On Pairs of Non Measurable Linear Varieties in A_{n}

G. Raguso L. Rella
Dipartimento di Matematica
Via E. Orabona, 4 Campus Univ., I-70125 Bari, Italy

Abstract

We consider a family of varieties, where each variety is a pair consisting of a hyperplane and a straight line in n-dimensional affine space A_{n}, where $n \geq 3$. Using Stoka's second condition, we show that this family is not measurable, therefore it is an example of a family of varietes in the sense of Dulio's classification [6].

MSC 2000: 53C65
Keywords: Integral geometry

1. Introduction

A measure on a family of geometric objects can be introduced by assigning to each object a point of an auxiliary space and considering a suitable measure on that space. In general the dimension of the auxiliary space is equal to the number of parameters on which the geometric objects depend. A basic problem is to specify measures which are invariant with respect to a given group of transformations which map the family onto itself.

This problem was first considered by Crofton [3] who specified the invariant measure on the family of all straight lines in Euclidean 2-space E^{2}. This was extended to E^{3} by Deltheil [5] and Chern [1] first considered families of geometric objects in projective space.

Santalò [12] calculated measures of certain families of varieties with respect to three different groups and found that these were equal. Stoka [13] studied the family of parabolas. He proved that a family is measurable if it is measurable with respect to its maximal group of invariance

0138-4821/93 \$ 2.50 © 2006 Heldermann Verlag

However Cirlincione [2] found a measurable family of varieties even though the family was not measurable with respect to the maximal group of invariance. This proves that the Stoka's condition is not necessary.

In Section 2 we provide background and definitions and in Section 3 we prove that the family of varieties, where each variety is a pair consisting of a hyperplane and a straight line in n-dimensional affine space A_{n} is not measurable.

2. Background

Let \mathcal{H}_{n} be an n-dimensional space with coordinates $x_{1}, x_{2}, \ldots, x_{n}$ in which a Lie group of transformations acts.

Let G_{r} be one of its subgroups defined by the equations

$$
y_{i}=f_{i}\left(x_{1}, x_{2}, \ldots, x_{n} ; a_{1}, a_{2}, \ldots, a_{r}\right) \quad(i=1,2, \ldots, n)
$$

where $a_{1}, a_{2}, \ldots, a_{r}$ are basic parameters.
Definition 1. The function $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an integral invariant function of the group G_{r}, if

$$
\int_{\mathcal{A}_{x}} F\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1} d x_{2} \cdots d x_{n}=\int_{\mathcal{A}_{y}} F\left(y_{1}, y_{2}, \ldots, y_{n}\right) d y_{1} d y_{2} \cdots d_{n}
$$

for each measurable set of points \mathcal{A}_{x} of the space \mathcal{H}_{n}, where \mathcal{A}_{y} is the image of \mathcal{A}_{x} by the group G_{r}.

Theorem 1. The integral invariant functions of the group G_{r} are the solutions of the following Deltheil's system of partial differential equations:

$$
\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left[\xi_{h}^{i}(x) F(x)\right]=0 \quad(h=1,2, \ldots, r)
$$

where $\xi_{h}^{i}(x)$ are the coefficients of the infinitesimal transformations of the group G_{r} (see [5], p. 28 and [15], p. 4).

Definition 2. A measurable Lie group of transformations is a group which admits only one integral invariant function (up to a multiplicative constant).

Let G be a group which leaves globally invariant a family \Im of varietes in \mathcal{H}_{n}. To G there is associated a group H (isomorphic to G) of transformations acting on the (auxiliary) space of parameters of the family.

Definition 3. A family \Im is measurable with respect to G if H is measurable in the sense of Definition 2. If Φ is its integral invariant function, then the measure of \Im with respect to the group G is given by

$$
\mu_{G}=\int_{\mathcal{A}_{\alpha}} \Phi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}\right) d \alpha_{1} d \alpha_{2} \cdots d \alpha_{q}
$$

where \mathcal{A}_{α} is the set of points of the auxiliary space which corresponds to the family s.

Definition 4. A family \Im of varieties is measurable if the measures with respect to every group of invariance of the family are equal, if they exist.

Theorem 2. (Stoka's first condition) If the group \bar{H} associated to the maximal group of invariance of \Im (where the only transformation, which leaves invariant each element of the family, is the identity) is measurable, the family is measurable.

Theorem 3. (Stoka's second condition) If \bar{H} is not measurable and there are two measurable subgroups with different integral invariant functions, then \Im is not measurable.

3. Non-measurability of the family $\Im_{3 n-2}$

Theorem 4. The family of varieties, where each variety is a pair consisting of a hyperplane and a straight line in n-dimensional affine space A_{n}, is not measurable.

We use of the following notation

$$
\begin{array}{rlrl}
X^{T} & =\left(x_{1}, x_{2}, \ldots, x_{n}\right), & B^{T}=\left(b_{1}, b_{2}, \ldots, b_{n}\right), \quad L^{T}=\left(l_{1}, l_{2}, \ldots, l_{n-1}, 1\right), \\
Q^{T} & =\left(q_{1}, q_{2}, \ldots, q_{n-1}, 0\right), & A^{T}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) . &
\end{array}
$$

\bar{X}^{T} is obtained from X by deleting the last coordinate and similary in other cases.
Let $\Im_{3 n-2}$ be the family of all pairs, each consisting of a hyperplane and a straight line in A_{n} in general position. The hyperplane and the line depend on parameters $b_{1}, b_{2}, \ldots, b_{n}, l_{1}, l_{2}, \ldots, l_{n-1}, q_{1}, q_{2}, \ldots, q_{n-1}$, respectively, and are represented in the following form

$$
\begin{aligned}
& \sum_{i=1}^{n} b_{i} x_{i}=1 \\
& x_{i}=l_{i} x_{n}+q_{i} \quad i=1,2, n-1 .
\end{aligned}
$$

The affine group $G_{n^{2}+n}$ is given by

$$
x_{i}=\sum_{j=1}^{n} p_{i j} x_{j}^{\prime}+a_{i}, \quad i, j=1,2, \ldots, n
$$

where $\operatorname{det}\left(p_{i j}\right) \neq 0$ and $\sum_{i=1}^{n} b_{i} a_{i} \neq 1$.
For the $n \times n$ matrix $P=\left(p_{i j}\right)$ we write also $P=\left(\begin{array}{llll}P_{1} & P_{2} & \cdots & P_{n}\end{array}\right)$, where $P_{j}, j=1,2, \ldots, n$, is the j-th column of P.

For the proof of the Theorem 4 we are proving the Lemmas 1, 2,3 .
Lemma 1. The group associated to maximal group of invariance of the family $\Im_{3 n-2}$ is not measurable.

Proof. The family $\Im_{3 n-2}$ and the group $G_{n^{2}+n}$, can be written in the form

$$
\begin{align*}
B^{T} \cdot X & =1, \\
X & =L x_{n}+Q \tag{1}\\
X & =P \cdot X^{\prime}+A . \tag{2}
\end{align*}
$$

Applying $G_{n^{2}+n}$ to $\Im_{3 n-2}$ we obtain that

$$
\begin{align*}
B^{\prime T} \cdot X^{\prime} & =1 \\
X^{\prime} & =L^{\prime} x_{n}^{\prime}+Q^{\prime} . \tag{3}
\end{align*}
$$

According to (2), from the first equality (1), we find that

$$
\begin{equation*}
\frac{1}{1-B^{T} \cdot A}\left(B^{T} \cdot P\right) X^{\prime}=1 \tag{4}
\end{equation*}
$$

and the second equality in (1) implies that

$$
\begin{equation*}
P X^{\prime}=L \cdot\left(p_{n 1} x_{1}^{\prime}+p_{n 2} x_{2}^{\prime}+\cdots+p_{n n} x_{n}^{\prime}+a_{n}\right)+Q-A . \tag{5}
\end{equation*}
$$

Considering the first $n-1$ rows, (5) can be written as follows:

$$
R \overline{X^{\prime}}=\left(\bar{L} p_{n n}-\bar{P}\right) x_{n}^{\prime}+\bar{L} \alpha_{n}+\bar{Q}-\bar{A},
$$

where

$$
R=\left(\begin{array}{cccc}
p_{11}-l_{1} p_{n 1} & p_{12}-l_{1} p_{n 2} & \cdots & p_{1 n-1}-l_{1} p_{n n-1} \\
p_{21}-l_{2} p_{n 1} & p_{22}-l_{2} p_{n 2} & \cdots & p_{2 n-1}-l_{2} p_{n n-1} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n-11}-l_{n-1} p_{n 1} & p_{n-12}-l_{n-1} p_{n 2} & \cdots & p_{n-1 n-1}-l_{n-1} p_{n n-1}
\end{array}\right),|R| \neq 0
$$

This implies that

$$
\begin{equation*}
\bar{X}^{\prime}=R^{-1}\left(\bar{L} p_{n n}-\overline{P_{n}}\right) x_{n}^{\prime}+R^{-1} \bar{L} a_{n}+R^{-1}(\bar{Q}-\bar{A}) . \tag{6}
\end{equation*}
$$

According to $X^{\prime}=\binom{\bar{X}^{\prime}}{x_{n}^{\prime}}$ and by comparing (3) with (4) and (6), respectively, we obtain the following relations between the new parameters of the family $\Im_{3 n-2}$ and the original ones:

$$
\begin{align*}
& B^{\prime T}=\frac{1}{1-t^{t} B \cdot A} B^{T} \cdot P, \\
& \bar{L}^{\prime}=R^{-1} \cdot\left(\bar{L} p_{n n}-\overline{P_{n}}\right), \tag{7}\\
& \overline{Q^{\prime}}=R^{-1} \cdot\left(a_{n} \bar{L}+\bar{Q}-\bar{A}\right) .
\end{align*}
$$

These are the equations of group $H_{n^{2}+n}$ associated to $G_{n^{2}+n}$ in the $(3 n-2)$ dimensional space $\mathcal{A}_{3 n-2}$. The unit $e \in H_{n^{2}+n}$ is obtained by

$$
p_{i j}=\left\{\begin{array}{ll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array} \quad \text { and } a_{i}=0 \quad(i, j=1,2, \ldots, n) .\right.
$$

The matrix of coefficients of the infinitesimal transformations of $H_{n^{2}+n}$, which has as columns the partial derivates of

$$
b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{n}^{\prime}, l_{1}^{\prime}, l_{2}^{\prime}, \ldots, l_{n-1}^{\prime}, q_{1}^{\prime}, q_{2}^{\prime}, \ldots, q_{n-1}^{\prime}
$$

with respect to the parameters

$$
p_{11}, p_{21}, \ldots, p_{n 1}, p_{12}, p_{22}, \ldots, p_{n 2}, \ldots, p_{1 n}, p_{2 n}, \ldots, p_{n n}, a_{1}, a_{2}, \ldots, a_{n}
$$

is given by

$$
\xi=\left(\begin{array}{ccccccc}
B & O & O & \ldots & O & -l_{1} H & -q_{1} H \\
O & B & O & \ldots & O & -l_{2} H & -q_{2} H \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
O & O & O & \ldots & O & -l_{n-1} H & -q_{n-1} H \\
O & O & O & \ldots & B & -H & O \\
& & B B^{T} & & & O & -H
\end{array}\right),
$$

where

$$
H=\left(\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & 1 \\
-l_{1} & -l_{2} & \ldots & -l_{n-2} & -l_{n-1}
\end{array}\right)
$$

has n rows and $n-1$ columns and O is the $(n, 1)$ zero matrix.
To indicate the type of a matrix, we denote it by capital letters with indices, if necessary.

In order to calculate the rank of the matrix ξ, we select the matrix M of order $3 n-2$ which consists of the first two block rows and the first row of each of the following $n-2$ block-rows, i.e.

$$
M=\left(\begin{array}{ccccccc}
B & O & O & \ldots & O & -l_{1} H & -q_{1} H \tag{8}\\
O & B & O & \ldots & O & -l_{2} H & -q_{2} H \\
O_{n-2,1} & O_{n-2,1} & & b_{1} I_{n-2} & & U & V
\end{array}\right),
$$

where

$$
\begin{aligned}
U^{T} & =\left(\right), \\
V^{T} & =\left(\right) .
\end{aligned}
$$

By developing the determinant of the matrix M with respect to the third block column, we have

$$
\operatorname{det} M=\left(b_{1}\right)^{n-2} \operatorname{det}\left(\begin{array}{cccc}
B & O & -l_{1} H & -q_{1} H \tag{9}\\
O & B & -l_{2} H & -q_{2} H
\end{array}\right) .
$$

Let

$$
N=\left(\begin{array}{cccc}
B & O & -l_{1} H & -q_{1} H \\
O & B & -l_{2} H & -q_{2} H
\end{array}\right) .
$$

We consider the diagonal block matrix

$$
\Delta=\left(\begin{array}{ccc}
I_{2} & O_{2, n-1} & O_{2, n-1} \\
O_{n-1,2} & q_{1} I_{n-1} & O_{n-1, n-1} \\
O_{n-1,2} & O_{n-1, n-1} & -l_{1} I_{n-1}
\end{array}\right)
$$

Then

$$
N \cdot \Delta=\left(\begin{array}{cccc}
B & O & -l_{1} q_{1} H & l_{1} q_{1} H \\
O & B & -l_{2} q_{1} H & l_{1} q_{2} H
\end{array}\right) .
$$

Adding together the last but one column and the last column and substitute the sum for the last column (so that $\operatorname{det}(N \cdot \Delta)$ does not change). This gives

$$
\operatorname{det}(N \cdot \Delta)=\operatorname{det}\left(\begin{array}{cccc}
B & O & -l_{1} q_{1} H & O_{n, n-1} \\
O & B & -l_{2} q_{1} H & \left(l_{1} q_{2}-l_{2} q_{1}\right) H
\end{array}\right) .
$$

Let

$$
K=\left(\begin{array}{cccc}
B & O & -l_{1} q_{1} H & O_{n, n-1} \\
O & B & -l_{2} q_{1} H & \left(l_{1} q_{2}-l_{2} q_{1}\right) H
\end{array}\right) .
$$

We put the second column of K in the $(n+1)-t h$ position .
This gives the block matrix

$$
\widetilde{K}=\left(\begin{array}{cccc}
B & -l_{1} q_{1} H & O & O_{n, n-1} \\
O & -l_{2} q_{1} H & B & \left(l_{1} q_{2}-l_{2} q_{1}\right) H
\end{array}\right)
$$

or, more simply

$$
\widetilde{K}=\left(\begin{array}{cc|c}
R_{n} & |c| c & O_{n, n} \\
---- & -\mid & -- \\
O-l_{2} q_{1} H & \mid & S_{n}
\end{array}\right),
$$

where

$$
R_{n}=\left(\begin{array}{ll}
B & -l_{1} q_{1} H
\end{array}\right) \quad S_{n}=\left(\begin{array}{ll}
B & \left(l_{1} q_{2}-l_{2} q_{1}\right) H
\end{array}\right) .
$$

Note that

$$
\begin{equation*}
\operatorname{det} K=(-1)^{n-1} \operatorname{det} \widetilde{K}=(-1)^{n-1} \operatorname{det} R_{n} \cdot \operatorname{det} S_{n} . \tag{10}
\end{equation*}
$$

We have to calculate $\operatorname{det} R_{n}$ and $\operatorname{det} S_{n}$.
We first consider the matrix R_{n} and prove that

$$
\begin{equation*}
\operatorname{det} R_{n}=\left(l_{1} q_{1}\right)^{n-1}\left(l_{1} b_{1}+l_{2} b_{2}+\cdots+l_{n-2} b_{n-2}+l_{n-1} b_{n-1}+b_{n}\right), \tag{*}
\end{equation*}
$$

where $\sigma=\left(l_{1} b_{1}+l_{2} b_{2}+\cdots+l_{n-2} b_{n-2}+l_{n-1} b_{n-1}+b_{n}\right)$.
R_{n} can be written as follows:

$$
R_{n}=\left(\begin{array}{rr}
\alpha & l_{1} q_{1} \beta \\
\gamma & -l_{1} q_{1} \delta
\end{array}\right),
$$

where

$$
\left.\left.\begin{array}{rl}
\alpha & =\left(b_{1}\right), \quad \beta=\left(\begin{array}{lllll}
1 & 0 & 0 & \ldots & 0
\end{array}\right) \quad 0
\end{array}\right) \quad \text { is a }(1, n-1) \text { matrix, }, ~ \begin{array}{llll}
b_{2} & b_{3} & \ldots & b_{n-1} \\
b_{n}
\end{array}\right), ~\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-l_{1} & -l_{2} & -l_{3} & \cdots & -l_{n-1}
\end{array}\right) \text { is a matrix of order } n-1 .
$$

Applying the generalized Gauss algorithm to the matrix R_{n}, we obtain the matrix

$$
\widetilde{K}=\left(\begin{array}{cc}
\alpha & \beta \\
O & -l_{1} q_{1}\left(\delta-\gamma \alpha^{-1} \beta\right)
\end{array}\right)
$$

Then
$\operatorname{det} R_{n}=\operatorname{det} \widetilde{R}_{n}=\operatorname{det} \alpha \cdot \operatorname{det}\left(-l_{1} q_{1}\left(\delta-\gamma \alpha^{-1} \beta\right)\right)=b_{1}\left(-l_{1} q_{1}\right)^{n-1} \operatorname{det}\left(\delta-\gamma \alpha^{-1} \beta\right)$,
where

$$
\delta-\gamma \alpha^{-1} \beta=\left(\begin{array}{ccccc}
-\frac{b_{2}}{b_{1}} & 1 & 0 & \ldots & 0 \\
-\frac{b_{3}}{b_{1}} & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\frac{b_{n-1}}{b_{1}} & 0 & 0 & \ldots & 1 \\
-l_{1}-\frac{b_{n}}{b_{1}} & -l_{1} & -l_{2} & \ldots & -l_{n-1}
\end{array}\right)
$$

Next put

$$
R_{n-1}=\delta-\gamma \alpha^{-1} \beta=\left(\begin{array}{cc}
-\frac{b_{2}}{b_{1}} & \beta^{*} \\
\gamma^{*} & \delta^{*}
\end{array}\right)
$$

where $\gamma^{*}=\left(\begin{array}{c}-\frac{b_{3}}{b_{1}} \\ -\frac{b_{4}}{b_{1}} \\ \vdots \\ -\frac{b_{n-1}}{b_{1}} \\ -l_{1}-\frac{b_{n}}{b_{1}}\end{array}\right), \quad \beta^{*}=\left(\begin{array}{llll}1 & 0 & \ldots & 0\end{array}\right)$ is a $(1, n-2)$ matrix and
$\delta^{*}=\left(\begin{array}{ccccc}0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \\ -l_{2} & -l_{3} & -l_{4} & \ldots & -l_{n-1}\end{array}\right)$ is a matrix of order $n-2$.

The matrix R_{n-1} is the matrix R_{n} with n replaced by $n-1$. Thus, applying Gauss algorithm again, we obtain

$$
\widetilde{R}_{n-1}=\left(\begin{array}{cc}
-\frac{b_{2}}{b_{1}} & \beta \\
O_{n-2} & \delta^{*}-\gamma^{*}\left(-\frac{b_{1}}{b_{2}}\right) \beta^{*}
\end{array}\right),
$$

so that

$$
\operatorname{det} R_{n-1}=\operatorname{det} \widetilde{R}_{n-1}=-\frac{b_{2}}{b_{1}} \operatorname{det}\left(\delta^{*}-\gamma^{*}\left(-\frac{b_{1}}{b_{2}}\right) \beta^{*}\right),
$$

with

$$
\gamma^{*}\left(-\frac{b_{1}}{b_{2}}\right) \beta^{*}=\left(\begin{array}{ccccc}
\frac{b_{3}}{b_{2}} & 0 & \ldots & 0 & 0 \\
\frac{b_{4}}{b_{2}} & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\frac{b_{n-1}}{b_{2}} & 0 & \ldots & 0 & 0 \\
\frac{l_{1} b_{1}+b_{n}}{b_{2}} & 0 & \ldots & 0 & 0
\end{array}\right) .
$$

Let $\quad R_{n-2}=\delta^{*}-\gamma^{*}\left(-\frac{b_{1}}{b_{2}}\right) \beta^{*}$, where
$\delta^{*}-\gamma^{*}\left(-\frac{b_{1}}{b_{2}}\right) \beta^{*}=\left(\begin{array}{ccccc}-\frac{b_{3}}{b_{2}} & 1 & 0 & \ldots & 0 \\ -\frac{b_{4}}{b_{2}} & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\frac{b_{n-1}}{b_{2}} & 0 & 0 & \ldots & 1 \\ -l_{2}-\frac{l_{1} b_{1}+b_{n}}{b_{2}} & -l_{3} & -l_{4} & \ldots & -l_{n-1}\end{array}\right)$
is a matrix of order $n-2$.
We have $\operatorname{det} R_{n-1}=\left(-\frac{b_{2}}{b_{1}}\right) \operatorname{det} R_{n-2}$.
Applying the generalized Gauss algorithm to the matrix R_{n-2}, we obtain the matrix \widetilde{R}_{n-2}. Thus det $R_{n-2}=\operatorname{det} \widetilde{R}_{n-2}=\left(-\frac{b_{3}}{b_{2}}\right) \operatorname{det} R_{n-3}$, where

$$
R_{n-3}=\left(\begin{array}{cccccc}
-\frac{b_{4}}{b_{3}} & 1 & 0 & 0 & \ldots & 0 \\
-\frac{b_{5}}{b_{3}} & 0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-\frac{b_{n-1}}{b_{3}} & 0 & 0 & 0 & \ldots & 1 \\
-\frac{l_{1} b_{1}+l_{2} b_{2}+l_{3} b_{3}+b_{n}}{b_{3}} & -l_{4} & -l_{5} & -l_{6} & \ldots & -l_{n-1}
\end{array}\right),
$$

etc. In this way we get in finitely many steps the matrix

$$
\left(\begin{array}{cc}
-\frac{b_{n-1}}{b_{n-2}} & 1 \\
-\frac{l_{1} b_{1}+l_{2} b_{2}+\cdots+l_{n-2} b_{n-2}+b_{n}}{b_{n-2}} & -l_{n-1}
\end{array}\right),
$$

which has rank 2. Therefore we have that
$\operatorname{det} R_{n}=\operatorname{det} \widetilde{R}_{n}=b_{1}\left(-l_{1} q_{1}\right)^{n-1} \operatorname{det} R_{n-1}=b_{1}\left(-l_{1} q_{1}\right)^{n-1} \operatorname{det} \widetilde{R}_{n-1}$
$=b_{1}\left(-l_{1} q_{1}\right)^{n-1}\left(-\frac{b_{2}}{b_{1}}\right) \operatorname{det} R_{n-2}=\left(-l_{1} q_{1}\right)^{n-1} b_{1}\left(-\frac{b_{2}}{b_{1}}\right) \operatorname{det} \widetilde{R}_{n-2}$
$=\left(-l_{1} q_{1}\right)^{n-1} b_{1}\left(-\frac{b_{2}}{b_{1}}\right)\left(-\frac{b_{3}}{b_{2}}\right) \operatorname{det} R_{n-3}=\left(-l_{1} q_{1}\right)^{n-1} b_{1}\left(-\frac{b_{2}}{b_{1}}\right)\left(-\frac{b_{3}}{b_{2}}\right) \operatorname{det} \widetilde{R}_{n-3}$
$=\left(-l_{1} q_{1}\right)^{n-1} b_{1}\left(-\frac{b_{2}}{b_{1}}\right)\left(-\frac{b_{3}}{b_{2}}\right)\left(-\frac{b_{4}}{b_{3}}\right) \operatorname{det} R_{n-4}$
$=\left(-l_{1} q_{1}\right)^{n-1} b_{1}\left(-\frac{b_{2}}{b_{1}}\right)\left(-\frac{b_{3}}{b_{2}}\right)\left(-\frac{b_{4}}{b_{3}}\right) \operatorname{det} \widetilde{R}_{n-4}$
$=\cdots=\left(-l_{1} q_{1}\right)^{n-1} b_{1}\left(-\frac{b_{2}}{b_{1}}\right)\left(-\frac{b_{3}}{b_{2}}\right)\left(-\frac{b_{4}}{b_{3}}\right) \cdots-\left(\frac{b_{n-2}}{b_{n-1}}\right) \operatorname{det} R_{2}$.
As

$$
\begin{aligned}
& \operatorname{det} R_{2}=\left|\begin{array}{cc}
-\frac{b_{n-1}}{b_{n-2}} & 1 \\
-\frac{l_{1} b_{1}+l_{2} b_{2}+\cdots+l_{n-2} b_{n-2}+b_{n}}{b_{n-2}} & -l_{n-1}
\end{array}\right| \\
& =-\frac{l_{1} b_{1}+l_{2} b_{2}+\cdots+l_{n-2} b_{n-2}+l_{n-1} b_{n-1}+b_{n}}{b_{n-2}}
\end{aligned}
$$

it follows that

$$
\begin{aligned}
& \operatorname{det} R_{n}=\left(-l_{1} q_{1}\right)^{n-1}(-1)^{n-3}\left(l_{1} b_{1}+l_{2} b_{2}+\cdots+l_{n-2} b_{n-2}+l_{n-1} b_{n-1}+b_{n}\right) \\
& \quad=(-1)^{n-1}\left(l_{1} q_{1}\right)^{n-1}(-1)^{n-3}\left(l_{1} b_{1}+l_{2} b_{2}+\cdots+l_{n-2} b_{n-2}+l_{n-1} b_{n-1}+b_{n}\right) \\
& \quad=\left(l_{1} q_{1}\right)^{n-1}\left(l_{1} b_{1}+l_{2} b_{2}+\cdots+l_{n-2} b_{n-2}+l_{n-1} b_{n-1}+b_{n}\right),
\end{aligned}
$$

concluding the proof of $(*)$.
Now we consider the matrix

$$
S_{n}=\left(\begin{array}{cc}
B & \left(l_{1} q_{2}-l_{2} q_{1}\right) H
\end{array}\right) .
$$

The matrix S_{n} is similar to R_{n} where the factor $-l_{1} q_{1}$ is replaced by $l_{1} q_{2}-l_{2} q_{1}$ so that, repeating the previous procedure, we obtain that

$$
\begin{equation*}
\operatorname{det} S_{n}=\left(-l_{1} q_{2}-l_{2} q_{1}\right)^{n-1}\left(l_{1} b_{1}+l_{2} b_{2}+\cdots+l_{n-2} b_{n-2}+l_{n-1} b_{n-1}+b_{n}\right) \tag{**}
\end{equation*}
$$

$(*)$ and $(* *)$ imply that

$$
\begin{gathered}
\operatorname{det} \widetilde{K}=\operatorname{det} R_{n} \cdot \operatorname{det} S_{n}= \\
\left.l_{1} q_{1}\right)^{n-1}\left(-l_{1} q_{2}+l_{2} q_{1}\right)^{n-1}\left(l_{1} b_{1}+l_{2} b_{2}+\cdots+l_{n-2} b_{n-2}+l_{n-1} b_{n-1}+b_{n}\right)^{2}= \\
=\left(l_{1} q_{1}\right)^{n-1}\left(-l_{1} q_{2}+l_{2} q_{1}\right)^{n-1} \sigma^{2}
\end{gathered}
$$

where $\sigma=\left(l_{1} b_{1}+l_{2} b_{2}+\cdots+l_{n-2} b_{n-2}+l_{n-1} b_{n-1}+b_{n}\right)$.
(10) yields the following:

$$
\operatorname{det} K=\operatorname{det}(N \cdot \Delta)=(-1)^{n-1}\left(l_{1} q_{1}\right)^{n-1}\left(-l_{1} q_{2}+l_{2} q_{1}\right)^{n-1} \sigma^{2} \cdots
$$

As $\operatorname{det} \Delta=\operatorname{det} I_{2} \cdot \operatorname{det}\left(q_{1} I_{n-1}\right) \cdot \operatorname{det}\left(-l_{1} I_{n-1}\right)=q_{1}^{n-1}\left(-l_{1}\right)^{n-1}=(-1)^{n-1}\left(l_{1} q_{1}\right)^{n-1}$, we obtain that

$$
\operatorname{det} N=\frac{(-1)^{n-1}\left(l_{1} q_{1}\right)^{n-1}\left(-l_{1} q_{2}+l_{2} q_{1}\right)^{n-1} \sigma^{2}}{(-1)^{n-1}\left(l_{1} q_{1}\right)^{n-1}}=\left(-l_{1} q_{2}+l_{2} q_{1}\right)^{n-1} \sigma^{2}
$$

It follows from (9) that

$$
\operatorname{det} M=b_{1}^{n-2} \operatorname{det} N=b_{1}^{n-2}\left(-l_{1} q_{2}+l_{2} q_{1}\right)^{n-1} \sigma^{2} .
$$

Thus rank $\xi=3 n-2$.
Our aim is to find functions $\Phi\left(b_{1}, b_{2}, \ldots, b_{n}, l_{1}, l_{2}, \ldots, l_{n-1}, q_{1}, q_{2}, \ldots, q_{n-1}\right)$ satisfying the Deltheil system (see Theorem 1) which has ξ as matrix.

In other words, we look for possible non-zero solutions of the (linear nonhomogeneous) system

$$
\begin{equation*}
\xi \cdot Y=\nu \tag{11}
\end{equation*}
$$

consisting of $n^{2}+n$ equations in $3 n-2$ unknowns

$$
y_{1}, y_{2}, \ldots, y_{n}, y_{n+1}, \ldots, y_{2 n-1}, y_{2 n}, \ldots, y_{3 n-2}
$$

with

$$
\begin{aligned}
y_{i} & =\frac{\partial \ln \Phi}{\partial b_{i}} \quad i=1, \ldots, n \\
y_{n+j} & =\frac{\partial \ln \Phi}{\partial l_{j}} \quad j=1, \ldots, n-1 \\
y_{2 n-1+h} & =\frac{\partial \ln \Phi}{\partial q_{h}} \quad h=1, \ldots, n-1
\end{aligned}
$$

and

$$
\nu^{T}=\left(\nu_{1}^{T}, \nu_{2}^{T}, \nu_{3}^{T}, \ldots, \nu_{0}^{T},-(n+1) B^{T}\right),
$$

where
$\nu_{i}^{T}=\left(\begin{array}{lllll}1 & 0 & \ldots & 0 & -(n+1) l_{i}\end{array}\right) i=1, \ldots, n-1$ and
$\nu_{0}^{T}=\left(\begin{array}{cccc}0 & 0 & 1 & -n\end{array}\right)$ are row vectors.
As we have previously determined $\operatorname{rank} \xi$, now we are calculating the rank of the complete block matrix

$$
\xi^{\prime}=(\xi, \nu) .
$$

Consider the following $(3 n-1) \mathrm{x}(3 n-1)$ matrix

$$
\left(\begin{array}{lllllllllll}
& & & & & & & & & & \nu_{1} \\
& & & & M & & & & & \nu_{2} \\
& & & & & & & & & O_{n-2,1} \\
0 & 0 & \ldots & b_{2} & 0 & -1 & 0 & \ldots & 0 & 0
\end{array}\right) .
$$

Its determinant is

$$
\left(-b_{1}\right)^{n-3}\left(l_{1} q_{2}-l_{2} q_{1}\right)^{n-2}\left(q_{1} b_{1}+q_{2} b_{2}\right)\left(l_{1} b_{1}+l_{2} b_{2}+\cdots+l_{n-1} b_{n-1}+b_{n}\right)^{2} .
$$

Consequently, the rank of the complete matrix is $3 n-1$. This shows that the system (11) is not solvable.

Then group $H_{n^{2}+n}$ associated to $G_{n^{2}+n}$ is not measurable. According to Theorem 2 (see Section 1) the family $\Im_{3 n-2}$ can be measurable or not.

Lemma 2. The group associated to the subgroup

$$
G_{3 n-2}: X=\widetilde{P} X^{\prime}
$$

where

$$
\widetilde{P}=\left(\begin{array}{rrrrrr}
p_{11} & p_{12} & & & & \\
p_{21} & p_{22} & & & O & \\
p_{31} & p_{32} & p_{33} & & & \\
p_{41} & p_{42} & & p_{44} & & \\
\vdots & \vdots & O & & \ddots & \\
p_{n 1} & p_{n 2} & & & & p_{n n}
\end{array}\right)
$$

of $G_{n^{2}+n}$ is measurable and the integral invariant function is

$$
\Phi=k \frac{b_{3} b_{4} \cdots b_{n}}{\sigma^{n} \tau}
$$

where $\sigma=b_{1} l_{1}+b_{2} l_{2}+\cdots+b_{n-1} l_{n-1}+b_{n}, \tau=l_{1} q_{2}-l_{2} q_{1}$.
Proof. By applying the subgroup $G_{3 n-2}$ to $\Im_{3 n-2}$, we obtain the equations of group $H_{3 n-2}$ associated to $G_{3 n-2}$.
The matrix of the coefficients of the infinitesimal transformations of group $H_{3 n-2}$ as follows

$$
\tilde{\eta}=\left(\begin{array}{ccccc}
B & O & O_{n, n-2} & -l_{1} H & -q_{1} H \\
O & B & O_{n, n-2} & -l_{2} H & -q_{2} H \\
O_{n-2,1} & O_{n-2,1} & D & C & F
\end{array}\right),
$$

where $D=\left(\begin{array}{ccccc}b_{3} & 0 & \ldots & 0 & 0 \\ 0 & b_{4} & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & b_{n-1} & 0 \\ 0 & 0 & \ldots & 0 & b_{n}\end{array}\right)$ is a diagonal matrix of order $n-2$, and
$C=\left(\begin{array}{cccccc}0 & 0 & -l_{3} & 0 & \ldots & 0 \\ 0 & 0 & 0 & -l_{4} & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \ldots & -l_{n-1} \\ l_{1} & l_{2} & l_{3} & l_{4} & \ldots & l_{n-1}\end{array}\right), \quad F=\left(\begin{array}{cccccc}0 & 0 & -q_{3} & 0 & \ldots & 0 \\ 0 & 0 & 0 & -q_{4} & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \ldots & -q_{n-1} \\ 0 & 0 & 0 & 0 & \ldots & 0\end{array}\right)$
are $(n-2, n-1)$ matrices.
Then
$\operatorname{det} \widetilde{\eta}=b_{3} b_{4} \cdots b_{n} \operatorname{det} N=b_{3} b_{4} \cdots b_{n}\left(-l_{1} q_{2}+l_{2} q_{1}\right)^{n-1}\left(b_{1} l_{1}+b_{2} l_{2}+\cdots+b_{n-1} l_{n-1}+b_{n}\right)^{2}$, the computation being similar to that for $\operatorname{det} M$ (see (8) and (9)).

The Deltheil system of the subgroup $H_{3 n-2}$, associated to $G_{3 n-2}$, is solvable because its incomplete matrix $\widetilde{\eta}$ has maximal rank. Then it admits only one solution (up to a multiplicative constant)

$$
\Phi\left(b_{1}, b_{2}, \ldots, b_{n}, l_{1}, l_{2}, \ldots, l_{n-1}, q_{1}, q_{2}, \ldots, q_{n-1}\right) .
$$

We will show that Φ is given by

$$
\begin{equation*}
\Phi=k \frac{b_{3} b_{4} \cdots b_{n}}{\sigma^{n} \tau} . \tag{12}
\end{equation*}
$$

From the definition of measurability it follows that the group $H_{3 n-2}$, associated to $G_{3 n-2}$, is measurable, but we cannot assert yet that the family $\Im_{3 n-2}$ is measurable (see Theorem 3).

Lemma 3. The group associated to subgroup

$$
G_{n^{2}+n-1}: X=P X^{\prime}+A
$$

with $\operatorname{det} P=1$ is measurable and the integral invariant function is

$$
\Phi=k \sigma^{-(n+1)},
$$

where $\sigma=b_{1} l_{1}+b_{2} l_{2}+\cdots+b_{n-1} l_{n-1}+b_{n}$
Proof. From $\operatorname{det} P=1$ it follows

$$
p_{11}=\frac{1+p_{12} p_{21}\left(p_{n n} \cdots p_{33}\right)}{\left(p_{n n} \cdots p_{33}\right) p_{22}} .
$$

Repeating for this subgroup the whole procedure as for subgroups considered above, we obtain the matrix of the coefficients of the infinitesimal transformations of the associated group $H_{n^{2}+n-1}$ and then we reach the following system of $n^{2}+n-1$ linear equations in $3 n-2$ unknowns:

$$
\begin{equation*}
\eta \cdot Y=\varepsilon \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
& \eta=\left(\begin{array}{cccccc}
\gamma & O & \ldots & O & \Lambda & \Psi \\
-b_{1} E^{2} & B & \ldots & O & -l_{2} H & -q_{2} H \\
\vdots & \vdots & \ldots & \vdots & \vdots & \vdots \\
-b_{1} E^{n-1} & O & \ldots & O & -l_{n-1} H & -q_{n-1} H \\
-b_{1} E^{n} & O & \ldots & B & \Gamma & \Theta \\
& B B^{T} & & & O & -H
\end{array}\right), \quad \gamma=\left(\begin{array}{c}
b_{2} \\
b_{3} \\
\vdots \\
b_{n-1} \\
b_{n}
\end{array}\right), \\
& \Lambda=\left(\begin{array}{ccccc}
0 & -l_{1} & 0 & \ldots & 0 \\
0 & 0 & -l_{1} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & -l_{1} \\
l_{1}^{2} & l_{1} l_{2} & l_{1} l_{3} & \ldots & l_{1} l_{n-1}
\end{array}\right), \quad \Psi=\left(\begin{array}{ccccc}
0 & -q_{1} & 0 & \ldots & 0 \\
0 & 0 & -q_{1} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & -q_{1} \\
l_{1} q_{1} & l_{2} q_{1} & l_{3} q_{1} & \ldots & l_{n-1} q_{1}
\end{array}\right), \\
& \Gamma=\left(\begin{array}{ccccc}
-1 & 0 & 0 & \ldots & 0 \\
0 & -1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & -1 \\
2 l_{1} & l_{2} & l_{3} & \ldots & l_{n-1}
\end{array}\right), \quad \Theta=\left(\begin{array}{ccccc}
0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 0 \\
q_{1} & 0 & 0 & \ldots & 0
\end{array}\right) .
\end{aligned}
$$

E^{i} is the ($n, 1$) matrix with 1 at the i-th place $(i=2,3, \ldots, n)$, and 0 at all other places, $\varepsilon^{T}=\left(\begin{array}{llllll}\varepsilon_{1}^{T} & \varepsilon_{2}^{T} & \ldots & \varepsilon_{n-1}^{T} & \varepsilon_{0}^{T} & -(n+1) B^{T}\end{array}\right)$, where
$\varepsilon_{1}^{T}=\left(\begin{array}{llll}0 & 0 & \ldots & 0\end{array}-(n+1) l_{1}\right)$ is a $\left.1, n-1\right)$ matrix and
$\varepsilon_{i}^{T}=\left(\begin{array}{lllll}0 & 0 & \ldots & 0 & -(n+1) l_{i}\end{array}\right), i=2, \ldots, n-1$,
$\varepsilon_{0}^{T}=\left(\begin{array}{lllll}0 & 0 & \ldots & 0 & -(n+1)\end{array}\right)$
are $(1, n)$ matrices.
It is easy to see that both η and (η, ε) have rank $3 n-2$. This condition ensures that the system (13) is solvable and admits the unique solution

$$
\left(\begin{array}{lll}
-\frac{n+1}{\sigma} L^{T} & -\frac{n+1}{\sigma} \bar{B}^{T} & O_{1, n-1}
\end{array}\right)
$$

It is equally easy to see that the non-trivial solution of the Deltheil system, which has η as matrix [15], is

$$
\begin{equation*}
\Phi=k \sigma^{-(n+1)} . \tag{14}
\end{equation*}
$$

In conclusion the solution (14) is independent from the solution (12) so that the family $\Im_{3 n-2}$ is not measurable by Theorem 3 .

The proof of Theorem 4 is complete.

References

[1] Chern, S. S.: Sur les invariants intégraus en gèométrie. Sci. Rept. Nat. TsingHua Univ. A4 (1940), 85-95. Zbl 0024.18201 and JFM 66.0913.02
[2] Cirlincione, L.: On a family of varieties not satisfying Stoka 's measurability condition. Cah. Topol. Gèom. Différ. 24(2) (1983), 145-154. Zbl 0521.53057
[3] Crofton, W. K.: Sur quelques théorèmes de calcul intégral. Comptes Rendus, LXVIII (1869), 1469-1470. JFM 02.0290.01 and JFM 02.0303.03
[4] Crofton, W. K.: On the theory of local probability, applied to straigth lines drawn at random in a plane; the method used being also extended to the proof of certain theorem in the integral calculus. Phil. Trans. R. Soc. London CLVIII (1869), 181-199.

JFM 01.0075.05
[5] Deltheil, R.: Probabilités géométriques, nel Traité du calcul dés probabilitès et de ses application. Diretto da E. Borel, v. II, f.II, Gauthier-Villar, Paris 1926.
[6] Dulio, P.: Some results on the Integral Geometry of unions of indipendent families. Rev. Colomb. Mat. 31(2) (1997), 99-108. Zbl 0918.60010
[7] Duma, A.; Stoka, M. I.: Stetige Transformationsgruppen in der Geometrie. Fernuniversität Hagen 1995.
[8] Raguso, G.; Rella, L.: Sulla misurabilità delle coppie di ipersfere ortogonali di E_{n}. Seminarberichte, Fachbereich Mathematik, Fernuniversität Hagen, 54 (1996), 154-164.
[9] Raguso, G.; Rella, L.: Sulla misurabilità di una famiglia di varietà lineari. Rend. Circ. Mat. Palermo, Suppl. 65 (2000), 257-267.
[10] Raguso, G.; Rella, L.: Measurability of a family of linear variety. Seminarberichte, Fachbereich Mathematik, Fernuniversität Hagen 69 (2000), 147157.
[11] Raguso, G.; Rella, L.: Density of a family of linear varieties. Rev. Colomb. Mat. to appear.
[12] Santalo', L. A..: Integral Geometry in projective and affine spaces. Ann. Math. 51(2) (1950), 739-755.

Zbl 0041.31201
[13] Stoka, M. I.: Geometria Integrale in uno spazio euclideo R^{n}. Boll. Un. Mat. Ital. 13 (1958), 470-485.

Zbl 0088.14602
[14] Stoka, M. I.: Géométria Intégrala. Editura Academiei Republici Socialiste Romania 1967.
[15] Stoka, M. I.: Géométrie Intégrale. Mem. Sci. Math. 165, Gauthier-Villars, Paris 1968.
[16] Stoka, M. I.: Probabilità e Geometria. Herbita Editrice, Palermo 1982.
[17] Stoka, M. I.: Problemi di misurabilità nella Geometria Integrale. Conf. del Semin. di Matem. Università di Bari 1982.
[18] Vassallo, S.: Sui sottogruppi del gruppo di trasformazioni affini dello spazio A_{n}. Atti Acc. Peloritana dei Pericolanti, Classe I di Scienze Fis. Mat. Nat. Vol. LXIV (1986), 55-70.

Received May 12, 2005

