime}\right), f\left(T+S^{\prime \prime}\right)$ and any $f\left(U_{i}\right)$ belong to $\left.\mathfrak{H}_{k}\left(T^{\prime}\right)\right)$.

Let U be an element of $\mathfrak{H}_{k}\left(T^{\prime}\right)$ such that $S(U)$ is not contained in $S_{1}+\cdots+$ S_{n-k}. Since $n=2 k \geq 14$,

$$
\operatorname{dim}\left(S_{1}+\cdots+S_{n-k}\right) \cap S(U)^{\perp} \geq 2(n-k-1)>n-k+4
$$

By Lemma 7, there exist mutually orthogonal $S^{\prime}, S^{\prime \prime}, S^{\prime \prime \prime} \in \mathfrak{H}_{1}(\Omega)$ contained in

$$
\left(S_{1}+\cdots+S_{n-k}\right) \cap S(U)^{\perp}
$$

A base subset of $\mathfrak{H}_{k}(\Omega)$ containing $U, T+S^{\prime}, T+S^{\prime \prime}, T+S^{\prime \prime \prime}$ exists. It was shown above that $f\left(T+S^{\prime}\right), f\left(T+S^{\prime \prime}\right)$ and $f\left(T+S^{\prime \prime \prime}\right)$ belong to $\mathfrak{H}_{k}\left(T^{\prime}\right)$ and Lemma 10 implies that the same holds for $f(U)$.

Thus $f\left(\mathfrak{H}_{k}(T)\right) \subset \mathfrak{H}_{k}\left(T^{\prime}\right)$. As in the previous subsection we have the inverse inclusion and define $g: \mathfrak{H}_{k-1}(\Omega) \rightarrow \mathfrak{H}_{k-1}(\Omega)$ by $g(T):=T^{\prime}$.

References

[1] Cuypers, H.: Symplectic geometries, transvection groups and modules. J. Comb. Theory, Ser. A 65 (1994), 39-59.

Zbl 0824.51003
[2] Dieudonné, J.: On the automorphisms of the classical groups. Mem. Am. Math. Soc. 2 (1951), 1-95.

Zbl 0042.25603
[3] Dieudonné, J.: La Géométrie des Groupes Classiques. Springer-Verlag, Berlin 1971.

Zbl 0221.20056
[4] Gramlich, R.: On the hyperbolic symplectic geometry. J. Comb. Theory, Ser. A 105 (2004), 97-110.

Zbl 1045.51009
[5] Hall, J. I.: The hyperbolic lines of finite symplectic spaces. J. Comb. Theory, Ser. A 47 (1988), 284-298.

Zbl 0643.51012
[6] Havlicek, H.; Pankov, M.: Transformations on the product of Grassmann spaces. Demonstr. Math. 38 (2005), 675-688.

Zbl 1089.51004
[7] Mackey, G. W.: Isomorphisms of normed linear spaces. Ann. Math. 43 (1942), 244-260.

Zbl 0061.24210
[8] Pankov, M.: On the geometry of linear involutions. Adv. Geom. 5 (2005), 455-467. Zbl 1077.51009
[9] Rickart, C. E.: Isomorphic groups of linear transformations I, II. Am. J. Math. 72 (1950), 451-464, 73 (1951), 697-716. Zbl 0037.20101 Zbl 0042.25701

Received May 1, 2005

