The Number of Finite Groups Whose Element Orders is Given

Ali Reza Moghaddamfar Wujie Shi
Department of Mathematics, Faculty of Science
K. N. Toosi University of Technology
P. O. Box 16315-1618, Tehran, Iran
e-mail: moghadam@iust.ac.ir
School of Mathematics, Soochow University
Suzhou 215006, People's Republic of China
e-mail: wjshi@suda.edu.cn

Abstract

The spectrum $\omega(G)$ of a finite group G is the set of element orders of G. If Ω is a non-empty subset of the set of natural numbers, $h(\Omega)$ stands for the number of isomorphism classes of finite groups G with $\omega(G)=\Omega$ and put $h(G)=h(\omega(G))$. We say that G is recognizable (by spectrum $\omega(G)$) if $h(G)=1$. The group G is almost recognizable (resp. nonrecognizable) if $1<h(G)<\infty$ (resp. $h(G)=\infty$). In the present paper, we focus our attention on the projective general linear groups PGL $\left(2, p^{n}\right)$, where $p=2^{\alpha} 3^{\beta}+1$ is a prime, $\alpha \geq 0, \beta \geq 0$ and $n \geq 1$, and we show that these groups cannot be almost recognizable, in other words $h\left(\operatorname{PGL}\left(2, p^{n}\right)\right) \in\{1, \infty\}$. It is also shown that the projective general linear groups PGL $(2,7)$ and $\operatorname{PGL}(2,9)$ are nonrecognizable. In this paper a computer program has also been presented in order to find out the primitive prime divisors of $a^{n}-1$.

MSC 2000: 20D05
Keywords: spectrum, prime graph, projective general linear group

1. Introduction

Throughout the paper, all the groups under consideration are finite and simple groups are non-Abelian. For a group G, we denote the set of orders of all elements
in G by $\omega(G)$ which has been recently called the spectrum of G. Obviously $\omega(G)$ is a subset of the set \mathbb{N} of natural numbers, and it is closed and partially ordered by divisibility, hence, it is uniquely determined by $\mu(G)$, the subset of its maximal elements.

One of the most interesting concepts in finite group theory which has recently attracted several researchers is the problem of characterizing finite groups by element orders. Let Ω be a non-empty subset of \mathbb{N}. Now, we can put forward the following questions:
Is there any group G with $\omega(G)=\Omega$? If the answer is affirmative then how many non-isomorphic groups exist with the above set of element orders?
Certainly, if there exists such a group, Ω must contain 1 and furthermore Ω must be closed and partially ordered under the divisibility relation. These conditions are necessary but not sufficient, for example if $\Omega=\{1,2,3,4,5,6,7,8,9\}$, then there does not exist any group G with $\omega(G)=\Omega$. In fact, R. Brandl and W. J. Shi in [1] have classified all groups whose element orders are consecutive integers and in that paper they have shown that if $\omega(G)=\{1,2,3, \ldots, n\}$, for some group G, then $n \leq 8$.

For a set Ω of natural numbers, define $h(\Omega)$ to be the number of isomorphism classes of groups G such that $\omega(G)=\Omega$, and put $h(G)=h(\omega(G))$. Evidently, $h(G) \geq 1$. Now we give a "new classification" for groups using the h function. A group G is called recognizable (resp. almost recognizable or nonrecognizable) if $h(G)=1$ (resp. $1<h(G)<\infty$ or $h(G)=\infty$). Some list of simple groups that are presently known to be recognizable, almost recognizable or nonrecognizable is given in [13]. In particular, it was previously known that the projective general linear groups $\operatorname{PGL}\left(2,2^{n}\right)$ with $n \geq 2$ are recognizable and $\operatorname{PGL}(2,2) \cong S_{3}$ is nonrecognizable (see [16], Theorem 2). In [12], V. D. Mazurov proved the following result: Let P be a field which is the union of an ascending series of finite fields of orders $2^{m_{i}}, m_{i}>1, i \in \mathbb{N}$. If there exists a natural number s such that 2^{s} does not divide m_{i} for any $i \in \mathbb{N}$ then $h(\operatorname{PGL}(2, P))=1$. In all other cases $h(\operatorname{PGL}(2, P))=\infty$. Also he proved the following result in [11]: If p, r are odd primes, $p-1$ is divisible by r but not by r^{2}, and s is a natural number non-divisible by r, then $h\left(\operatorname{PGL}\left(r, p^{s}\right)\right)=\infty$.

Let $q=p^{n}$ where p is a prime. In this paper, we focus our attention on the projective general linear groups PGL $(2, q)$. The structure of $\operatorname{Aut}\left(L_{2}(q)\right)$ is well known, it is isomorphic to the semidirect product of $\operatorname{PGL}(2, q)$ by a cyclic group of order n. On the other hand we know $\mu\left(L_{2}(q)\right)=\left\{\frac{q-1}{\epsilon}, p, \frac{q+1}{\epsilon}\right\}, \epsilon=(2, q-1)$, and $\mu(\operatorname{PGL}(2, q))=\{q-1, p, q+1\}$.

A group G is called $C_{p p}$-group if p is a prime divisor of $|G|$ and the centralizer of any non-trivial p-element in G is a p-group. Evidently, the projective general linear groups $\operatorname{PGL}(2, q)$ where $q=p^{n}$, are $C_{p p}$-groups. In [3], the second author has classified the simple $C_{p p}$-groups, where p is prime and $p=2^{\alpha} 3^{\beta}+1, \alpha \geq 0, \beta \geq 0$ (see Lemma 8 and Table 1). Using these results, we prove the following theorem.

Theorem 1. Let $p=2^{\alpha} 3^{\beta}+1(\alpha \geq 0, \beta \geq 0)$ be a prime. Then the projective general linear groups $P G L\left(2, p^{n}\right)$ cannot be almost recognizable. In other words,
$h\left(P G L\left(2, p^{n}\right)\right) \in\{1, \infty\}$.
In 1994, R. Brandl and W. J. Shi in [2] showed that all projective special linear groups $L_{2}(q)$ with $q \neq 9$ are recognizable and $L_{2}(9)$ is nonrecognizable.

Here, we similarly prove that:
Theorem 2. The projective general linear group PGL(2,9) is nonrecognizable.
For us it was interesting to face with some groups G such that $\mu(G)$ contain three consecutive natural numbers in the form $\{p-1, p, p+1\}$ where $p \geq 5$ is a prime. Such sets appear for almost simple groups $\operatorname{PGL}(2, p)$, where $p \geq 5$ is a prime, in fact we proved in [14] that $h(\operatorname{PGL}(2, p)) \in\{1, \infty\}$. For ∞ we have found an example. It has been proved in [1] that $\operatorname{PGL}(2,5) \cong S_{5}$ has ∞ for its h function. Here we also give another example of groups of type PGL $(2, p)$ with value ∞ for its h function.

Theorem 3. There exists an extension G of a 7 -group by $2 . S_{4}$ such that $\mu(G)=$ $\mu(P G L(2,7))=\{6,7,8\}$. In particular, the projective general linear group $P G L$ $(2,7)$ is nonrecognizable.

Notation. Our notation and terminology are standard (see [4]). Given a group G, denote by $\pi(G)$ the set of all prime divisors of the order of G. If m and n are natural numbers and p is a prime, then we let $\pi(n)$ be the set of all primes dividing n, and $r_{[n]}$ the largest prime not exceeding n. Note that $\pi(G)=\pi(|G|)$. The notation $p^{m} \| n$ means that $p^{m} \mid n$ and $p^{m+1} \nmid n$. The expression $G=K: C$ denotes the split extension of a normal subgroup K of G by a complement C.

2. Some preliminary results

First, we collect some results from Elementary Number Theory which will be useful tools for our further investigations in this paper. We start with a famous theorem due to Zsigmondy.

Zsigmondy's Theorem (see [19]). Let a and n be integers greater than 1. Then there exists a primitive prime divisor of $a^{n}-1$, that is a prime s dividing $a^{n}-1$ and not dividing $a^{i}-1$ for $1 \leq i \leq n-1$, except if
(1) $a=2$ and $n=6$, or
(2) a is a Merssene prime and $n=2$.

We denote by a_{n} one of these primitive prime divisors of $a^{n}-1$. Evidently, if a_{n} is a primitive prime divisor of $a^{n}-1$, then a has order n modulo a_{n} and so $a_{n} \equiv 1$ $(\bmod n)$. Thus $a_{n} \geq n+1$.

The next elementary result will be needed later.
Lemma 1. Let p and q be two primes and m be a natural number, where p, q and m satisfying one of the following conditions. Then, for every $n \geq m$, there exists a primitive prime divisor $p_{n}>q$.
(1) $p=7, \quad m=5$ and $q=13$,
(2) $p=13, \quad m=5$ and $q=19$,
(3) $p=17, \quad m=4$ and $q=19$,
(4) $p=19, \quad m=7$ and $q=37$,
(5) $p=37, \quad m=7$ and $q=109$,
(6) $p=73, \quad m=5$ and $q=127$.

Proof. In all cases, if $n \leq q$, the result is straightforward. Therefore, we may assume that $n>q$. Since

$$
\pi(q!) \subseteq \pi\left(p \prod_{i=1}^{q-1}\left(p^{i}-1\right)\right) \subset \pi\left(p \prod_{i=1}^{n}\left(p^{i}-1\right)\right)
$$

by Zsigmondy's theorem we deduce that there exists a primitive prime divisor $p_{n}>q$, completing the proof.

Function for finding the primitive prime divisors. In the following we submit a GAP program [5], which determines all the primitive prime divisors in the sequence $a^{i}-1(i=1,2, \ldots, n)$ for some a and n.

```
gap> PPD:=function(a,n)
    local b,i,j,s1,s2,s;
        for i in [1..n] do
        s1:=Set(Factors(a^i-1));
    s2:=[];
        for j in [1..(i-1)] do
                b:=Set(Factors(a^j-1));
                Append(s2,b);
            od;
            s:=Difference(s1,s2);
            Print(i," ",s,"\n");
    od;
end;
```

Using this programme we list all primitive prime divisors p_{n} for $p=7,13,17$ and $2 \leq n \leq 19$, in Table 1. Using Table 1, the reader can easily check the proof of Lemma 1 (1)-(3) for $n \leq q$.

Lemma 2. Let p and q be two primes and m, n be natural numbers such that $p^{m}=q^{n}+1$. Then one of the following holds:
(1) $n=1, m$ is a prime number, $p=2$ and $q=2^{m}-1$ is a Mersenne prime;
(2) $m=1, n$ is a power of $2, q=2$ and $p=2^{n}+1$ is a Fermat prime;
(3) $p=n=3$ and $q=m=2$.

Proof. Well known exercise using the Zsigmondy's theorem.
The set $\omega(G)$ defines the prime graph $\operatorname{GK}(G)$ of G whose vertex-set is $\pi(G)$ and two primes p and q in $\pi(G)$ are adjacent (we write $p \sim q$) if and only if $p q \in \omega(G)$.

n	7_{n}	13_{n}	17_{n}
2	-	7	3
3	19	61	307
4	5	5,17	5,29
5	2801	30941	88741
6	43	5229043	7,13
7	29,4733	14281	417646167
8	1201	1609669	19,1270657
9	37,1063	11,2411	$11,71,101$
10	11,191	23,419,	2141993519227
11	1123, 293459	859,18041	
12	13,181	28393	83233
13	16148168401	53,264031	212057,
		1803647	2919196853
14	113,911	29,22079	22796593
15	31,159871	4651,161971	6566760001
16	17,169553	407865361	18913, 184417 17
14009	2767631689	103,443,	10949,
		15798461357509	1749233,
18	117307	19,271,	1423,
		937	12865927,
9653938			
19	419	4534166740403	9468940004449

Table 1. The primitive prime divisors p_{n} where $p \in\{7,13,17\}$ and $2 \leq n \leq 19$.

The number of connected components of $\operatorname{GK}(G)$ is denoted by $t(G)$, and the connected components are denoted by $\pi_{i}=\pi_{i}(G), i=1,2, \ldots, t(G)$. If $2 \in \pi(G)$ we always assume $2 \in \pi_{1}$. Denote by $\mu_{i}(G)$ the set of all $n \in \mu(G)$ such that $\pi(n) \subseteq \pi_{i}$.

The Gruenberg-Kegel Theorem (see [18]). If G is a group with disconnected graph $G K(G)$ then one of the following holds:
(1) $t(G)=2, G$ is Frobenius or 2-Frobenius.
(2) G is an extension of a $\pi_{1}(G)$-group N by a group G_{1}, where $S \leq G_{1} \leq$ Aut $(S), S$ is a simple group and G_{1} / S is a $\pi_{1}(G)$-group. Moreover $t(S) \geq$ $t(G)$ and for every $i, 2 \leq i \leq t(G)$, there exists $j, 2 \leq j \leq t(S)$ such that $\mu_{j}(S)=\mu_{i}(G)$.

Lemma 3. Let S be a simple group with disconnected prime graph $G K(S)$. Then $\left|\mu_{i}(S)\right|=1$ for $2 \leq i \leq t(S)$. Let $n_{i}(S)$ be a unique element of $\mu_{i}(S)$ for $i \geq 2$. Then value for $S, \pi_{1}(S)$ and $n_{i}(S)$ for $2 \leq i \leq t(S)$ are the same as in Tables 2a-2c of [13].

Proof. The simple groups S and the sets of $\pi_{i}(S)$ are described in [18] and [7]; the rest is proved in Lemma 4 of [8]. The values of the numbers $n_{i}(S), i \geq 2$ are listed in Table 2a-2c of [13].

We also use the following lemma (see [11], Lemma 1).
Lemma 4. If a group G contains a soluble minimal normal subgroup then G is nonrecognizable. In particular, if G is a soluble group then G is nonrecognizable.

The following result of V. D. Mazurov will be used several times.
Lemma 5. (see [10]) Let G be a group, N a normal subgroup of G, and G / N a Frobenius group with Frobenius kernel F and cyclic complement C. If $(|F|,|N|)=$ 1 and F is not contained in $N C_{G}(N) / N$, then $p|C| \in \omega(G)$ for some prime divisor p of $|N|$.

The following lemma is taken from [16], Theorem 2.
Lemma 6. Let G be a group such that

$$
\mu(G)=\mu\left(P G L\left(2,2^{n}\right)\right)=\left\{2^{n}-1,2,2^{n}+1\right\} .
$$

Then, the following statements hold:
(1) If $n \geq 2$, then $G \cong P G L\left(2,2^{n}\right)$.
(2) If $n=1$, then $G \cong S_{3}$ has ∞ for its h function.

We are now ready to prove the following lemma.
Lemma 7. Let G be a group such that

$$
\mu(G)=\mu\left(P G L\left(2, p^{n}\right)\right)=\left\{p^{n}-1, p, p^{n}+1\right\},
$$

where p is an odd prime, $n \geq 2$. Then, the following statements hold:
(1) If $(p, n) \neq(3,2)$, then item (2) of the Gruenberg-Kegel theorem holds. Moreover, S is isomorphic to none of the following simple groups:
(a) alternating groups on $n \geq 5$ letters,
(b) sporadic simple groups,
(c) $L_{2}\left(p^{k}\right)$ where $k \neq n$, or
(d) $L_{2}\left(2 p^{m} \pm 1\right), m \geq 1$, where $2 p^{m} \pm 1$ is a prime.
(2) If $(p, n)=(3,2)$, then there exists a soluble group G such that $\mu(G)=$ $\mu\left(P G L\left(2,3^{2}\right)\right)$.

Proof. (1) First of all, we show that G is insoluble. Assume the contrary. If $\pi\left(p^{n}-\right.$ $1)=\{2\}$, then by Lemma 2 we obtain $(p, n)=(3,2)$ which is a contradiction. Hence, there exists a prime $2 \neq r \in \pi\left(p^{n}-1\right)$. On the other hand, we consider the primitive prime divisor $s=p_{2 n}$. Now assume that H is a $\{p, r, s\}$-Hall subgroup of G. Since G has no elements of order $p r, p s$ and $r s$, it follows that H is a soluble group all of whose elements are of prime power orders. By [6], Theorem 1, we must have $|\pi(H)| \leq 2$, which is a contradiction.

Since $t(G)=2, G$ satisfies the conditions of the Gruenberg-Kegel theorem. Now we show that G is neither Frobenius nor 2-Frobenius. Evidently, G can not be a 2-Frobenius group, because G is insoluble. Suppose $G=K C$ is a Frobenius group with kernel K and complement C. Clearly C is insoluble, $\pi(C)=\pi_{1}(G)=$ $\pi\left(p^{2 n}-1\right), \pi(K)=\pi_{2}(G)=\{p\}$ and by [15], Theorem $18.6 C$ has a normal subgroup C_{0} of index ≤ 2 such that $C_{0} \cong S L(2,5) \times Z$, where every Sylow subgroup of Z is cyclic and $\pi(Z) \cap \pi(30)=\emptyset$. Therefore GK (C) can be obtained from the complete graph on $\pi(C)$ by deleting the edge $\{3,5\}$. On the other hand, if there exist primes $2 \neq r \in \pi\left(p^{n}-1\right)$ and $2 \neq s \in \pi\left(p^{n}+1\right)$, then since $r s \notin \omega(G)$ it follows that $r s \notin \omega(C)$. Hence, we must have $Z=1$ and $\pi\left(p^{2 n}-1\right)=\pi\left(S L_{2}(5)\right)=\{2,3,5\}$ and since $\{2,3,5\} \subset \pi\left(p^{4}-1\right)$, by Zsigmondy's theorem we obtain that $n=2$. Now, it is easy to see that $\pi\left(p^{2}-1\right)=\{2,3\}$ and $\pi\left(p^{2}+1\right)=\{2,5\}$. From $\pi\left(p^{2}-1\right)=\{2,3\}$, we infer that p is a Mersenne prime or a Fermat prime. In the first case we obtain $p=7$, and in the latter case $p=17$. If $p=17$, then $29 \in \pi\left(p^{2}+1\right)$, a contradiction. If $p=7$, then C contains an element of order 16 , which is a contradiction.

Therefore, by the Gruenberg-Kegel theorem, G is an extension of a $\pi_{1}(G)$ group N by a group G_{1}, where $S \leq G_{1} \leq \operatorname{Aut}(S), S$ is a simple group and G_{1} / S is a $\pi_{1}(G)$-group. Now, we show that S is not isomorphic to an alternating group, a sporadic simple group, a linear group $L_{2}\left(p^{k}\right)$ where $k \neq n$ or $L_{2}\left(2 p^{m} \pm 1\right), m \geq 1$, where $2 p^{m} \pm 1$ is a prime.

Before beginning we recall that in the prime graph of G the connected component $\pi_{1}(G)$ consists of the primes in $\pi\left(p^{n}-1\right)$ which form a complete subsection and also the primes in $\pi\left(p^{n}+1\right)$ which forms another complete subsection. Moreover, every odd vertex in $\pi\left(p^{n}-1\right)$ is not joined to any odd vertex in $\pi\left(p^{n}+1\right)$.
(a) Assume that $S \cong A_{m}, m \geq 5$. By Lemma 3, $m=p, p+1, p+2$. Suppose $S \cong A_{p}, p \geq 5$. We have that in the prime graph $\operatorname{GK}\left(A_{p}\right)$ the vertex 3 is joined to $2,5,7, \ldots, r_{[p-3]}$. If 3 divides $p-1$, then by the remark mentioned in the previous section, we conclude that $2,3,5, \ldots, r_{[p-3]}$ belong to $\pi\left(p^{n}-1\right)$. Now, if there exists a prime $s \in \pi\left(p^{n}+1\right) \backslash \pi\left(A_{p}\right)$ then $s \in \pi(N)$, because $A_{p} \cong S \leq$ $G / N \leq \operatorname{Aut}(S) \cong S_{p}$. On the other hand, $A_{4}=2^{2}: 3 \leq A_{p}$ and by Lemma 5 it follows that $s \sim 3$ which is a contradiction. Hence, $\pi\left(p^{n}+1\right) \subseteq \pi\left(A_{p}\right)$. As $\left(p^{n}-1, p^{n}+1\right)=2$ and $2,3,5,7, \ldots, r_{[p-3]} \in \pi\left(p^{n}-1\right)$, the only possible cases are: $\pi\left(p^{n}+1\right)=\{2\}$ or $\pi\left(p^{n}+1\right)=\{2, p-2\}$ in which in the latter case $p-2$ is a prime. Evidently, the first case will never occur. So, we consider the case $\pi\left(p^{n}+1\right)=\{2, p-2\}$, i.e., $p^{n}+1=2^{l}(p-2)^{k}$. Now, if $k>1$ then since $(p-2)^{k} \in \omega(G)$ and $(p-2)^{k} \notin \omega(\operatorname{Aut}(S))=\omega\left(S_{p}\right)$ we obtain $(p-2) \in \pi(N)$ and again since A_{p} contains a Frobenius subgroup of shape $2^{2}: 3$ by Lemma 5,
we get $p-2 \sim 3$ which is a contradiction. Finally, we have $k=1$ and $l>1$. Moreover $2 \| p^{n}-1$ which implies that n must be odd. But in this case we have $p^{n}+1=(p+1)\left(p^{n-1}-p^{n-2}+\cdots-p+1\right)=2^{l}(p-2)$ for which it follows that $p^{n-1}-p^{n-2}+\cdots-p+1=p-2$, giving no solution for $p \geq 5$. This final contradiction shows that $S \not \approx A_{p}$. The case when 3 divides $p+1$, is similar. The other cases are settled similarly.
(b) Suppose S is isomorphic to one of the sporadic simple groups, for instance $S \cong J_{2}$. Since $p \in \pi_{2}(G)$, by Lemma 3 it follows that $p=7$. If $n \geq 5$, then we choose the primitive prime divisors $7_{n}, 7_{2 n}$ in $\pi(G)$. Evidently, $7_{2 n} \in \pi\left(p^{n}+1\right)$, and so G does not contain an element of order $7_{n} \cdot 7_{2 n}$. On the other hand since $\pi(\operatorname{Aut}(S))=\{2,3,5,7\} \subset \pi\left(7 \prod_{i=1}^{4}\left(7^{i}-1\right)\right)$, it follows that $7_{n}, 7_{2 n} \notin \pi(\operatorname{Aut}(S))$. Therefore $7_{n}, 7_{2 n} \in \pi(N)$, and since N is nilpotent we obtain that $7_{n} .7_{2 n} \in \omega(N)$, which is a contradiction. Thus $n \leq 4$. If $n=4$, then $\mu(G)=\left\{2^{5} .3 .5^{2}, 7,2.1201\right\}$. Because, there does not exist any element of order 1201 in $\operatorname{Aut}(S), 1201$ divides the order of N. Without loss of generality we may assume that $N \neq 1$ is an elementary Abelian 1201-group. Now since S contains the Frobenius group $A_{4}=2^{2}: 3$, from Lemma 5 we infer that G contains an element of order 1201.3, which is a contradiction. If $n=2$ or 3 , then $5 \in \pi(S) \backslash \pi(G)$, which is impossible.

The other sporadic simple groups are examined similarly.
(c) Assume that $S \cong L_{2}\left(p^{k}\right)$, where $k \neq n$. In this case we must have $k<n$, since otherwise by Zsigmondy's Theorem we get $p_{2 k} \in \pi(S) \backslash \pi(G)$, which is a contradiction. Now, we choose the primitive prime divisors p_{n} and $p_{2 n}$ in $\pi(G)$. Since $p_{2 n} \in \pi\left(p^{n}+1\right), G$ does not contain an element of order $p_{n} . p_{2 n}$. On the other hand, since $p_{n}>n>k$ we have $p_{n}, p_{2 n} \notin \pi(\operatorname{Aut}(S))=\pi\left(\operatorname{PGL}\left(2, p^{k}\right) \rtimes Z_{k}\right)$, and so $p_{n}, p_{2 n} \in \pi(N)$. Now, since N is nilpotent we obtain that $p_{n} . p_{2 n} \in \omega(N) \subset \omega(G)$, which is a contradiction.
(d) Suppose that $S \cong L_{2}\left(2 p^{m} \pm 1\right), m \geq 1$, where $2 p^{m} \pm 1$ is a prime. By the structure of $\mu(G)$, we see that $p \in \omega(G)$ and $p^{2} \notin \omega(G)$. So, if $S \cong L_{2}\left(2 p^{m} \pm\right.$ 1), where $2 p^{m} \pm 1$ is a prime and $m \geq 1$, then we deduce $m=1$, because in this case $p^{m} \in \omega\left(L_{2}\left(2 p^{m} \pm 1\right)\right)=\omega(S) \subseteq \omega(G)$. On the other hand, we know $|\operatorname{Aut}(S)|=2^{2} p(p \pm 1)(2 p \pm 1)$, where $2 p \pm 1$ is a prime, and so $\pi(\operatorname{Aut}(S))=$ $\{p, 2 p \pm 1\} \cup \pi(p \pm 1)$. If $n=2$, then $(2 p \pm 1,|G|)=1$, which is a contradiction. Therefore $n \geq 3$. Now, we consider the primitive prime divisors p_{n} and $p_{2 n}$. Since $\left(p_{n}, p_{2 n}\right)=\left(p_{n}, p \pm 1\right)=\left(p_{2 n}, p \pm 1\right)=1$, it follows that $p_{n} \notin \pi(\operatorname{Aut}(S))$ or $p_{2 n} \notin \pi(\operatorname{Aut}(S))$, thus we may assume N is a p_{n}-subgroup or a $p_{2 n}$-subgroup. First, we assume that $2 p+1$ is a prime. Let P be a Sylow $(2 p+1)$-subgroup of S, then $N_{S}(P)$, the normalizer of P in S, is a Frobenius group of order $(2 p+1) p$, with cyclic complement of order p. Now, by Lemma 5 , we deduce that $p_{n} \sim p$ or $p_{2 n} \sim p$, which is a contradiction. Next, we assume that $2 p-1$ is a prime. In this case, if there exists a prime $s \in \pi\left(p^{n}+1\right) \backslash \pi(\operatorname{Aut}(S))$ then $s \in \pi(N)$, because $G / N \leq \operatorname{Aut}(S)$. Moreover, if Q is a Sylow $(2 p-1)$-subgroup of S, then $N_{S}(Q)$ is a Frobenius group of order $(2 p-1)(p-1)$, with cyclic complement of order $p-1$. Now, as previous case we get $s .(p-1) \in \omega(G)$, which is a contradiction. Hence, $\pi\left(p^{n}+1\right) \subseteq \pi(\operatorname{Aut}(S))$. As $\left(p^{n}-1, p^{n}+1\right)=2$, the only possible case is $\pi\left(p^{n}+1\right)=\{2,2 p-1\}$, i.e., $p^{n}+1=2^{l}(2 p-1)^{k}$ for some l and k in \mathbb{N}.

Now, if $k>1$ then since $(2 p-1)^{k} \in \omega(G)$ and $(2 p-1)^{k} \notin \omega(\operatorname{Aut}(S))$ we obtain $(2 p-1) \in \pi(N)$. On the other hand, it is easy to see that $p_{n} \in \pi(G) \backslash \pi(\operatorname{Aut}(S))$, and so $p_{n} \in \pi(N)$. Since N is nilpotent, we deduce that $p_{n} \sim(2 p-1)$, which is a contradiction. Finally, we have $k=1$ and since $(p, n) \neq(3,2)$, we obtain that $l>1$. Moreover $2 \| p^{n}-1$ which implies that n must be odd. But in this case we have $p^{n}+1=(p+1)\left(p^{n-1}-p^{n-2}+\cdots-p+1\right)=2^{l}(2 p-1)$ for which it follows that $p^{n-1}-p^{n-2}+\cdots-p+1=2 p-1$, giving no solution for $p \geq 3$. This final contradiction shows that $S \nVdash L_{2}\left(2 p^{m} \pm 1\right)$.
(2) Consider the group $H=\left\langle a, b \mid a^{8}=b^{5}=1, b a=a b^{2}\right\rangle \cong Z_{5}: Z_{8}$. For this group we have $\mu(H)=\{8,10\}$. Now, we assume that G is an extension of elementary Abelian 3 -group K of order $3^{40 l}$ by H, and the generators a, b of H act on K cyclically. Then G is a soluble group and $\omega(G)=\omega\left(\operatorname{PGL}\left(2,3^{2}\right)\right)=$ $\{1,2,3,4,5,8,10\}$.

The following lemma gives a classification of simple $C_{p p^{-}}$-groups, where p is a prime of form $p=2^{\alpha} 3^{\beta}+1, \alpha \geq 0, \beta \geq 0$.

Lemma 8. (see [3]) Let p be a prime and $p=2^{\alpha} 3^{\beta}+1, \alpha \geq 0, \beta \geq 0$. Then any simple $C_{p p}$-group is given by Table 2.

The next lemma gives the maximal odd factors set $\psi\left(F_{4}(q)\right)$ of $\mu\left(F_{4}(q)\right), q=2^{e}$.
Lemma 9. Let $S \cong F_{4}(q)$, where $q=2^{e}$, $e \geq 1$. Then $\psi(S)=\left\{q^{4}-1, q^{4}+1, q^{4}-\right.$ $\left.q^{2}+1,(q-1)\left(q^{3}+1\right),(q+1)\left(q^{3}-1\right)\right\}$.

Proof. The 2^{\prime}-elements of S is contained in the maximal tori of S. From [17] we see that $\mu\left(F_{4}(q)\right)$ contains 25 maximal tori $H(1), H(2), \ldots, H(25)$. Since $\left(q-1, q^{3}+1\right)=1,\left(q+1, q^{3}-1\right)=1, H(13)$ and $H(15)$ are all cyclic. The conclusion holds.

3. Main results

In this section we prove the statement of Theorems 1,2 and 3.
Proof of Theorem 1. Let G be a group and

$$
\mu(G)=\mu\left(\operatorname{PGL}\left(2, p^{n}\right)\right)=\left\{p^{n}-1, p, p^{n}+1\right\}
$$

where $p=2^{\alpha} 3^{\beta}+1$ is a prime, and n is a natural numbers. If $\alpha=\beta=0$, then $p=2$ and the result is correct by Lemma 6 . Also for $n=1$, the result holds by [14], and so from now on we assume that p is an odd prime and $n \geq 2$. Then $t(G)=2$, in fact we have

$$
\pi_{1}(G)=\pi\left(p^{2 n}-1\right) \quad \text { and } \quad \pi_{2}(G)=\{p\}
$$

Lemma $6(1)$ shows that G is an extension of a $\pi_{1}(G)$-group N by a group G_{1}, where $S \leq G_{1} \leq \operatorname{Aut}(S), S$ is a simple group of Lie type (except $L_{2}\left(p^{k}\right), k \neq n$ and $L_{2}\left(2 p^{m} \pm 1\right)$ where $m \geq 1$ and $2 p^{m} \pm 1$ is a prime) and G_{1} / S is a $\pi_{1}(G)$ group. Moreover, there exists $2 \leq j \leq t(S)$ such that $\mu_{j}(S)=\{p\}$, in fact S is a simple $C_{p p}$-group. Using the results summarized in Table 2, we will show that S is isomorphic to $L_{2}\left(p^{n}\right)$.

Step 1. $S \cong L_{2}(q), q=p^{n}, n \geq 2$.
In the following case by case analysis we assume that $S \nsubseteq L_{2}\left(p^{n}\right)$ and try to obtain a contradiction. Moreover, as S is always a $C_{p p}$-group for some appropriate prime p, we make use of the results summarized in Table 2 and Lemma 7 and omit the details of the argument.

Case 1. $q=3^{n}, n \geq 2$.
In this case S can only be isomorphic to one of the following simple groups: $L_{2}\left(2^{3}\right), L_{3}\left(2^{2}\right)$. Since G does not contain an element of order $9, S$ can not be isomorphic to $L_{2}\left(2^{3}\right)$. If $S \cong L_{3}\left(2^{2}\right)$, then since $7 \in \pi(S)$ we obtain that $n \geq 6$. Assume first that $n=6$. In this case we have $\pi(G)=\{2,3,5,7,13,73\}$. Evidently $13,73 \notin \pi(\operatorname{Aut}(S))$ and $13 \nsim 73$. Hence $\{13,73\} \subseteq \pi(N)$, and since N is nilpotent we get $13.73 \in \omega(N)$, which is a contradiction. Next we suppose that $n \geq 7$.

Now we choose the primitive prime divisors 3_{n} and $3_{2 n}$ in $\pi(G)$. Evidently $3_{2 n} \in$ $\pi\left(3^{n}+1\right)$, and so $3_{n} \nsim 3_{2 n}$. Moreover, since $\{2,3,5,7,11,13\}=\pi\left(3 \prod_{i=1}^{6}\left(3^{i}-1\right)\right)$, $3_{n}, 3_{2 n} \notin \pi(\operatorname{Aut}(S))$, and hence $3_{n}, 3_{2 n} \in \pi(N)$. Again since N is nilpotent, N contains an element of order $3_{n} \cdot 3_{2 n}$, which is of course impossible.

Case 2. $q=5^{n}, n \geq 2$.
In this case we see that S can only be isomorphic to one of the following simple groups: $L_{2}\left(7^{2}\right), L_{3}\left(2^{2}\right), S_{4}(3), S_{4}(7), U_{4}(3), S z\left(2^{3}\right)$ or $S z\left(2^{5}\right)$. Since G has no element of order $25, S$ can not be isomorphic to $L_{2}\left(7^{2}\right)$ or $S z\left(2^{5}\right)$. If S is isomorphic to one of the simple groups: $L_{3}\left(2^{2}\right), S_{4}(7), U_{4}(3)$, or $S z\left(2^{3}\right)$, then $7 \in \pi(S)$ and so we must have $n \geq 6$. Also note that

$$
\pi(S) \subset\{2,3,5,7,11,13\} \subset \pi\left(5 \prod_{i=1}^{6}\left(5^{i}-1\right)\right)
$$

If $n=6$, then $31,601 \in \pi(G) \backslash \pi(\operatorname{Aut}(S))$ and thus $31,601 \in \pi(N)$. Therefore N contains an element of order 31.601, which is a contradiction as $31.601 \notin \omega(G)$. For case $n \geq 7$, since by Zsigmondy's Theorem $5_{n}, 5_{2 n}>13$, a similar argument with the primitive prime divisors $5_{n}, 5_{2 n} \in \pi(G)$ also leads to a contradiction. Similarly, S can not be isomorphic to $S_{4}(3)$.

Case 3. $q=7^{n}, n \geq 2$.

p	simple $C_{p p}$-groups
2	$A_{5}, A_{6}, L_{2}(q)$ where q is a Fermat prime, a Mersenne prime or $q=2^{m}, m \geq 3, L_{3}\left(2^{2}\right), S z\left(2^{2 m+1}\right), m \geq 1$.
3	$A_{5}, A_{6}, L_{2}(q), q=2^{3}, 3^{m}$ or $2.3^{m} \pm 1$, which is a prime, $m \geq 1$, $L_{3}\left(2^{2}\right)$
5	$A_{5}, A_{6}, A_{7}, M_{11}, M_{22}, L_{2}(q), q=7^{2}, 5^{m}$ or $2.5^{m} \pm 1$, which is a prime, $m \geq 1, L_{3}\left(2^{2}\right), S_{4}(q), q=3,7, U_{4}(3), S z(q), q=2^{3}, 2^{5}$.
7	$A_{7}, A_{8}, A_{9}, M_{22}, J_{1}, J_{2}, H S, L_{2}(q), q=2^{3}, 7^{m}$ or $2.7^{m}-1$, which is a prime, $m \geq 1, L_{3}\left(2^{2}\right), S_{6}(2), O_{8}^{+}(2), G_{2}(q), q=3,19$, $U_{3}(q), q=3,5,19, U_{4}(3), U_{6}(2), S z\left(2^{3}\right)$.
13	$\begin{aligned} & A_{13}, A_{14}, A_{15}, S u z, F_{22}, L_{2}(q), q=3^{3}, 5^{2}, 13^{m} \text { or } 2.13^{m}-1, \\ & \text { which is a prime, } m \geq 1, L_{3}(3), L_{4}(3), O_{7}(3), S_{4}(5), S_{6}(3), \\ & O_{8}^{+}(3), G_{2}(q), q=2^{2}, 3, F_{4}(2), U_{3}(q), q=2^{2}, 23, S z\left(2^{3}\right) \text {, } \\ & { }^{3} D_{4}(2),{ }^{2} E_{6}(2),{ }^{2} F_{4}(2)^{\prime} . \end{aligned}$
17	$A_{17}, A_{18}, A_{19}, J_{3}, H e, F i_{23}, F i_{24}^{\prime}, L_{2}(q), q=2^{4}, 17^{m}$ or $2.17^{m} \pm 1$, which is a prime , $m \geq 1, S_{4}(4), S_{8}(2), F_{4}(2)$, $O_{8}^{-}(2), O_{10}^{-}(2),{ }^{2} E_{6}(2)$.
19	$A_{19}, A_{20}, A_{21}, J_{1}, J_{3}, O^{\prime} N, T h, H N, L_{2}(q), q=19^{m}$ or $2.19^{m}-1$, which is a prime, $m \geq 1, L_{3}(7), U_{3}\left(2^{3}\right)$, $R\left(3^{3}\right),{ }^{2} E_{6}(2)$.
37	$\begin{aligned} & A_{37}, A_{38}, A_{39}, J_{4}, L y, L_{2}(q), q=37^{m} \text { or } 2.37^{m}-1 \text {, } \\ & \text { which is a prime, } m \geq 1, U_{3}(11), R\left(3^{3}\right),{ }^{2} F_{4}\left(2^{3}\right) . \end{aligned}$
73	$\begin{aligned} & A_{73}, A_{74}, A_{75}, L_{2}(q), q=73^{m} \text { or } 2.73^{m}-1, \text { which is a prime, } \\ & m \geq 1, L_{3}\left(2^{3}\right), S_{6}\left(2^{3}\right), G_{2}(q), q=2^{3}, 3^{2}, F_{4}(3), E_{6}(2), E_{7}(2), \\ & U_{3}\left(3^{2}\right),{ }^{3} D_{4}(3) . \end{aligned}$
109	$A_{109}, A_{110}, A_{111}, L_{2}(q), q=109^{m}$ or $2.109^{m}-1$, which is a prime, $m \geq 1,{ }^{2} F_{4}\left(2^{3}\right)$.
$\begin{aligned} & p= \\ & 2^{m}+1, \\ & m=2^{s} \end{aligned}$	$\begin{aligned} & A_{p}, A_{p+1}, A_{p+2}, L_{2}(q), q=2^{m}, p^{k}, 2 p^{k} \pm 1, \text { which is a prime, } \\ & k \geq 1, S_{a}\left(2^{b}\right), a=2^{c+1} \text { and } b=2^{d}, c \geq 1, c+d=s, F_{4}\left(2^{e}\right), \\ & e \geq 1,4 e=2^{s}, O_{2(m+1)}^{-}(2), s \geq 2, O_{a}^{-}\left(2^{b}\right), a=2^{c+1} \text { and } b=2^{d}, \\ & c \geq 2, c+d=s . \end{aligned}$
Other	$A_{p}, A_{p+1}, A_{p+2}, L_{2}(q), q=p^{m}$ or $2 p^{m}-1$, which is a prime, $m \geq 1$.

Table 2. Simple $C_{p p}$-groups, $p=2^{\alpha} 3^{\beta}+1, \alpha \geq 0, \beta \geq 0$.

In this case the possibilities for S are: $L_{2}\left(2^{3}\right), L_{3}\left(2^{2}\right), S_{6}(2), O_{8}^{+}(2), G_{2}(3), G_{2}(19)$, $U_{3}(3), U_{3}(5), U_{3}(19), U_{4}(3), U_{6}(2)$ or $S z\left(2^{3}\right)$. First of all, since G has no element of order $49, S \nsubseteq G_{2}(19)$ or $U_{3}(19)$. Next, we note that $\pi(S) \subset \pi(13!)$ and by Lemma 1 we see that for every $n \geq 5$ there exists a primitive prime divisor $7_{n} \geq 13$. Therefore for $n \geq 5$, as previous cases a similar argument with the primitive prime divisors 7_{n} and $7_{2 n}$, leads to a contradiction.

If $n=4$, then $\mu(G)=\left\{2^{5} .3 .5^{2}, 7,2.1201\right\}$. In this case S can only be $L_{2}\left(2^{3}\right)$, $L_{3}\left(2^{2}\right), S_{6}(2), O_{8}^{+}(2), U_{3}(3), U_{3}(5)$, or $U_{4}(3)$ by checking their prime divisors sets. On the other hand, since the simple groups $L_{2}\left(2^{3}\right), S_{6}(2), O_{8}^{+}(2)$ and $U_{4}(3)$ contain an element of order 9 and $9 \notin \omega(G), S$ can only be $L_{3}\left(2^{2}\right), U_{3}(3)$ or $U_{3}(5)$. Moreover, since there does not exist any element of order 1201 in $\operatorname{Aut}(S), 1201$ divides the order of N. Without loss of generality we may assume that $N \neq 1$ is an elementary Abelian 1201-group. Because $A_{4}=2^{2}: 3<A_{6}<L_{3}\left(2^{2}\right)$, $7: 3<L_{2}(7)<U_{3}(3)$ and $A_{4}=2^{2}: 3<A_{7}<U_{3}(5)$, in all cases S contains a Frobenius group of shape $2^{2}: 3$ or $7: 3$, and so G contains an element of order 1201.3 by Lemma 5 , which is a contradiction.

If $n=3$, then $\mu(G)=\left\{2.3^{2} .19,7,2^{3} .43\right\}$. In this case, S can only be $L_{2}\left(2^{3}\right)$ by checking their element orders sets. As $43 \notin \pi(\operatorname{Aut}(S))$ we have $43 \in \pi(N)$. Now, we may assume that $N \neq 1$ is an elementary Abelian 43-group. Since $2^{3}: 7<L_{2}\left(2^{3}\right)$ we get $43.7 \in \omega(G)$ by Lemma 5 , which is a contradiction.

If $n=2$, then $\mu(G)=\left\{2^{4} .3,7,2.5^{2}\right\}$. In this case, by checking element orders S can only be $L_{3}\left(2^{2}\right), U_{3}(3)$ or $U_{3}(5)$. If $S \cong L_{3}\left(2^{2}\right)$ or $U_{3}(5)$, then 5 divides the order of N since $25 \notin \omega(\operatorname{Aut}(S))$. Without loss of generality we may assume that $N \neq 1$ is an elementary Abelian 5 -group. Since S contains a Frobenius subgroup of shape $2^{2}: 3$ (in fact we have $A_{4}=2^{2}: 3 \leq A_{6} \leq L_{3}(4)$ and $A_{4}=2^{2}: 3 \leq A_{7} \leq U_{3}(5)$), we get $5.3 \in \omega(G)$ by Lemma 5 , a contradiction. If $S \cong U_{3}(3)$, then $5 \in \pi(N)$, because $5 \notin \pi(\operatorname{Aut}(S))$. Again, since $7: 3 \leq L_{2}(7) \leq U_{3}(3)$ we get $5.3 \in \omega(G)$ by Lemma 5, a contradiction.

Case 4. $q=13^{n}, n \geq 2$.
In this case S can only be isomorphic to one of the following simple groups: $L_{2}\left(3^{3}\right), L_{2}\left(5^{2}\right), L_{3}(3), L_{4}(3), O_{7}(3), S_{4}(5), S_{6}(3), O_{8}^{+}(3), G_{2}\left(2^{2}\right), G_{2}(3), F_{4}(2)$, $U_{3}\left(2^{2}\right), U_{3}(23), S z\left(2^{3}\right),{ }^{3} D_{4}(2),{ }^{2} E_{6}(2)$ or ${ }^{2} F_{4}(2)^{\prime}$. Since $13^{2} \notin \omega(G)$, and $U_{3}(23)$ contains an element of order $13^{2}, S \nsubseteq U_{3}(23)$. Moreover, we have $\pi(S) \subseteq \pi(19$!). Now since, by Lemma 1 , for every $n \geq 5$, there exists a primitive prime divisor $13_{n}>19$. we can consider the primitive prime divisors 13_{n} and $13_{2 n}$, and we get a contradiction as before cases. Henceforth, we may assume that $n \leq 4$.

If $n=4$, then $\mu(G)=\left\{2^{4} .3 .5 .7 .17,13,2.14281\right\}$. In this case, by comparing element orders, we conclude that S can only be $L_{2}\left(3^{3}\right), L_{2}\left(5^{2}\right), L_{3}(3), L_{4}(3), O_{7}(3)$, $S_{4}(5), O_{8}^{+}(3), G_{2}\left(2^{2}\right), G_{2}(3), F_{4}(2), U_{3}\left(2^{2}\right), S z\left(2^{3}\right),{ }^{3} D_{4}(2)$, or ${ }^{2} F_{4}(2)^{\prime}$. In all above cases, except $S \cong F_{4}(2)$, since $17,14281 \notin \pi(\operatorname{Aut}(S))$, we have $17,14281 \in \pi(N)$, and so $17.14281 \in \omega(N)$, which is a contradiction. If $S \cong F_{4}(2)$, then 14281 divides the order of N, and since S contains a Frobenius group $2^{2}: 3$ (note that $\left.2^{2}: 3=A_{4}<S_{10}<S_{8}(2)<F_{4}(2)\right), G$ must contain an element of order 14281.3, by Lemma 5 , which is not possible. If $n=3$, then $\mu(G)=\left\{2^{2} .3^{2} .61,13,2.7 .157\right\}$.

In this case we have $61,157 \notin \pi(\operatorname{Aut}(S))$ and so $61,157 \in \pi(N)$, hence we get $61.157 \in \omega(N) \subset \omega(G)$, which is impossible.

Case 5. $q=17^{n}, n \geq 2$.
In this case S can only be isomorphic to one of the following simple groups: $L_{2}\left(2^{4}\right), S_{4}(4), S_{8}(2), F_{4}(2), O_{8}^{-}(2), O_{10}^{-}(2)$ or ${ }^{2} E_{6}(2)$. First of all, since $5 \in \pi(S)$, we deduce $n \geq 4$. Moreover, we have $\pi(S) \subseteq \pi(19!)$. From Lemma 1 , for every $n \geq 4$, there exists a primitive prime divisor $17_{n}>19$. Now, for the primitive prime divisors 17_{n} and $17_{2 n}$, a similar argument as before leads to a contradiction.

Case 6. $q=19^{n}, n \geq 2$.
In this case S can only be isomorphic to one of the following simple groups: $L_{3}(7)$, $U_{3}\left(2^{3}\right), R\left(3^{3}\right)$ or ${ }^{2} E_{6}(2)$. Evidently $\pi(S) \subseteq \pi(37!)$. Since $7 \in \pi(S), 3 \mid n$. If $n>7$, then by Lemma 1 there exists a primitive prime divisor $19_{n}>37$. Now we consider the primes 19_{n} and $19_{2 n}$, and we get a contradiction as previous cases. If $n=6$, then we have

$$
\mu(G)=\left\{2^{3} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 127,19,2.13^{2} \cdot 181.769\right\}
$$

In this case we consider the primes $127,769 \in \pi(G)$, and we obtain a contradiction as before. If $n=3$, then $\mu(G)=\left\{2.3^{3} .127,19,2^{2} .5 .7^{3}\right\}$. In this case S can be only $L_{3}(7)$ or $U_{3}\left(2^{3}\right)$, and since $5,127 \notin \pi(\operatorname{Aut}(S))$, we get a contradiction.

Case 7. $q=37^{n}, n \geq 2$.
In this case S can only be isomorphic to one of the following simple groups: $U_{3}(11)$, $R\left(3^{3}\right)$ or ${ }^{2} F_{4}\left(2^{3}\right)$. Evidently, $\pi(S) \subseteq\{2,3,5,7,11,13,19,37,73,109\}$. If $n \geq 7$, then by Lemma 1 there exists a primitive prime divisors $37_{n}>109$, and hence we consider the primes $37_{n}, 37_{2 n} \in \pi(G)$, and we get a contradiction as before. Therefore we may assume that $n \leq 6$. Since

$$
\begin{array}{ll}
\pi(G)=\{2,3,5,7,13,19,31,37,43,67,137,144061\}, & n=6, \\
\pi(G)=\{2,3,11,19,37,41,4271,1824841\}, & n=5, \\
\pi(G)=\{2,3,5,19,37,89,137,10529\}, & n=4, \\
\pi(G)=\{2,3,7,19,31,37,43,67\}, & n=3, \\
\pi(G)=\{2,3,5,19,37,137\}, & n=2,
\end{array}
$$

it is easy to see that $109 \notin \pi(G)$, and so $S \not ¥^{2} F_{4}\left(2^{3}\right)$. Moreover, since $55 \in$ $\left.\omega\left(U_{3}(11)\right) \backslash \omega(G)\right), S \nsubseteq U_{3}(11)$. Finally, if $S \cong R\left(3^{3}\right)$, since $13 \in \pi\left(R\left(3^{3}\right)\right)$, we must have $n=6$. Yet, in this case, we can choose the primes $67,144061 \in$ $\pi(G) \backslash \pi(\operatorname{Aut}(S))$, and we get a contradiction as before (note that $67.144061 \notin$ $\omega(G))$.

Case 8. $q=73^{n}, n \geq 2$.
In this case S can only be $L_{2}\left(73^{n}\right), L_{3}\left(2^{3}\right), S_{6}\left(2^{3}\right), G_{2}\left(2^{3}\right), G_{2}\left(3^{2}\right), F_{4}(3), E_{6}(2)$, $E_{7}(2), U_{3}\left(3^{2}\right)$ or ${ }^{3} D_{4}(3)$. We assume that $S \nsubseteq L_{2}\left(73^{n}\right)$. It is not difficult to see that $\pi(S) \subseteq \pi(19!) \cup\{31,41,43,73,127\}$. Let $n \geq 5$. Then by Lemma $1(6)$, $73_{n}, 73_{2 n}>127$. Evidently $73_{n} .73_{2 n} \notin \omega(G)$, as $73_{2 n} \in \pi\left(73^{n}+1\right)$. On the
other hand, since $73_{n}, 73_{2 n} \notin \pi(\operatorname{Aut}(S)), 73_{n}, 73_{2 n} \in \pi(N)$ which implies that $73_{n}, 73_{2 n} \in \omega(N) \subseteq \omega(G)$, a contradiction. Hence $n \leq 4$. Because

$$
\begin{array}{ll}
\omega(G)=\left\{2^{5} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 37 \cdot 41,73,2 \cdot 14199121\right\}, & n=4, \\
\omega(G)=\left\{2^{3} \cdot 3^{3} \cdot 1801,73,2.7 .37 .751\right\}, & n=3, \\
\omega(G)=\left\{2^{4} \cdot 3^{2} \cdot 37,73,2 \cdot 5 \cdot 13.41\right\}, & n=2,
\end{array}
$$

by checking the sets of element orders for each simple group, the only possibility for S is $U_{3}\left(3^{2}\right)$, when $n=4$. In this case, we consider the primes 41 and 14199121 in $\pi(G)$. Since $41 \in \pi\left(73^{4}-1\right)$ and $14199121 \in \pi\left(73^{4}+1\right), 41 \nsim 14199121$ and also $41,14199121 \notin \pi(\operatorname{Aut}(S))$, which implies that $41,14199121 \in \pi(N)$. Now by the nilpotency of N, we obtain that $41.14199121 \in \omega(N) \subset \omega(G)$, which is a contradiction.

Case 9. $q=109^{n}, n \geq 2$.
The proof of this case follows immediately from Lemmas 7(1) and 8.
Case 10. $q=\left(2^{m}+1\right)^{n}$, where $2^{m}+1$ is a prime and $n \geq 2$.
In this case S can only be isomorphic to: $L_{2}\left(2^{m}\right), S_{a}\left(2^{b}\right), a=2^{c+1}, c \geq 1$, and $b=2^{d}, c+d=s, F_{4}\left(2^{e}\right), e \geq 1,4 e=2^{s}, O_{2(m+1)}^{-}(2), s>1$, or $O_{a}^{-}\left(2^{b}\right), a=2^{c+1}$, $c \geq 2$, and $b=2^{d}, c+d=s$.

If $S \cong L_{2}\left(2^{m}\right)$, then $\mu(\operatorname{Aut}(S))=\left\{m, 2^{m}-1,2^{m}+1\right\}=\{m, p-2, p\}$. First, assume that n is odd. In this case we have $\left(p-2, p^{n}-1\right)=1$, in fact if ($p-$ $\left.2, p^{n}-1\right)=d$ then d divides $2^{n}-1$, and so $d \mid\left(p-2,2^{n}-1\right)=\left(2^{m}-1,2^{n}-1\right)=$ $2^{(m, n)}-1=1$. Now since $\pi(S) \subseteq \pi(G)$, it follows that $\pi(p-2) \subset \pi\left(p^{n}+1\right)$. Moreover, it is easy to see that $2^{m-1}+1$ divides $p^{n}+1$ and $\left(p-2,2^{m-1}+1\right)=3$. Now we consider the primitive prime divisors

$$
r:=p_{n} \in \pi\left(p^{n}-1\right) \quad \text { and } \quad s:=2_{2(m-1)} \in \pi\left(2^{m-1}+1\right) .
$$

Evidently $r, s \notin \pi(\operatorname{Aut}(S))$, and so $r, s \in \pi(N)$. From the nilpotency of N it follows that $r \sim s$, which is a contradiction. Next, we suppose that n is even. In this case we have $2^{m-1}+1$ divides $p^{n}-1$ and $\left(2^{m-1}+1, p-2\right)=1$. Now, if $\pi(p-2) \subset \pi\left(p^{n}-1\right)$ then $\left(p-2, p^{n}+1\right)=1$ and again we consider the following primitive prime divisors

$$
r:=p_{2 n} \in \pi\left(p^{n}+1\right) \quad \text { and } \quad s:=2_{m-1} \in \pi\left(2^{m-1}-1\right),
$$

and we get $r \sim s$, as before. But this is a contradiction. Therefore we must have $\pi(p-2) \subseteq \pi\left(p^{n}+1\right)$. Let $r \in \pi\left(2^{m-1}+1\right) \subseteq \pi\left(p^{n}-1\right)$. Clearly $r \notin \pi(\operatorname{Aut}(S))$, hence $r \in \pi(N)$. Now since $2^{m}: 2^{m}-1 \leq L_{2}\left(2^{m}\right)$, by Lemma 5 we deduce that $r\left(2^{m}-1\right) \in \omega(G)$, which is a contradiction.

If $S \cong F_{4}\left(2^{e}\right)$, then the maximal odd factors set $\psi(\operatorname{Aut}(S))$ of $\mu(\operatorname{Aut}(S))$ is equal to the same set of $\mu(S)$ since $|\operatorname{Aut}(S)|=2^{e+1}$. From Lemma 9 we have

$$
\psi(\operatorname{Aut}(S))=\left\{q^{\prime 4}-1, q^{\prime 4}+1, q^{\prime 4}-q^{\prime 2}+1,\left(q^{\prime}-1\right)\left(q^{\prime 3}+1\right),\left(q^{\prime}+1\right)\left(q^{\prime 3}-1\right)\right\}
$$

where $q^{\prime}=2^{e}, e \geq 1$.

In this case $q^{\prime 4}+1=p, q^{\prime 4}-1=p-2$. Since G is an extension of a $\pi_{1}(G)$-group N by a group G_{1}, where $S \leq G_{1} \leq \operatorname{Aut}(S)$, and $\mu(G)=\left\{p^{n}-1, p, p^{n}+1\right\}$, we may get a contradiction dividing the two cases. If $n \geq 4$, then the odd number $\frac{1}{2}\left(p^{n}+1\right)$ and the odd factor of $p^{n}-1$ are all greater than any number in $\psi(\operatorname{Aut}(S))$. Hence we have r, s such that

$$
r \in \pi\left(p^{n}+1\right) \quad \text { and } \quad s \in \pi\left(p^{n}-1\right)
$$

and $r, s \notin \pi(\operatorname{Aut}(S))$, so $r, s \in \pi(N)$. From the nilpotency of N it follows that $r \sim s$, which is a contradiction. If $n=2$, then we may infer that $\left(p-2, p^{2}+1\right)=5$ and $\left(p-2, p^{2}-1\right)=3$. It is impossible. Also we may get a similar contradiction if $n=3$.

If $S \cong S_{a}\left(2^{b}\right)$, then the maximal odd factors set $\psi(\operatorname{Aut}(S))$ of $\mu(\operatorname{Aut}(S))$ is equal to the same set of $\mu(S)$ since $|\operatorname{Aut}(S)|=b=2^{d}$. From $[7], \S 3(3)$ we have

$$
\left\{q^{\frac{1}{2}(a)}-1, q^{\frac{1}{2}(a)}+1\right\} \subseteq \psi(\operatorname{Aut}(S))
$$

where $q^{\prime}=2^{b}, b \geq 1$. In this case $q^{\prime \frac{1}{2}(a)}+1=p$, and $q^{\prime \frac{1}{2}(a)}-1=p-2$, since the other numbers are not primes in $\psi(\operatorname{Aut}(S))$. The rest of proof is similar to the case of $S \cong F_{4}\left(2^{e}\right)$ by comparing the two sets of $\psi(\operatorname{Aut}(S))$ and $\mu(G)$.

If $S \cong O_{2(m+1)}^{-}(2), m=2^{s}, s>1$, then the maximal odd factors set $\psi(\operatorname{Aut}(S))$ of $\mu(\operatorname{Aut}(S))$ is equal to the same set of $\mu(S)$ since $|\operatorname{Aut}(S)|=2$. From $[7], \S 3(5)$ we have

$$
\left\{q^{\prime m+1}+1, q^{\prime m}+1, q^{\prime m}-1\right\} \subseteq \psi(\operatorname{Aut}(S))
$$

where $q^{\prime}=2$. In this case $q^{\prime m}+1=p$, and $q^{\prime m}-1=p-2$. The rest of proof is similar to the above cases.

If $S \cong O_{a}^{-}\left(2^{b}\right), a=2^{c+1}, c \geq 2$, and $b=2^{d}, c+d=s$, the proof is similar.
Case 11. $q=97^{n}$ or $q=p^{n}$, where $p=2^{\alpha} 3^{\beta}+1>109$ is a prime, $\beta \neq 0$ and $n \geq 2$.

In this case S is a simple $C_{p p}$-group, and from Table 1 and Lemma 7, we obtain that $S \cong L_{2}(q)$.
Step 2. N is a 2-group.
Let P / N be a Sylow p-subgroup of S and X / N be the normalizer in S of P / N. Then X / N is a Frobenius group of order $q(q-1) / 2$, with cyclic complement of order $(q-1) / 2$. Now, by Lemma 5 , we deduce that N is a 2 -group.

Step 3. $h(G) \in\{1, \infty\}$.
First suppose that $N=1$. In this case, we have $S=L_{2}(q), q=p^{n}, S \leq$ $G \leq \operatorname{Aut}(S)$. Denote the factor group G / S by M. Obviously, $M \leq \operatorname{Aut}(S)$. Therefore, every element of M is a product of a field automorphism f, whose order is a divisor of n, and diagonal automorphism d of order dividing 2. Let $f \neq 1$ and r be a prime dividing the order of f. Without loss of generality, we may assume that $o(f)=r$. Evidently, r divides n, and we put $\bar{q}=p^{n / r}$. Denote
by φ an automorphism of the field \mathbb{F}_{q} inducing f. Since φ fixes a subfield $\mathbb{F}_{\bar{q}}$ of \mathbb{F}_{q}, f centralizes a subgroup \bar{S} of S isomorphic to $L_{2}(\bar{q})$. But then G can not be a $C_{p p}$-group, which is a contradiction. Thus $f=1$. Hence, we have $M \leq\langle d\rangle$ and so $|G / S| \leq 2$. Therefore $G \cong S$ or $G \cong \operatorname{PGL}(2, q)$. From $q+1 \in \omega(\operatorname{PGL}(2, q)) \backslash \omega(S)$, we have $G \cong \operatorname{PGL}(2, q)$. Thus, in this case $h(G)=1$. Next, suppose that $N \neq 1$. Now, by Lemma 4, we get $h(G)=\infty$. The proof of Theorem 1 is complete.

Proof of Theorem 2. The proof follows immediately from Lemma 7(2) and Lemma 4.

Proof of Theorem 3. Let H be an extension of a group of order 2 by S_{4} such that a Sylow 2-subgroup of H is a quaternion group. Then $\mu(H)=\{6,8\}$. By Lemma 8 in [9], there exists an extension G of an elementary Abelian 7 -group by H, which is a Frobenius group. It follows that $\mu(G)=\{6,7,8\}$, and then Theorem 1 follows from Lemma 4.

Acknowledgement. The first author would like to thank the authority of K. N. Toosi University of Technology very deeply for providing the necessary facilities and their partial support to make the complete performance of this project possible. The second author supported by the National Natural Science Foundation of China (Grant No. 10171074).

References

[1] Brandl, R.; Shi, W. J.: Finite groups whose element orders are consecutive integers. J. Algebra 143 (1991), 388-400. Zbl 0745.20022
[2] Brandl, R.; Shi, W. J.: The characterization of $\operatorname{PSL}(2, q)$ by its element orders. J. Algebra 163 (1994), 109-114. Zbl 0816.20018
[3] Chen, Z.; Shi, W. J.: On $C_{p p}$ simple groups. J. Southwest-China Teacher's University, 18(3) (1993), 249-256 (in Chinese).
[4] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A.: Atlas of finite groups. Clarendon Press, Oxford 1985. Zbl 0568.20001
[5] The GAP group, GAP- Groups, Algorithms, and Programming, Version 4.3, Aachen, St Andrews 2002, http://www.gap-system.org.
[6] Higman, G.: Finite groups in which every element has prime power order. J. Lond. Math. Soc. 32 (1957), 335-342.

Zbl 0079.03204
[7] Kondrat'ev, A. S.: Prime graph components of finite simple groups. Math. USSR Sb. 67 (1990), 235-247.

Zbl 0698.20009
[8] Kondrat'ev, A. S.; Mazurov, V. D.: Recognition of alternating groups of prime degree from their element orders. Sib. Math. J. 41(2) (2000), 294-302.

Zbl 0956.20007
[9] Mazurov, V. D.: Recognition of finite simple groups $S_{4}(q)$ by their element orders. Algebra and Logic 41(2) (2002), 93-110. Zbl 1067.20016
[10] Mazurov, V. D.: Characterizations of finite groups by sets of orders of their elements. Algebra and Logic 36(1) (1997), 23-32.

Zbl 0880.20007
[11] Mazurov, V. D.: Recognition of finite groups by a set of orders of their elements. Algebra and Logic 37(6) (1998), 371-379. Zbl 0917.20021
[12] Mazurov, V. D.: Infinite groups with Abelian centralizers of involutions. Algebra Logic 39 (1) (2000), 42-49.

Zbl 0960.20025
[13] Mazurov, V. D.: Characterization of groups by arithmetic properties. Algebra Colloq. 11(1) (2004), 129-140.

Zbl 1066.20029
[14] Moghaddamfar, A. R.; Shi, W. J.: The characterization of almost simple groups $P G L(2, p)$ by their element orders. Commun. Algebra 32 (2004), 33273338.

Zbl 1074.20008
[15] Passman, D. S.: Permutation groups. W. A. Benjamin Inc., New York 1968. Zbl 0179.04405
[16] Shi, W. J.: A characterization of J_{1} and $P S L_{2}\left(2^{n}\right)$. Adv. Math. 16(4) (1987), 397-401 (in Chinese, English summary).

Zbl 0643.20008
[17] Shinoda, K.: The conjugacy classes of Chevalley groups of type $\left(F_{4}\right)$ over finite fields of characteristic 2. J. Fac. Sci. Univ. Tokyo 21 (1974), 133-159.
[18] Williams, J. S.: Prime graph components of finite groups. J. Algebra 69 (1981), 487-513.

Zbl 0471.20013
[19] Zsigmondy, K.: Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3 (1892), 265-284.

JFM 24.0176.02

Received April 18, 2005

