Addition and Subtraction of Homothety Classes of Convex Sets

Valeriu Soltan
Department of Mathematical Sciences, George Mason University 4400 University Drive, Fairfax, VA 22030, USA
e-mail: vsoltan@gmu.edu

Abstract

Let S_{H} denote the homothety class generated by a convex set $S \subset \mathbb{R}^{n}: S_{H}=\left\{a+\lambda S \mid a \in \mathbb{R}^{n}, \lambda>0\right\}$. We determine conditions for the Minkowski sum $B_{H}+C_{H}$ or the Minkowski difference $B_{H} \sim$ C_{H} of homothety classes B_{H} and C_{H} generated by closed convex sets $B, C \subset \mathbb{R}^{n}$ to lie in a homothety class generated by a closed convex set (more generally, in the union of countably many homothety classes generated by closed convex sets). MSC 2000: 52A20 Keywords: convex set, homothety class, Minkowski sum, Minkowski difference

1. Introduction and main results

In what follows, everything takes place in the Euclidean space \mathbb{R}^{n}. Let us recall that a set B is homothetic to a set A provided $B=a+\lambda A$ for a suitable point a and a scalar $\lambda>0$. If A is a convex set, then the Minkowski sum of any two homothetic copies of A is again a homothetic copy of A. In other words, the homothety class

$$
A_{H}=\left\{a+\lambda A \mid a \in \mathbb{R}^{n}, \lambda>0\right\}
$$

is closed with respect to the Minkowski addition. We will say that closed convex sets B and C form a pair of H-summands of a closed convex set A, or summands of A with respect to homotheties, provided the Minkowski sum of any homothetic copies of B and C is always homothetic to A. (See Schneider's monograph [7]

0138-4821/93 \$ 2.50 © 2006 Heldermann Verlag
for an extensive treatment of the Minkowski addition and subtraction of convex bodies.) In terms of homothety classes, B and C are H-summands of A if and only if $B_{H}+C_{H} \subset A_{H}$, where

$$
B_{H}+C_{H}=\left\{B^{\prime}+C^{\prime} \mid B^{\prime} \in B_{H}, C^{\prime} \in C_{H}\right\} .
$$

Our first result (see Theorem 1) describes the pairs of H-summands of a line-free closed convex set in terms of homothety classes. In what follows, rec S denotes the recession cone of a closed convex set S. In particular, rec S is a closed convex cone with apex 0 such that $S+\operatorname{rec} S=S$.

Theorem 1. For a pair of line-free closed convex sets B and C, the following conditions (1)-(3) are equivalent.
(1) $B_{H}+C_{H}$ belongs to a unique homothety class generated by a line-free closed convex set.
(2) $B_{H}+C_{H}$ lies in the union of countably many homothety classes generated by line-free closed convex sets.
(3) There is a line-free closed convex set A such that:
(a) $\operatorname{rec} A=\operatorname{rec} B+\operatorname{rec} C$,
(b) each of the sets $B_{0}=B+\operatorname{rec} A$ and $C_{0}=C+\operatorname{rec} A$ is homothetic either to A or to $\operatorname{rec} A$,
(c) if A is not a cone, then at least one of the sets B_{0}, C_{0} is not a cone.

As follows from the proof of Theorem 1, a line-free closed convex set A with properties (a)-(c) above satisfies the inclusion $B_{H}+C_{H} \subset A_{H}$.

Corollary 1. For a pair of compact convex sets B and C, each of the conditions (1)-(3) from Theorem 1 holds if and only if B and C are homothetic.

We note that Corollary 1 can be easily proved by using Rådström's cancellation law [5]. The proof of Theorem 1 is based on the properties of exposed points of the sum of two line-free closed convex sets formulated in Theorem 2. As usual, $\exp S$ and ext S stand, respectively, for the sets of exposed and extreme points of a convex set S.

Theorem 2. Let a line-free closed convex set A be the Minkowski sum of closed convex sets B and C. Then both convex sets $B_{0}=B+\operatorname{rec} A$ and $C_{0}=C+\operatorname{rec} A$ are closed and satisfy the following conditions:
(1) for any point $a \in \exp A$ there are unique points $b \in \exp B_{0}$ and $c \in \exp C_{0}$ such that $a=b+c$,
(2) the sets

$$
\begin{gathered}
\exp _{C} B=\{x \in \exp B \mid \exists y \in \exp C \text { such that } x+y \in \exp A\}, \\
\exp _{B} C=\{x \in \exp C \mid \exists y \in \exp B \text { such that } x+y \in \exp A\}
\end{gathered}
$$

are dense in $\exp B_{0}$ and $\exp C_{0}$, respectively.

Remark 1. Theorem 2 seems to be new even for the case of compact convex sets. Moreover, there are convex bodies B and C in \mathbb{R}^{2} such that $\exp _{C} B \neq \exp B$ and $\exp _{B} C \neq \exp C$. Indeed, let $B=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$ be the unit disk of the coordinate plane \mathbb{R}^{2}, and $C=\{(x, y) \mid 0 \leq x, y \leq 1\}$ be the unit square. Then $b=(0,1)$ lies in $\exp B \backslash \exp _{C} B$.

Remark 2. Since $\exp A$ is dense in $\operatorname{ext} A$, Theorem 2 remains true if we substitute "ext" for "exp". Then $\operatorname{ext}_{C} B=\operatorname{ext} B$ and $\operatorname{ext}_{B} C=\operatorname{ext} C$ provided both B and C are compact (see [2]). One can easily construct unbounded closed convex sets B and C in \mathbb{R}^{2} such that $\operatorname{ext}_{C} B \neq \operatorname{ext} B_{0}$ and $\operatorname{ext}_{B} C \neq \operatorname{ext} C_{0}$.

Let us recall that the Minkowski difference $X \sim Y$ of any sets X and Y in \mathbb{R}^{n} is defined by $X \sim Y=\left\{x \in \mathbb{R}^{n} \mid x+Y \subset X\right\}$. If both X and Y are closed convex sets, then the equality $X \sim Y=\cap\{X-y \mid y \in Y\}$ implies that $X \sim Y$ is also closed and convex (possibly, empty). Given n-dimensional closed convex sets B and C, we put

$$
B_{H} \underset{n}{\sim} C_{H}=\left\{B^{\prime} \sim C^{\prime} \mid B^{\prime} \in B_{H}, C^{\prime} \in C_{H}, \operatorname{dim}\left(B^{\prime} \sim C^{\prime}\right)=n\right\} .
$$

An important notion here is that of tangential set introduced by Schneider [7, p. 136]: a closed convex set D of dimension n is a tangential set of a convex body F provided $F \subset D$ and through each boundary point of D there is a support hyperplane to D that also supports F.

Theorem 3. For a pair of convex bodies B and C, the following conditions (1)-(4) are equivalent:
(1) $B_{H} \underset{n}{\sim} C_{H} \subset B_{H}$,
(2) $B_{H} \underset{n}{\sim} C_{H}$ lies in a unique homothety class generated by a convex body,
(3) $B_{H} \underset{n}{\sim} C_{H}$ lies in the union of countably many homothety classes generated by convex bodies,
(4) B is homothetic to a tangential set of C.

Remark 3. Theorem 3 cannot be directly generalized to the case of unbounded convex sets. Indeed, let B and C be convex sets in \mathbb{R}^{2} given by

$$
B=\{(x, y) \mid x \geq 0, x y \geq 1\}, \quad C=\{(x, y) \mid x \geq 0, y \geq 0, x+y \leq 1\} .
$$

Then $B \sim \gamma C=B$ for any $\gamma>0$, while B is not homothetic to a tangential set of C.

2. Proof of Theorem 2

We say that a closed halfspace P supports a closed convex set S provided the boundary hyperplane of P supports S and the interior of P is disjoint from S. If $P=\left\{x \in \mathbb{R}^{n} \mid\langle x, e\rangle \leq \alpha\right\}$ where e is a unit vector and α is a scalar, then e is called the outward unit normal to P.

Lemma 1. Let S be a line-free closed convex set, and P be a closed halfspace such that $P \cap \operatorname{rec} S=\{0\}$. Then:
(1) there is a translate of P that supports S,
(2) no translate of P contains an asymptotic ray of S,
(3) if a translate Q of P is disjoint from S, then for any point $x \in \operatorname{bd} Q$ the tangent cone

$$
T_{x}(S)=\operatorname{cl}(\cup\{x+\lambda(S-x) \mid \lambda \geq 0\})
$$

is line-free and satisfies the condition $Q \cap T_{x}(S)=\{x\}$.
Proof. First we claim that for any vector x the intersection $(x+P) \cap S$ is compact. Indeed, if $(x+P) \cap S$ were unbounded, then rec $((x+P) \cap S)$ would contain a ray with apex 0 . This and the equality rec $((x+P) \cap S)=P \cap \operatorname{rec} S$ contradict the hypothesis.
(1) Let $x+P$ be a translate of P that intersects S. Because $(x+P) \cap S$ is compact, there is a translate $y+P$ that supports $(x+P) \cap S$. Obviously, $y+P$ also supports S.
(2) Assume for a moment that a translate $z+P$ of P contains an asymptotic ray l of S. If $x+P$ is a translate of P that intersects S, then $(x+P) \cap S$ should contain the ray $(x-z)+l$, contradicting (a).
(3) The cone $T_{x}(S)$ is line-free as a tangent cone of a line-free convex set S with $x \notin S$. Assume that $Q \cap T_{x}(S)$ contains a point $z \neq x$. Then the ray $[x, z)$ lies in $Q \cap T_{x}(S)$, which implies that $l=[x, z)-x$ lies in $P \cap \operatorname{rec} S$, a contradiction.

Lemma 2. Let S be a line-free closed convex set, P be a closed halfspace that supports S, and e be the outward unit normal to P. For any $\varepsilon>0$ there is a closed halfspace P^{\prime} such that $S \cap P^{\prime}$ is an exposed point of S and the outward unit normal e^{\prime} to P^{\prime} satisfies the inequality $\left\|e-e^{\prime}\right\|<\varepsilon$.

Proof. Choose a point $a \in S \cap P$, and let $b=a-e$. Then the unit ball with center b lies in P and touches S at a. Let B_{r} be the ball with center b and radius $r \in] 0,1[$. We can choose r so close to 1 that for any closed halfspace Q that contains B_{r} and is disjoint from S, the outward unit normal q to Q satisfies the inequality $\|e-q\|<\varepsilon$.

As proved in [1], there is a pair of distinct parallel hyperplanes L and M both separating S and B_{r} such that the intersections $S \cap L$ and $B_{r} \cap M$ are exposed points of S and B_{r}, respectively. Let P^{\prime} be the closed halfspace bounded by L and containing B_{r}. By the choice of r, the outward unit normal e^{\prime} to P^{\prime} satisfies the inequality $\left\|e-e^{\prime}\right\|<\varepsilon$.

I am indebted to Rolf Schneider for his comment that Lemma 2 can be proved by using a duality argument and the fact that the set of regular point of an n-dimensional closed convex set $S \subset \mathbb{R}^{n}$ is dense in the boundary of S.

Lemma 3. ([6, Corollary 9.1.2]) Let B and C be line-free closed convex sets such that their sum $A=B+C$ is also line-free. Then A is closed and rec $A=$ rec $B+\operatorname{rec} C$.

We continue with the proof of Theorem 2. Because A is line-free, both B_{0} and C_{0} are also line-free. Lemma 3 implies that B_{0} and C_{0} are closed sets and rec $B_{0}=$ $\operatorname{rec} C_{0}=\operatorname{rec} A$.
Let a be an exposed point of A, and let P be a closed halfspace supporting A such that $A \cap P=\{a\}$. If $a=b+c$, with $b \in B$ and $c \in C$, then, as is easily seen, the halfspace $Q=(b-a)+P$ supports B at b, and the halfspace $T=(c-a)+P$ supports C at c. Moreover, $B \cap Q=\{b\}$ and $C \cap T=\{c\}$ since otherwise A should intersect P along a set larger than $\{a\}$. Hence $b \in \exp B$ and $c \in \exp C$. Lemma 1 implies that $B_{0} \cap Q=\{b\}$ and $C_{0} \cap T=\{c\}$. Thus $b \in \exp B_{0}$ and $c \in \exp C_{0}$.

Regarding part (2) of the theorem, we will prove only that $\exp _{C} B$ is dense in $\exp B_{0}$, since the second inclusion holds by the symmetry argument. First we observe that $\exp _{C} B \subset \exp B_{0}$. Indeed, let $x \in \exp _{C} B$ and $y \in \exp _{B} C$ be such that $x+y \in \exp A$. Choose a closed halfspace P with $P \cap A=\{x+y\}$. As above, the halfspace $Q=P-y$ satisfies $Q \cap B_{0}=\{x\}$. Hence $x \in \exp B_{0}$.
To prove the inclusion $\exp B_{0} \subset \mathrm{cl} \exp _{C} B$, it suffices to show that

$$
\begin{equation*}
B_{0}=\operatorname{conv}\left(\mathrm{cl} \exp _{C} B\right)+\operatorname{rec} A . \tag{*}
\end{equation*}
$$

Indeed, let $(*)$ be true. By $[3,4]$, we have $B_{0}=\operatorname{conv}\left(\operatorname{ext} B_{0}\right)+\operatorname{rec} A$. Moreover, $\operatorname{ext} B_{0} \subset X$ for any set $X \subset B_{0}$ with $B_{0}=\operatorname{conv} X+\operatorname{rec} A$. Then $(*)$ implies that $\exp B_{0} \subset \operatorname{ext} B_{0} \subset \mathrm{cl} \exp _{C} B$.
Assume, for contradiction, that $B_{0} \neq \operatorname{conv}\left(\operatorname{cl} \exp _{C} B\right)+\operatorname{rec} A$. Then there is a point $p \in \exp B_{0}$ that does not lie in the line-free closed convex set $B_{1}=$ conv $\left(\mathrm{cl} \exp _{C} B\right)+\operatorname{rec} A$. Let Q be the closed halfspace such that $B_{0} \cap Q=\{p\}$. Because $B_{1} \subset B_{0}$ and $p \notin B_{1}$, we have $B_{1} \cap Q=\varnothing$. Let e be the outward unit normal to Q.

Since $p \notin B_{1}$, the tangent cone $T_{p}\left(B_{1}\right)$ is line-free. Furthermore, $Q \cap T_{p}\left(B_{1}\right)=$ $\{p\}$ (see Lemma 1). Hence there is a scalar $\varepsilon>0$ such that any closed halfspace H with the properties $p \in \operatorname{bd} H$ and $\|e-h\|<\varepsilon$, where h is the outward unit normal for H, supports $T_{p}\left(B_{1}\right)$ at p only: $H \cap T_{p}\left(B_{1}\right)=\{p\}$.

Lemma 1 implies the existence of a translate of Q that supports A. By Lemma 2 , there is a closed halfspace Q^{\prime} whose outward unit normal e^{\prime} satisfies $\left\|e-e^{\prime}\right\|<\varepsilon$ and such that $A \cap Q^{\prime}$ is an exposed point of A. Let $\{a\}=A \cap Q^{\prime}$. As above, $a=b+c$ with $b \in \exp _{C} B$ and $c \in \exp _{B} C$. Moreover, the closed halfspace $P=(b-a)+Q^{\prime}$ satisfies $B_{0} \cap P=\{b\}$. By the choice of ε, the halfspace P should be disjoint from B_{1}. The last is in contradiction with $b \in \exp _{C} B \subset B_{1}$. Hence $B_{0}=B_{1}$.

3. Proof of Theorem 1

$(3) \Rightarrow(1)$ Given points b, c and scalars $\beta, \gamma>0$, we have

$$
\begin{aligned}
(b+\beta B)+(c+\gamma C) & =b+\beta(B+\operatorname{rec} B)+c+\gamma(C+\operatorname{rec} C) \\
& =b+\beta(B+\operatorname{rec} B+\operatorname{rec} C)+c+\gamma(C+\operatorname{rec} B+\operatorname{rec} C) \\
& =b+\beta(B+\operatorname{rec} A)+c+\gamma(C+\operatorname{rec} A) \\
& =b+c+\beta B_{0}+\gamma C_{0} .
\end{aligned}
$$

If A is a cone then $A=\operatorname{rec} A$ and $\beta B_{0}+\gamma C_{0}=A$. Let A be distinct from a cone. By (3c), at least one of the sets B_{0}, C_{0} is not a cone. Assume, for example, that B_{0} is not a cone. In this case,

$$
\beta B_{0}+\gamma C_{0}= \begin{cases}\beta x+\gamma z+(\beta \lambda+\gamma \mu) A, & \text { if } B_{0}=x+\lambda A, C_{0}=z+\mu A \\ \beta x+\gamma z+\beta \lambda A, & \text { if } B_{0}=x+\lambda A, C_{0}=z+\operatorname{rec} A\end{cases}
$$

Summing up, $(b+\beta B)+(c+\gamma C)$ is homothetic to A. Hence $B_{H}+C_{H} \subset A_{H}$. Since $(1) \Rightarrow(2)$ trivially holds, it remains to prove that $(2) \Rightarrow(3)$. We need some auxiliary lemmas.

Lemma 4. Line-free closed convex sets S and T are homothetic if and only if $\operatorname{rec} S=\operatorname{rec} T$ and the sets clexp S and clexp T are homothetic.

Lemma 5. If the sets B and C satisfy condition (2) of Theorem 1, then there are scalars $0<\gamma_{1}<\gamma_{2}$ such that $B+\gamma_{1} C$ and $B+\gamma_{2} C$ are homothetic.

Proof. Indeed, consider the family $\mathcal{F}=\{B+\gamma C \mid \gamma>0\}$. Since \mathcal{F} lies in the union of countably many homothety classes, and since the elements of \mathcal{F} depend on an uncountable parameter γ, there is a pair of scalars $0<\gamma_{1}<\gamma_{2}$ such that the sets $B+\gamma_{1} C$ and $B+\gamma_{2} C$ are homothetic.

Continuing with $(2) \Rightarrow(3)$, we are going to show that the set $A=B+C$ satisfies condition (3). By Lemma 3, A is a closed convex set with rec $A=\operatorname{rec} B+\operatorname{rec} C$. Furthermore, Theorem 2 obviously implies that A is a cone if and only if both B and C are cones, whence part (3c) also holds.
Hence it remains to prove (3b). If any of the sets B_{0}, C_{0}, say B_{0}, is a cone, then $B_{0}=x+\operatorname{rec} B_{0}=x+\operatorname{rec} A$ for a suitable point x, and

$$
C_{0}=C_{0}+\operatorname{rec} A=C_{0}+\left(B_{0}-x\right)=A-x .
$$

Thus we may assume that neither B_{0} nor C_{0} is a cone. In this case we will prove that both B_{0} and C_{0} are homothetic to A. Since $A=B_{0}+C_{0}$, it is sufficient to show that B_{0} and C_{0} are homothetic. By Lemma $4, B_{0}$ and C_{0} are homothetic if and only if the sets cl $\exp B_{0}$ and clexp C_{0} are homothetic, and Theorem 2 implies that the last are homothetic if and only if $\mathrm{cl} \exp _{C} B$ and $\mathrm{cl} \exp _{B} C$ are homothetic.

Choose any point $a_{0} \in \exp A$. Then $a_{0}=b_{0}+c_{0}$ for suitable points $b_{0} \in \exp _{C} B$ and $c_{0} \in \exp _{B} C$. Translating B and C on vectors $-b_{0}$ and $-c_{0}$, respectively, we may consider that $a_{0}=b_{0}=c_{0}=0$. We divide our consideration into two steps.

1. If points $a \in \exp A \backslash\{0\}, b \in \exp _{C} B$, and $c \in \exp _{B} C$ are such that $a=b+c$, then $0, b$, and c are collinear.
Indeed, assume the existence of a point $a \in \exp A \backslash\{0\}$ and of points $b \in \exp _{C} B$, $c \in \exp _{B} C$ such that $a=b+c$ but $0, b$, and c are not collinear. Then no three of the points $0, b+\gamma_{1} c, b+\gamma_{2} c$, with $0<\gamma_{1}<\gamma_{2}$, are collinear. Since $b+\gamma c$ is an exposed point of $B+\gamma C$, which has 0 as an exposed point, we conclude that no two elements of the family $\{B+\gamma C \mid \gamma>0\}$ are homothetic, contradicting Lemma 5.
2. There is a scalar $\mu>0$ such that for any points $a \in \exp A \backslash\{0\}, b \in \exp _{C} B$, and $c \in \exp _{B} C$ with $a=b+c$, we have $c=\mu b$.

Indeed, assume the existence of points $a_{1}, a_{2} \in \exp A \backslash\{0\}$ and of corresponding points $b_{1}, b_{2} \in \exp _{C} B$ and $c_{1}, c_{2} \in \exp _{B} C$, with $a_{1}=b_{1}+c_{1}$ and $a_{2}=b_{2}+c_{2}$, such that $c_{1}=\mu_{1} b_{1}$ and $c_{2}=\mu_{2} b_{2}$, where $\mu_{1} \neq \mu_{2}$. In this case, both $b_{1}+\gamma c_{1}=$ $\left(1+\gamma \mu_{1}\right) b_{1}$ and $b_{2}+\gamma c_{2}=\left(1+\gamma \mu_{2}\right) b_{2}$ are exposed points of $B+\gamma C$ for all $\gamma>0$. Since 0 is an exposed point of $B+\gamma C, \gamma>0$, and since the ratio

$$
\frac{\left\|\left(1+\gamma \mu_{1}\right) b_{1}-0\right\|}{\left\|\left(1+\gamma \mu_{2}\right) b_{2}-0\right\|}=\frac{1+\gamma \mu_{1}}{1+\gamma \mu_{2}}
$$

is a strictly monotone function of γ on $] 0, \infty$), we conclude that no two elements of the family $\{B+\gamma C \mid \gamma>0\}$ are homothetic. The last is in contradiction with Lemma 5.

Summing up, we conclude the existence of a scalar $\mu>0$ such that $\operatorname{cl}^{\exp }{ }_{C} B=$ $\mu \mathrm{cl} \exp _{B} C$. By Lemma 4, B_{0} and C_{0} are homothetic.

4. Proof of Theorem 3

The key role here plays the following lemma, which is a slight generalization of Lemma 3.1.10 from [7].

Lemma 6. Given a closed convex set B of dimension n and a convex body C, the following conditions are equivalent:
(1) there is a scalar $\tau>0$ such that B is a tangential set of τC,
(2) there is a scalar $\tau>0$ such that $B \sim \gamma C=(1-\gamma / \tau) B$ for all $\gamma \in] 0, \tau[$,
(3) there is a scalar $\gamma>0$ such that $B \sim \gamma C=\lambda B$ with $0<\lambda<1$.

Proof. (1) $\Rightarrow(2)$ If B is a tangential set of τC for some $\tau>0$, then $\tau C \subset B$ and $\gamma C \subset \gamma / \tau B$ for any scalar $\gamma \in] 0, \tau[$. In this case,

$$
(1-\gamma / \tau) B=B \sim \gamma / \tau B \subset B \sim \gamma C
$$

To prove the opposite inclusion, choose any point $x \in B \sim \gamma C$. Equivalently, $x+\gamma C \subset B$. We claim that $x+\gamma / \tau B \subset B$. Indeed, let $\mathcal{P}=\left\{P_{\alpha}\right\}$ be the family of closed halfspaces each containing B such that the boundary hyperplane H_{α} of every $P_{\alpha} \in \mathcal{P}$ supports B at a regular boundary point. Obviously, $B=\cap\left\{P_{\alpha} \mid\right.$
$\left.P_{\alpha} \in \mathcal{P}\right\}$. Since B is a tangential set of τC, each $P_{\alpha} \in \mathcal{P}$ contains τC and H_{α} supports τC. Hence each halfspace $\gamma / \tau P_{\alpha}$ contains γC and the hyperplane $\gamma / \tau H_{\alpha}$ supports γC. Then the inclusion $x+\gamma C \subset B$ implies that $x+\gamma / \tau P_{\alpha} \subset P_{\alpha}$ for all $P_{\alpha} \in \mathcal{P}$. Thus

$$
x+\gamma / \tau B=\cap\left\{x+\gamma / \tau P_{\alpha} \mid P_{\alpha} \in \mathcal{P}\right\} \subset\left\{P_{\alpha} \mid P_{\alpha} \in \mathcal{P}\right\}=B,
$$

implying that $x \in B \sim \gamma / \tau B=(1-\gamma / \tau) B$. Finally, $B \sim \gamma C \subset(1-\gamma / \tau) B$.
Since (2) trivially implies (3), it remains to show that (3) \Rightarrow (1). Let $B \sim \gamma C=$ λB with $0<\lambda<1$. Then

$$
\begin{aligned}
\lambda^{2} B & =\lambda(\lambda B)=\lambda(B \sim \gamma C)=\lambda B \sim \lambda \gamma C \\
& =(B \sim \gamma C) \sim \lambda \gamma C=B \sim(1+\lambda) \gamma C .
\end{aligned}
$$

By induction on $k=1,2, \ldots$ we get

$$
\lambda^{k} B=B \sim\left(1+\lambda+\cdots+\lambda^{k-1}\right) \gamma C=B \sim \gamma \frac{1-\lambda^{k}}{1-\lambda} C .
$$

As is easily seen, $\lambda^{k} B \rightarrow \operatorname{rec} B$ when $k \rightarrow \infty$. By the compactness argument, we have $B \sim \rho_{k} C \rightarrow B \sim \rho C$ when $\rho_{k} \rightarrow \rho$. Hence

$$
\operatorname{rec} B=B \sim \tau C \quad \text { with } \quad \tau=\frac{\gamma}{1-\lambda}
$$

It remains to prove that B is a tangential set of τC. Choose any point $x \in \operatorname{bd} B$. Then

$$
\lambda x \in \lambda \mathrm{bd} B=\mathrm{bd}(\lambda B)=\mathrm{bd}(B \sim \gamma C)
$$

In particular, $\lambda x \in B \sim \gamma C$, implying that $\lambda x+\gamma C \subset B$.
We claim that $\lambda x+\gamma C$ contains a boundary point of B. Indeed, assume for a moment that $\lambda x+\gamma C \subset \operatorname{int} B$. Since C is compact, there is an open ball U_{ε} of radius $\varepsilon>0$ centered at 0 such that the ε-neighborhood $\lambda x+\gamma C+U_{\varepsilon}$ of $\lambda x+\gamma C$ lies in B. Hence $\lambda x+U_{\varepsilon} \subset B \sim \gamma C$, in contradiction to $\lambda x \in \operatorname{bd}(B \sim \gamma C)$.

Let y be a point of $\lambda x+\gamma C$ that belongs to bd B. Then $y=\lambda x+\gamma c$ for a point $c \in C$ and

$$
v=\frac{y-\lambda x}{1-\lambda}=\frac{\gamma c}{1-\lambda}=\tau c \in \tau C \subset B .
$$

Since $y=(1-\lambda) v+\lambda x$ with $x, y \in \operatorname{bd} B$ and $v \in B$ we conclude that the line segment $[x, v]$ lies in bd B. Hence any support hyperplane of B through y contains x and v and thus supports B at x and τC at v. So B is a tangential set of $\tau C . \square$

Remark 3. From the proof of Lemma 6 we conclude that if the sets B and C satisfy condition (3) of the lemma, then B is a translate of a tangential set of $\gamma /(1-\lambda) C$.

Let us recall (see [7, p. 136]) that the inradius of a convex body B with respect to a convex body C is defined by

$$
r_{C}(B)=\max \{\lambda \geq 0 \mid x+\lambda C \subset B\} .
$$

Lemma 7. Given convex bodies B and C, we have $r_{C}(B) r_{B}(C) \leq 1$. The equality $r_{C}(B) r_{B}(C)=1$ holds if and only if B and C are homothetic.

Proof. Put $s=r_{C}(B)$ and $t=r_{B}(C)$. Then $x+s C \subset B$ and $z+t B \subset C$ for some vectors x, z. In this case, $t x+s t C \subset t B \subset C-z$, implying that $s t \leq 1$.

If $s t=1$ then from the inclusion above we deduce that $t B=C-z$, whence B is homothetic to C. Conversely, if $B=x+\gamma C, \gamma>0$, then, as easy to see, $r_{B}(C)=\gamma$ and $r_{C}(B)=\gamma^{-1}$.

Lemma 8. Given convex bodies B and C and a scalar $\rho \in] 0, r_{C}(B)[$, we have $r_{C}(B \sim \rho C)=r_{C}(B)-\rho$.

Proof. Indeed,

$$
\begin{aligned}
r_{C}(B \sim \rho C) & =\max \left\{\lambda \geq 0 \mid x+\lambda C \subset B \sim \rho C, x \in \mathbb{R}^{n}\right\} \\
& =\max \left\{\lambda \geq 0 \mid x+\lambda C+\rho C \subset B, x \in \mathbb{R}^{n}\right\} \\
& =\max \left\{\lambda \geq 0 \mid x+(\lambda+\rho) C \subset B, x \in \mathbb{R}^{n}\right\} \\
& =r_{C}(B)-\rho .
\end{aligned}
$$

Lemma 9. Let B and C be convex bodies such that $B \sim \rho C=z+\mu B$ for a vector z and scalars $\rho \in] 0, r_{C}(B)[$ and $\mu>0$. Then

$$
1-\rho r_{C}^{-1}(B) \leq \mu \leq 1-\rho r_{B}(C) .
$$

Proof. Let v be a vector such that $v+r_{B}(C) B \subset C$. According to Lemma 7, $\rho v+\rho r_{B}(C) B \subset \rho C$ with $\rho r_{B}(C)<r_{C}(B) r_{B}(C) \leq 1$. We have

$$
\begin{aligned}
B \sim \rho C & =\left\{x \in \mathbb{R}^{n} \mid x+\rho C \subset B\right\} \subset\left\{x \in \mathbb{R}^{n} \mid x+\rho v+\rho r_{B}(C) B \subset B\right\} \\
& =\left\{x \in \mathbb{R}^{n} \mid x+\rho r_{B}(C) B \subset B-\rho v\right\}=(B-\rho v) \sim \rho r_{B}(C) B \\
& =\left(B \sim \rho r_{B}(C) B\right)-\rho v=\left(1-\rho r_{B}(C)\right) B-\rho v .
\end{aligned}
$$

Hence

$$
z+\mu B=B \sim \rho C \subset\left(1-\rho r_{B}(C)\right) B-\rho v,
$$

which implies the inequality $\mu \leq 1-\rho r_{B}(C)$.
On the other hand, there is a vector w such that $w+r_{C}(B) C \subset B$, which gives the inclusion $\rho C \subset \rho r_{C}^{-1}(B)(B-w)$. Thus

$$
\begin{aligned}
z+\mu B & =B \sim \rho C=\left\{x \in \mathbb{R}^{n} \mid x+\rho C \subset B\right\} \\
& \supset\left\{x \in \mathbb{R}^{n} \mid x+\rho r_{C}^{-1}(B)(B-w) \subset B+\rho r_{C}^{-1}(B) w\right\} \\
& =\left\{x \in \mathbb{R}^{n} \mid x+\rho r_{C}^{-1}(B) B \subset B+\rho r_{C}^{-1}(B) w\right\} \\
& =\left(B+\rho r_{C}^{-1}(B) w\right) \sim \rho r_{C}^{-1}(B) B \\
& =r_{C}^{-1}(B) w+\left(B \sim \rho r_{C}^{-1}(B) B\right) \\
& =r_{C}^{-1}(B) w+\left(1-\rho r_{C}^{-1}(B)\right) B,
\end{aligned}
$$

resulting in the inequality $1-\rho r_{C}^{-1}(B) \leq \mu$.
Lemma 10. If T_{1}, T_{2}, \ldots is a convergent sequence of tangential convex bodies of a convex body C, then their limit is also a tangential body of C.

Proof. Let $T=\lim _{k \rightarrow \infty} T_{k}$. Choose a boundary point x of T. Then there is a sequence of points $x_{k} \in \operatorname{bd} T_{k}, k=1,2, \ldots$, such that $x=\lim _{k \rightarrow \infty} x_{k}$. For each point x_{k} there is a hyperplane H_{k} supporting T_{k} at x_{k} and also supporting C. The sequence H_{1}, H_{2}, \ldots contains a subsequence $H_{1}^{\prime}, H_{2}^{\prime}, \ldots$ that converges to a hyperplane H. As is easily seen, H supports T at x and also supports C. Hence T is a tangential body of C.

Proof of Theorem 3. (4) \Rightarrow (1) By Lemma 6, every n-dimensional set

$$
(x+\lambda B) \sim(z+\gamma C)=(x-z)+\lambda(B \sim \gamma / \lambda C), \lambda, \gamma>0
$$

is homothetic to B. Hence $B_{H} \sim C_{H} \subset B_{H}$.
Since the implications $(1) \Rightarrow(2) \Rightarrow(3)$ are trivial, it remains to show that $(3) \Rightarrow$ (4). Consider the intervals

$$
\left.I_{k}=\right] 2^{-k} r_{C}(B), 2^{1-k} r_{C}(B)[, \quad k=1,2, \ldots
$$

By the assumption, each family

$$
\mathcal{D}_{k}=\left\{B \sim \lambda C \mid \lambda \in I_{k}, \operatorname{dim}(B \sim \lambda C)=n\right\}, \quad k=1,2, \ldots,
$$

lies in the union of countably many homothety classes. Hence there are scalars $\delta_{k}, \gamma_{k} \in I_{k}$ and $\left.\mu_{k} \in\right] 0,1\left[\right.$ such that $\delta_{k}<\gamma_{k}$ and

$$
B \sim \gamma_{k} C=x_{k}+\mu_{k}\left(B \sim \delta_{k} C\right), \quad x_{k} \in \mathbb{R}^{n}, k=1,2, \ldots
$$

Since

$$
B \sim \gamma_{k} C=B \sim\left(\delta_{k} C+\left(\gamma_{k}-\delta_{k}\right) C\right)=\left(B \sim \delta_{k} C\right) \sim\left(\gamma_{k}-\delta_{k}\right) C
$$

we have

$$
\left(B \sim \delta_{k} C\right) \sim\left(\gamma_{k}-\delta_{k}\right) C=x_{k}+\mu_{k}\left(B \sim \delta_{k} C\right)
$$

By Lemma 6 and Remark 3, $B \sim \delta_{k} C$ is a translate of a tangential set of $\left(\gamma_{k}-\right.$ $\left.\delta_{k}\right) /\left(1-\mu_{k}\right) C$, or, equivalently, the body

$$
D_{k}=\left(1-\mu_{k}\right) /\left(\gamma_{k}-\delta_{k}\right)\left(B \sim \delta_{k} C\right)
$$

is a translate of a tangential set T_{k} of C. Lemma 9 implies that

$$
\mu_{k} \geq 1-\left(\gamma_{k}-\delta_{k}\right) r_{C}^{-1}\left(B-\delta_{k} C\right)
$$

which gives

$$
\frac{1-\mu_{k}}{\gamma_{k}-\delta_{k}} \leq \frac{1}{r_{C}\left(B-\delta_{k} C\right)}, \quad k=1,2, \ldots
$$

By Lemma $8, r_{C}\left(B \sim \delta_{k} C\right)=r_{C}(B)-\delta_{k}$. Since $\delta_{1}>\delta_{2}>\cdots>0$, we have

$$
\frac{1}{r_{C}\left(B-\delta_{1} C\right)}>\frac{1}{r_{C}\left(B-\delta_{2} C\right)}>\cdots>\frac{1}{r_{C}(B)} .
$$

As a result, all of D_{1}, D_{2}, \ldots are contained in a neighborhood of $B \sim \delta_{1} C$. Then we can select a subsequence $D_{1}^{\prime}, D_{2}^{\prime}, \ldots$ of D_{1}, D_{2}, \ldots that converges to a convex body D. Since each D_{k} is a translate of the tangential body T_{k} that contains C, the respective subsequence $T_{1}^{\prime}, T_{2}^{\prime}, \ldots$ converges to a convex body T. By Lemma 10, T is a tangential body of C.

Finally, $\lim _{k \rightarrow \infty}\left(B \sim \delta_{k} C\right)=B$ implies that B is homothetic to T.
Acknowledgments. The author thanks the referee for many helpful comments on an earlier draft of the paper.

References

[1] De Wilde, M.: Some properties of the exposed points of finite- dimensional convex sets. J. Math. Anal. Appl. 99 (1984), 257-264. Zbl 0553.52004
[2] Husain, T.; Tweddle, I.: On the extreme points of the sum of two compact convex sets. Math. Ann. 188 (1970), 113-122.

Zbl 0188.19002
[3] Klee, V. L.: Extremal structure of convex sets. Arch. Math. 8 (1957), 234-240. Zbl 0079.12501
[4] Klee, V. L.: Extremal structure of convex sets. II. Math. Z. 69 (1958), 90-104. Zbl 0079.12502
[5] Rådström, H.: An embedding theorem for spaces of convex sets. Proc. Am. Math. Soc. 3 (1952), 165-169.

Zbl 0046.33304
[6] Rockafellar, R. T.: Convex analysis. Princeton University Press, Princeton, NJ, 1970. Reprint: 1997.

Zbl 0193.18401
[7] Schneider, R.: Convex bodies: the Brunn-Minkowski theory. Cambridge University Press, Cambridge 1993.

Zbl 0798.52001

Received March 17, 2006

