On Pairs of Non Measurable Linear Varieties in A_n

G. Raguso L. Rella

Dipartimento di Matematica Via E. Orabona, 4 Campus Univ., I-70125 Bari, Italy

Abstract. We consider a family of varieties, where each variety is a pair consisting of a hyperplane and a straight line in *n*-dimensional affine space A_n , where $n \geq 3$. Using Stoka's second condition, we show that this family is not measurable, therefore it is an example of a family of varieties in the sense of Dulio's classification [6].

MSC 2000: 53C65 Keywords: Integral geometry

1. Introduction

A measure on a family of geometric objects can be introduced by assigning to each object a point of an auxiliary space and considering a suitable measure on that space. In general the dimension of the auxiliary space is equal to the number of parameters on which the geometric objects depend. A basic problem is to specify measures which are invariant with respect to a given group of transformations which map the family onto itself.

This problem was first considered by Crofton [3] who specified the invariant measure on the family of all straight lines in Euclidean 2-space E^2 . This was extended to E^3 by Deltheil [5] and Chern [1] first considered families of geometric objects in projective space.

Santalò [12] calculated measures of certain families of varieties with respect to three different groups and found that these were equal. Stoka [13] studied the family of parabolas. He proved that a family is measurable if it is measurable with respect to its maximal group of invariance

0138-4821/93 \$ 2.50 © 2006 Heldermann Verlag

However Cirlincione [2] found a measurable family of varieties even though the family was not measurable with respect to the maximal group of invariance. This proves that the Stoka's condition is not necessary.

In Section 2 we provide background and definitions and in Section 3 we prove that the family of varieties, where each variety is a pair consisting of a hyperplane and a straight line in *n*-dimensional affine space A_n is not measurable.

2. Background

Let \mathcal{H}_n be an *n*-dimensional space with coordinates x_1, x_2, \ldots, x_n in which a Lie group of transformations acts.

Let G_r be one of its subgroups defined by the equations

$$y_i = f_i(x_1, x_2, \dots, x_n; a_1, a_2, \dots, a_r)$$
 $(i = 1, 2, \dots, n)$

where a_1, a_2, \ldots, a_r are basic parameters.

Definition 1. The function $F(x_1, x_2, ..., x_n)$ is an integral invariant function of the group G_r , if

$$\int_{\mathcal{A}_x} F(x_1, x_2, \dots, x_n) dx_1 dx_2 \cdots dx_n = \int_{\mathcal{A}_y} F(y_1, y_2, \dots, y_n) dy_1 dy_2 \cdots d_n$$

for each measurable set of points \mathcal{A}_x of the space \mathcal{H}_n , where \mathcal{A}_y is the image of \mathcal{A}_x by the group G_r .

Theorem 1. The integral invariant functions of the group G_r are the solutions of the following Deltheil's system of partial differential equations:

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left[\xi_h^i(x) F(x) \right] = 0 \quad (h = 1, 2, \dots, r),$$

where $\xi_h^i(x)$ are the coefficients of the infinitesimal transformations of the group G_r (see [5], p. 28 and [15], p. 4).

Definition 2. A measurable Lie group of transformations is a group which admits only one integral invariant function (up to a multiplicative constant).

Let G be a group which leaves globally invariant a family \Im of varietes in \mathcal{H}_n . To G there is associated a group H (isomorphic to G) of transformations acting on the (auxiliary) space of parameters of the family.

Definition 3. A family \Im is measurable with respect to G if H is measurable in the sense of Definition 2. If Φ is its integral invariant function, then the measure of \Im with respect to the group G is given by

$$\mu_G = \int_{\mathcal{A}_{\alpha}} \Phi(\alpha_{1,\alpha_2,\ldots,\alpha_q}) d\alpha_1 d\alpha_2 \cdots d\alpha_q,$$

where \mathcal{A}_{α} is the set of points of the auxiliary space which corresponds to the family \mathfrak{S} .

Definition 4. A family \Im of varieties is measurable if the measures with respect to every group of invariance of the family are equal, if they exist.

Theorem 2. (Stoka's first condition) If the group \overline{H} associated to the maximal group of invariance of \Im (where the only transformation, which leaves invariant each element of the family, is the identity) is measurable, the family is measurable.

Theorem 3. (Stoka's second condition) If \overline{H} is not measurable and there are two measurable subgroups with different integral invariant functions, then \Im is not measurable.

3. Non-measurability of the family \Im_{3n-2}

Theorem 4. The family of varieties, where each variety is a pair consisting of a hyperplane and a straight line in n-dimensional affine space A_n , is not measurable.

We use of the following notation

$$X^{T} = (x_{1}, x_{2}, \dots, x_{n}), \qquad B^{T} = (b_{1}, b_{2}, \dots, b_{n}), \qquad L^{T} = (l_{1}, l_{2}, \dots, l_{n-1}, 1),$$

$$Q^{T} = (q_{1}, q_{2}, \dots, q_{n-1}, 0), \qquad A^{T} = (a_{1}, a_{2}, \dots, a_{n}).$$

 \overline{X}^T is obtained from X by deleting the last coordinate and similary in other cases.

Let \Im_{3n-2} be the family of all pairs, each consisting of a hyperplane and a straight line in A_n in general position. The hyperplane and the line depend on parameters $b_1, b_2, \ldots, b_n, l_1, l_2, \ldots, l_{n-1}, q_1, q_2, \ldots, q_{n-1}$, respectively, and are represented in the following form

$$\sum_{i=1}^{n} b_i x_i = 1 x_i = l_i x_n + q_i \quad i = 1, 2, n - 1.$$

The affine group G_{n^2+n} is given by

$$x_i = \sum_{j=1}^n p_{ij} x'_j + a_i, \quad i, j = 1, 2, \dots, n,$$

where $det(p_{ij}) \neq 0$ and $\sum_{i=1}^{n} b_i a_i \neq 1$.

For the $n \times n$ matrix $P = (p_{ij})$ we write also $P = (P_1 \ P_2 \ \cdots \ P_n)$, where $P_j, \ j = 1, 2, \ldots, n$, is the *j*-th column of *P*.

For the proof of the Theorem 4 we are proving the Lemmas 1, 2, 3.

Lemma 1. The group associated to maximal group of invariance of the family \Im_{3n-2} is not measurable.

Proof. The family \mathfrak{S}_{3n-2} and the group G_{n^2+n} , can be written in the form

$$B^T \cdot X = 1,$$

$$X = Lx_n + Q,$$
(1)

$$X = P \cdot X' + A. \tag{2}$$

Applying G_{n^2+n} to \Im_{3n-2} we obtain that

$$B'^{T} \cdot X' = 1, X' = L'x'_{n} + Q'.$$
(3)

According to (2), from the first equality (1), we find that

$$\frac{1}{1 - B^T \cdot A} (B^T \cdot P) X' = 1 \tag{4}$$

and the second equality in (1) implies that

$$PX' = L \cdot (p_{n1}x'_1 + p_{n2}x'_2 + \dots + p_{nn}x'_n + a_n) + Q - A.$$
(5)

Considering the first n-1 rows, (5) can be written as follows:

$$R\overline{X'} = (\overline{L}p_{nn} - \overline{P})x'_n + \overline{L}\alpha_n + \overline{Q} - \overline{A},$$

where

$$R = \begin{pmatrix} p_{11} - l_1 p_{n1} & p_{12} - l_1 p_{n2} & \dots & p_{1n-1} - l_1 p_{nn-1} \\ p_{21} - l_2 p_{n1} & p_{22} - l_2 p_{n2} & \dots & p_{2n-1} - l_2 p_{nn-1} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n-11} - l_{n-1} p_{n1} & p_{n-12} - l_{n-1} p_{n2} & \dots & p_{n-1n-1} - l_{n-1} p_{nn-1} \end{pmatrix}, \ |R| \neq 0.$$

This implies that

$$\overline{X}' = R^{-1}(\overline{L}p_{nn} - \overline{P_n})x'_n + R^{-1}\overline{L}a_n + R^{-1}(\overline{Q} - \overline{A}).$$
(6)

According to $X' = \begin{pmatrix} \overline{X}' \\ x'_n \end{pmatrix}$ and by comparing (3) with (4) and (6), respectively, we obtain the following relations between the new parameters of the family \Im_{3n-2} and the original ones:

$$B'^{T} = \frac{1}{1 - {}^{t}B \cdot A} B^{T} \cdot P,$$

$$\overline{L}' = R^{-1} \cdot (\overline{L}p_{nn} - \overline{P_{n}}),$$

$$\overline{Q'} = R^{-1} \cdot (a_{n}\overline{L} + \overline{Q} - \overline{A}).$$
(7)

These are the equations of group H_{n^2+n} associated to G_{n^2+n} in the (3n-2)dimensional space \mathcal{A}_{3n-2} . The unit $e \in H_{n^2+n}$ is obtained by

$$p_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \text{ and } a_i = 0 \quad (i, j = 1, 2, \dots, n).$$

The matrix of coefficients of the infinitesimal transformations of H_{n^2+n} , which has as columns the partial derivates of

$$b'_1, b'_2, \dots, b'_n, l'_1, l'_2, \dots, l'_{n-1}, q'_1, q'_2, \dots, q'_{n-1}$$

with respect to the parameters

$$p_{11}, p_{21}, \ldots, p_{n1}, p_{12}, p_{22}, \ldots, p_{n2}, \ldots, p_{1n}, p_{2n}, \ldots, p_{nn}, a_1, a_2, \ldots, a_n,$$

is given by

$$\xi = \begin{pmatrix} B & O & O & \dots & O & -l_1H & -q_1H \\ O & B & O & \dots & O & -l_2H & -q_2H \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ O & O & O & \dots & O & -l_{n-1}H & -q_{n-1}H \\ O & O & O & \dots & B & -H & O \\ & & BB^T & & O & -H \end{pmatrix},$$

where

$$H = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \\ -l_1 & -l_2 & \dots & -l_{n-2} & -l_{n-1} \end{pmatrix}$$

has n rows and n-1 columns and O is the (n,1) zero matrix.

To indicate the type of a matrix, we denote it by capital letters with indices, if necessary.

In order to calculate the rank of the matrix ξ , we select the matrix M of order 3n-2 which consists of the first two block rows and the first row of each of the following n-2 block-rows, i.e.

$$M = \begin{pmatrix} B & O & O & \dots & O & -l_1H & -q_1H \\ O & B & O & \dots & O & -l_2H & -q_2H \\ O_{n-2,1} & O_{n-2,1} & b_1I_{n-2} & U & V \end{pmatrix},$$
(8)

where

$$U^{T} = \begin{pmatrix} O_{n-2,n-2} \\ -l_{3} & -l_{4} & \dots & -l_{n-1} & -1 \end{pmatrix},$$
$$V^{T} = \begin{pmatrix} O_{n-2,n-2} \\ -q_{3} & -q_{4} & \dots & -q_{n-1} & 0 \end{pmatrix}.$$

By developing the determinant of the matrix M with respect to the third block column, we have

$$\det M = (b_1)^{n-2} \det \begin{pmatrix} B & O & -l_1H & -q_1H \\ O & B & -l_2H & -q_2H \end{pmatrix}.$$
 (9)

509

510 G. Raguso, L. Rella: On Pairs of Non Measurable Linear Varieties in A_n

Let

$$N = \begin{pmatrix} B & O & -l_1H & -q_1H \\ O & B & -l_2H & -q_2H \end{pmatrix}.$$

We consider the diagonal block matrix

$$\Delta = \begin{pmatrix} I_2 & O_{2,n-1} & O_{2,n-1} \\ O_{n-1,2} & q_1 I_{n-1} & O_{n-1,n-1} \\ O_{n-1,2} & O_{n-1,n-1} & -l_1 I_{n-1} \end{pmatrix}$$

Then

$$N \cdot \Delta = \begin{pmatrix} B & O & -l_1q_1H & l_1q_1H \\ O & B & -l_2q_1H & l_1q_2H \end{pmatrix}.$$

Adding together the last but one column and the last column and substitute the sum for the last column (so that $\det(N \cdot \Delta)$ does not change). This gives

$$\det(N \cdot \Delta) = \det \left(\begin{array}{ccc} B & O & -l_1 q_1 H & O_{n,n-1} \\ O & B & -l_2 q_1 H & (l_1 q_2 - l_2 q_1) H \end{array} \right).$$

Let

$$K = \begin{pmatrix} B & O & -l_1q_1H & O_{n,n-1} \\ O & B & -l_2q_1H & (l_1q_2 - l_2q_1)H \end{pmatrix}.$$

We put the second column of K in the (n + 1) - th position.

This gives the block matrix

$$\widetilde{K} = \left(\begin{array}{ccc} B & -l_1q_1H & O & O_{n,n-1} \\ O & -l_2q_1H & B & (l_1q_2 - l_2q_1)H \end{array}\right)$$

or, more simply

$$\widetilde{K} = \begin{pmatrix} R_n & | & O_{n,n} \\ ---- & - | - & -- \\ O & -l_2 q_1 H & | & S_n \end{pmatrix},$$

where

$$R_n = (B - l_1 q_1 H)$$
 $S_n = (B (l_1 q_2 - l_2 q_1) H).$

Note that

$$\det K = (-1)^{n-1} \det \widetilde{K} = (-1)^{n-1} \det R_n \cdot \det S_n.$$
(10)

We have to calculate det R_n and det S_n .

We first consider the matrix R_n and prove that

$$\det R_n = (l_1 q_1)^{n-1} (l_1 b_1 + l_2 b_2 + \dots + l_{n-2} b_{n-2} + l_{n-1} b_{n-1} + b_n), \qquad (*)$$

where $\sigma = (l_1b_1 + l_2b_2 + \dots + l_{n-2}b_{n-2} + l_{n-1}b_{n-1} + b_n).$ R_n can be written as follows:

$$R_n = \left(\begin{array}{cc} \alpha & l_1 q_1 \beta \\ \gamma & -l_1 q_1 \delta \end{array}\right),$$

where

$$\alpha = (b_1), \qquad \beta = (1 \ 0 \ 0 \ \dots \ 0 \ 0)$$
 is a $(1, n - 1)$ matrix,
 $\gamma^T = (b_2 \ b_3 \ \dots \ b_{n-1} \ b_n),$

$$\delta = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -l_1 & -l_2 & -l_3 & \dots & -l_{n-1} \end{pmatrix}$$
 is a matrix of order $n-1$

Applying the generalized Gauss algorithm to the matrix R_n , we obtain the matrix

$$\widetilde{K} = \left(\begin{array}{cc} \alpha & \beta \\ O & -l_1 q_1 (\delta - \gamma \alpha^{-1} \beta) \end{array} \right)$$

Then

det $R_n = \det \widetilde{R}_n = \det \alpha \cdot \det(-l_1 q_1 (\delta - \gamma \alpha^{-1} \beta)) = b_1 (-l_1 q_1)^{n-1} \det(\delta - \gamma \alpha^{-1} \beta),$ where

$$\delta - \gamma \alpha^{-1} \beta = \begin{pmatrix} -\frac{b_2}{b_1} & 1 & 0 & \dots & 0\\ -\frac{b_3}{b_1} & 0 & 1 & \dots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ -\frac{b_{n-1}}{b_1} & 0 & 0 & \dots & 1\\ -l_1 - \frac{b_n}{b_1} & -l_1 & -l_2 & \dots & -l_{n-1} \end{pmatrix}.$$

Next put

$$R_{n-1} = \delta - \gamma \alpha^{-1} \beta = \begin{pmatrix} -\frac{b_2}{b_1} & \beta^* \\ \gamma^* & \delta^* \end{pmatrix},$$

where $\gamma^* = \begin{pmatrix} -\frac{b_3}{b_1} \\ -\frac{b_4}{b_1} \\ \vdots \\ -\frac{b_{n-1}}{b_1} \\ -l_1 - \frac{b_n}{b_1} \end{pmatrix}, \quad \beta^* = \begin{pmatrix} 1 & 0 & \dots & 0 \end{pmatrix}$ is a $(1, n-2)$ matrix and
 $\delta^* = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -l_2 & -l_3 & -l_4 & \dots & -l_{n-1} \end{pmatrix}$ is a matrix of order $n-2$.

The matrix R_{n-1} is the matrix R_n with n replaced by n-1. Thus, applying Gauss algorithm again, we obtain

$$\widetilde{R}_{n-1} = \begin{pmatrix} -\frac{b_2}{b_1} & \beta \\ O_{n-2} & \delta^* - \gamma^* (-\frac{b_1}{b_2}) \beta^* \end{pmatrix},$$

so that

$$\det R_{n-1} = \det \widetilde{R}_{n-1} = -\frac{b_2}{b_1} \det(\delta^* - \gamma^*(-\frac{b_1}{b_2})\beta^*),$$

with

$$\gamma^*(-\frac{b_1}{b_2})\beta^* = \begin{pmatrix} \frac{b_3}{b_2} & 0 & \dots & 0 & 0\\ \frac{b_4}{b_2} & 0 & \dots & 0 & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ \frac{b_{n-1}}{b_2} & 0 & \dots & 0 & 0\\ \frac{l_1b_1+b_n}{b_2} & 0 & \dots & 0 & 0 \end{pmatrix}.$$

Let $R_{n-2} = \delta^* - \gamma^* (-\frac{b_1}{b_2})\beta^*$, where

$$\delta^* - \gamma^* (-\frac{b_1}{b_2})\beta^* = \begin{pmatrix} -\frac{b_3}{b_2} & 1 & 0 & \dots & 0 \\ -\frac{b_4}{b_2} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\frac{b_{n-1}}{b_2} & 0 & 0 & \dots & 1 \\ -l_2 - \frac{l_1b_1 + b_n}{b_2} & -l_3 & -l_4 & \dots & -l_{n-1} \end{pmatrix}$$

is a matrix of order n-2.

We have det $R_{n-1} = (-\frac{b_2}{b_1}) \det R_{n-2}$.

Applying the generalized Gauss algorithm to the matrix R_{n-2} , we obtain the matrix \tilde{R}_{n-2} . Thus det $R_{n-2} = \det \tilde{R}_{n-2} = (-\frac{b_3}{b_2}) \det R_{n-3}$, where

$$R_{n-3} = \begin{pmatrix} -\frac{b_4}{b_3} & 1 & 0 & 0 & \dots & 0\\ -\frac{b_5}{b_3} & 0 & 1 & 0 & \dots & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots\\ -\frac{b_{n-1}}{b_3} & 0 & 0 & 0 & \cdots & 1\\ -\frac{l_1b_1+l_2b_2+l_3b_3+b_n}{b_3} & -l_4 & -l_5 & -l_6 & \dots & -l_{n-1} \end{pmatrix},$$

etc. In this way we get in finitely many steps the matrix

$$\begin{pmatrix} -\frac{b_{n-1}}{b_{n-2}} & 1\\ -\frac{l_1b_1+l_2b_2+\dots+l_{n-2}b_{n-2}+b_n}{b_{n-2}} & -l_{n-1} \end{pmatrix},$$

which has rank 2. Therefore we have that det $R_n = \det \widetilde{R}_n = b_1(-l_1q_1)^{n-1} \det R_{n-1} = b_1(-l_1q_1)^{n-1} \det \widetilde{R}_{n-1}$ $= b_1(-l_1q_1)^{n-1}(-\frac{b_2}{b_1}) \det R_{n-2} = (-l_1q_1)^{n-1}b_1(-\frac{b_2}{b_1}) \det \widetilde{R}_{n-2}$

$$= (-l_1q_1)^{n-1}b_1(-\frac{b_2}{b_1})(-\frac{b_3}{b_2}) \det R_{n-3} = (-l_1q_1)^{n-1}b_1(-\frac{b_2}{b_1})(-\frac{b_3}{b_2}) \det \bar{R}_{n-3}$$

$$= (-l_1q_1)^{n-1}b_1(-\frac{b_2}{b_1})(-\frac{b_3}{b_2})(-\frac{b_4}{b_3}) \det R_{n-4}$$

$$= (-l_1q_1)^{n-1}b_1(-\frac{b_2}{b_1})(-\frac{b_3}{b_2})(-\frac{b_4}{b_3}) \det \tilde{R}_{n-4}$$

$$= \cdots = (-l_1q_1)^{n-1}b_1(-\frac{b_2}{b_1})(-\frac{b_3}{b_2})(-\frac{b_4}{b_3})\cdots - (\frac{b_{n-2}}{b_{n-1}}) \det R_2.$$
As
$$\det R_2 = \begin{vmatrix} -\frac{b_{n-1}}{b_{n-2}} & 1\\ -\frac{l_1b_1+l_2b_2+\cdots+l_{n-2}b_{n-2}+l_{n-1}b_{n-1}+b_n}{b_{n-2}} \end{vmatrix}$$

it follows that

$$\det R_n = (-l_1q_1)^{n-1}(-1)^{n-3}(l_1b_1 + l_2b_2 + \dots + l_{n-2}b_{n-2} + l_{n-1}b_{n-1} + b_n)$$

= $(-1)^{n-1}(l_1q_1)^{n-1}(-1)^{n-3}(l_1b_1 + l_2b_2 + \dots + l_{n-2}b_{n-2} + l_{n-1}b_{n-1} + b_n)$
= $(l_1q_1)^{n-1}(l_1b_1 + l_2b_2 + \dots + l_{n-2}b_{n-2} + l_{n-1}b_{n-1} + b_n),$

concluding the proof of (*).

Now we consider the matrix

$$S_n = \begin{pmatrix} B & (l_1q_2 - l_2q_1)H \end{pmatrix}.$$

The matrix S_n is similar to R_n where the factor $-l_1q_1$ is replaced by $l_1q_2 - l_2q_1$ so that, repeating the previous procedure, we obtain that

det
$$S_n = (-l_1q_2 - l_2q_1)^{n-1}(l_1b_1 + l_2b_2 + \dots + l_{n-2}b_{n-2} + l_{n-1}b_{n-1} + b_n).$$
 (**)

(*) and (**) imply that

$$\det \widetilde{K} = \det R_n \cdot \det S_n =$$

 $l_1 q_1)^{n-1} (-l_1 q_2 + l_2 q_1)^{n-1} (l_1 b_1 + l_2 b_2 + \dots + l_{n-2} b_{n-2} + l_{n-1} b_{n-1} + b_n)^2 =$

 $= (l_1q_1)^{n-1}(-l_1q_2+l_2q_1)^{n-1}\sigma^2,$

where $\sigma = (l_1b_1 + l_2b_2 + \dots + l_{n-2}b_{n-2} + l_{n-1}b_{n-1} + b_n).$ (10) yields the following:

$$\det K = \det(N \cdot \Delta) = (-1)^{n-1} (l_1 q_1)^{n-1} (-l_1 q_2 + l_2 q_1)^{n-1} \sigma^2 \cdots$$

As det $\Delta = \det I_2 \cdot \det(q_1 I_{n-1}) \cdot \det(-l_1 I_{n-1}) = q_1^{n-1}(-l_1)^{n-1} = (-1)^{n-1}(l_1 q_1)^{n-1}$, we obtain that

$$\det N = \frac{(-1)^{n-1} (l_1 q_1)^{n-1} (-l_1 q_2 + l_2 q_1)^{n-1} \sigma^2}{(-1)^{n-1} (l_1 q_1)^{n-1}} = (-l_1 q_2 + l_2 q_1)^{n-1} \sigma^2.$$

It follows from (9) that

$$\det M = b_1^{n-2} \det N = b_1^{n-2} (-l_1 q_2 + l_2 q_1)^{n-1} \sigma^2.$$

513

Thus rank $\xi = 3n - 2$.

Our aim is to find functions $\Phi(b_1, b_2, \ldots, b_n, l_1, l_2, \ldots, l_{n-1}, q_1, q_2, \ldots, q_{n-1})$ satisfying the Deltheil system (see Theorem 1) which has ξ as matrix.

In other words, we look for possible non-zero solutions of the (linear nonhomogeneous) system

$$\xi \cdot Y = \nu \tag{11}$$

consisting of $n^2 + n$ equations in 3n - 2 unknowns

$$y_1, y_2, \ldots, y_n, y_{n+1}, \ldots, y_{2n-1}, y_{2n}, \ldots, y_{3n-2}$$

with

$$y_i = \frac{\partial ln\Phi}{\partial b_i} \quad i = 1, \dots, n$$
$$y_{n+j} = \frac{\partial ln\Phi}{\partial l_j} \quad j = 1, \dots, n-1$$
$$y_{2n-1+h} = \frac{\partial ln\Phi}{\partial q_h} \quad h = 1, \dots, n-1$$

and

$$\nu^{T} = \left(\nu_{1}^{T}, \nu_{2}^{T}, \nu_{3}^{T}, \dots, \nu_{0}^{T}, -(n+1)B^{T}\right),$$

where

$$\nu_i^T = (1 \ 0 \ \dots \ 0 \ -(n+1)l_i) \ i = 1, \dots, n-1 \text{ and}$$

 $\nu_0^T = (0 \ 0 \ 1 \ -n) \text{ are row vectors.}$

As we have previously determined rank ξ , now we are calculating the rank of the complete block matrix

$$\xi'=(\xi,
u)$$
 .

Consider the following (3n-1)x(3n-1) matrix

$$\begin{pmatrix} & & & & & & \nu_1 \\ & M & & & \nu_2 \\ & & & & & O_{n-2,1} \\ 0 & 0 & \dots & b_2 & 0 & -1 & 0 & \dots & 0 & 0 \end{pmatrix}.$$

Its determinant is

$$(-b_1)^{n-3}(l_1q_2-l_2q_1)^{n-2}(q_1b_1+q_2b_2)(l_1b_1+l_2b_2+\cdots+l_{n-1}b_{n-1}+b_n)^2.$$

Consequently, the rank of the complete matrix is 3n - 1. This shows that the system (11) is not solvable.

Then group H_{n^2+n} associated to G_{n^2+n} is not measurable. According to Theorem 2 (see Section 1) the family \Im_{3n-2} can be measurable or not.

Lemma 2. The group associated to the subgroup

$$G_{3n-2}: X = \widetilde{P}X'$$

where

$$\widetilde{P} = \begin{pmatrix} p_{11} & p_{12} & & & \\ p_{21} & p_{22} & & O & \\ p_{31} & p_{32} & p_{33} & & & \\ p_{41} & p_{42} & & p_{44} & & \\ \vdots & \vdots & O & \ddots & \\ p_{n1} & p_{n2} & & & p_{nn} \end{pmatrix}$$

of G_{n^2+n} is measurable and the integral invariant function is

$$\Phi = k \frac{b_3 b_4 \cdots b_n}{\sigma^n \tau}$$

where $\sigma = b_1 l_1 + b_2 l_2 + \dots + b_{n-1} l_{n-1} + b_n$, $\tau = l_1 q_2 - l_2 q_1$.

Proof. By applying the subgroup G_{3n-2} to \Im_{3n-2} , we obtain the equations of group H_{3n-2} associated to G_{3n-2} .

The matrix of the coefficients of the infinitesimal transformations of group H_{3n-2} as follows

$$\widetilde{\eta} = \begin{pmatrix} B & O & O_{n,n-2} & -l_1H & -q_1H \\ O & B & O_{n,n-2} & -l_2H & -q_2H \\ O_{n-2,1} & O_{n-2,1} & D & C & F \end{pmatrix},$$
where $D = \begin{pmatrix} b_3 & 0 & \dots & 0 & 0 \\ 0 & b_4 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & b_{n-1} & 0 \\ 0 & 0 & \dots & 0 & b_n \end{pmatrix}$ is a diagonal matrix of order $n-2$, and
$$C = \begin{pmatrix} 0 & 0 & -l_3 & 0 & \dots & 0 \\ 0 & 0 & 0 & -l_4 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & -l_{n-1} \\ l_1 & l_2 & l_3 & l_4 & \dots & l_{n-1} \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 & -q_3 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & -l_{n-1} \\ 0 & 0 & 0 & 0 & -l_{n-1} \\ 0 & 0 & 0 & 0 & -l_{n-1} \end{pmatrix}$$

are (n-2, n-1) matrices. Then

$$\det \widetilde{\eta} = b_3 b_4 \cdots b_n \det N = b_3 b_4 \cdots b_n (-l_1 q_2 + l_2 q_1)^{n-1} (b_1 l_1 + b_2 l_2 + \cdots + b_{n-1} l_{n-1} + b_n)^2,$$

the computation being similar to that for det M (see (8) and (9)).

The Deltheil system of the subgroup H_{3n-2} , associated to G_{3n-2} , is solvable because its incomplete matrix $\tilde{\eta}$ has maximal rank. Then it admits only one solution (up to a multiplicative constant)

$$\Phi(b_1, b_2, \ldots, b_n, l_1, l_2, \ldots, l_{n-1}, q_1, q_2, \ldots, q_{n-1}).$$

We will show that Φ is given by

$$\Phi = k \frac{b_3 b_4 \cdots b_n}{\sigma^n \tau}.$$
(12)

From the definition of measurability it follows that the group H_{3n-2} , associated to G_{3n-2} , is measurable, but we cannot assert yet that the family \Im_{3n-2} is measurable (see Theorem 3).

Lemma 3. The group associated to subgroup

$$G_{n^2+n-1}: X = PX' + A$$

with det P = 1 is measurable and the integral invariant function is

$$\Phi = k\sigma^{-(n+1)},$$

where $\sigma = b_1 l_1 + b_2 l_2 + \dots + b_{n-1} l_{n-1} + b_n$

Proof. From det P = 1 it follows

$$p_{11} = \frac{1 + p_{12}p_{21}(p_{nn}\cdots p_{33})}{(p_{nn}\cdots p_{33})p_{22}}$$

Repeating for this subgroup the whole procedure as for subgroups considered above, we obtain the matrix of the coefficients of the infinitesimal transformations of the associated group H_{n^2+n-1} and then we reach the following system of n^2+n-1 linear equations in 3n-2 unknowns:

$$\eta \cdot Y = \varepsilon, \tag{13}$$

where

$$\eta = \begin{pmatrix} \gamma & O & \dots & O & \Lambda & \Psi \\ -b_1 E^2 & B & \dots & O & -l_2 H & -q_2 H \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ -b_1 E^{n-1} & O & \dots & O & -l_{n-1} H & -q_{n-1} H \\ -b_1 E^n & O & \dots & B & \Gamma & \Theta \\ & BB^T & & O & -H \end{pmatrix}, \quad \gamma = \begin{pmatrix} b_2 \\ b_3 \\ \vdots \\ b_{n-1} \\ b_n \end{pmatrix},$$

$$\Lambda = \begin{pmatrix} 0 & -l_1 & 0 & \dots & 0 \\ 0 & 0 & -l_1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -l_1 \\ l_1^2 & l_1 l_2 & l_1 l_3 & \dots & l_1 l_{n-1} \end{pmatrix}, \quad \Psi = \begin{pmatrix} 0 & -q_1 & 0 & \dots & 0 \\ 0 & 0 & -q_1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -q_1 \\ l_1 q_1 & l_2 q_1 & l_3 q_1 & \dots & l_{n-1} q_1 \end{pmatrix},$$

$$\Gamma = \begin{pmatrix} -1 & 0 & 0 & \dots & 0 \\ 0 & -1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -1 \\ 2l_1 & l_2 & l_3 & \dots & l_{n-1} \end{pmatrix}, \quad \Theta = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \\ q_1 & 0 & 0 & \dots & 0 \end{pmatrix}.$$

 E^i is the (n, 1) matrix with 1 at the *i*-th place (i = 2, 3, ..., n), and 0 at all other places, $\varepsilon^T = \left(\begin{array}{cc} \varepsilon_1^T & \varepsilon_2^T & ... & \varepsilon_{n-1}^T & \varepsilon_0^T & -(n+1) B^T \end{array} \right)$, where

$$\varepsilon_1^T = \begin{pmatrix} 0 & 0 & \dots & 0 & -(n+1)l_1 \end{pmatrix} \text{ is a } 1, n-1 \end{pmatrix} \text{ matrix and} \\
\varepsilon_i^T = \begin{pmatrix} 0 & 0 & \dots & 0 & -(n+1)l_i \end{pmatrix}, \quad i = 2, \dots, n-1, \\
\varepsilon_0^T = \begin{pmatrix} 0 & 0 & \dots & 0 & -(n+1) \end{pmatrix}$$

are (1, n) matrices.

It is easy to see that both η and (η, ε) have rank 3n-2. This condition ensures that the system (13) is solvable and admits the unique solution

$$\begin{pmatrix} -\frac{n+1}{\sigma}L^T & -\frac{n+1}{\sigma}\overline{B}^T & O_{1,n-1} \end{pmatrix}$$
.

It is equally easy to see that the non-trivial solution of the Deltheil system, which has η as matrix [15], is

$$\Phi = k\sigma^{-(n+1)}.\tag{14}$$

In conclusion the solution (14) is independent from the solution (12) so that the family \Im_{3n-2} is not measurable by Theorem 3.

The proof of Theorem 4 is complete.

References

- Chern, S. S.: Sur les invariants intégraus en gèométrie. Sci. Rept. Nat. Tsing-Hua Univ. A4 (1940), 85–95.
 Zbl 0024.18201 and JFM 66.0913.02
- [2] Cirlincione, L.: On a family of varieties not satisfying Stoka 's measurability condition. Cah. Topol. Geom. Différ. 24(2) (1983), 145–154. Zbl 0521.53057
- [3] Crofton, W. K.: Sur quelques théorèmes de calcul intégral. Comptes Rendus, LXVIII (1869), 1469–1470.
 JFM 02.0290.01 and JFM 02.0303.03
- [4] Crofton, W. K.: On the theory of local probability, applied to straight lines drawn at random in a plane; the method used being also extended to the proof of certain theorem in the integral calculus. Phil. Trans. R. Soc. London CLVIII (1869), 181–199. JFM 01.0075.05
- [5] Deltheil, R.: Probabilités géométriques, nel Traité du calcul dés probabilitès et de ses application. Diretto da E. Borel, v. II, f.II, Gauthier-Villar, Paris 1926.
- [6] Dulio, P.: Some results on the Integral Geometry of unions of indipendent families. Rev. Colomb. Mat. 31(2) (1997), 99–108.
 Zbl 0918.60010
- [7] Duma, A.; Stoka, M. I.: Stetige Transformationsgruppen in der Geometrie. Fernuniversität Hagen 1995.
- [8] Raguso, G.; Rella, L.: Sulla misurabilità delle coppie di ipersfere ortogonali $di E_n$. Seminarberichte, Fachbereich Mathematik, Fernuniversität Hagen, 54 (1996), 154–164.
- [9] Raguso, G.; Rella, L.: Sulla misurabilità di una famiglia di varietà lineari. Rend. Circ. Mat. Palermo, Suppl. 65 (2000), 257–267.

518 G. Raguso, L. Rella: On Pairs of Non Measurable Linear Varieties in A_n

- [10] Raguso, G.; Rella, L.: Measurability of a family of linear variety. Seminarberichte, Fachbereich Mathematik, Fernuniversität Hagen 69 (2000), 147– 157.
- [11] Raguso, G.; Rella, L.: Density of a family of linear varieties. Rev. Colomb. Mat. to appear.
- [12] Santalo', L. A.:: Integral Geometry in projective and affine spaces. Ann. Math. 51(2) (1950), 739–755.
 Zbl 0041.31201
- [13] Stoka, M. I.: Geometria Integrale in uno spazio euclideo \mathbb{R}^n . Boll. Un. Mat. Ital. **13** (1958), 470–485. Zbl 0088.14602
- [14] Stoka, M. I.: Géométria Intégrala. Editura Academiei Republici Socialiste Romania 1967.
- [15] Stoka, M. I.: Géométrie Intégrale. Mem. Sci. Math. 165, Gauthier-Villars, Paris 1968.
- [16] Stoka, M. I.: Probabilità e Geometria. Herbita Editrice, Palermo 1982.
- [17] Stoka, M. I.: Problemi di misurabilità nella Geometria Integrale. Conf. del Semin. di Matem. Università di Bari 1982.
- [18] Vassallo, S.: Sui sottogruppi del gruppo di trasformazioni affini dello spazio A_n . Atti Acc. Peloritana dei Pericolanti, Classe I di Scienze Fis. Mat. Nat. Vol. LXIV (1986), 55–70.

Received May 12, 2005