
Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 47 (2006), No. 2, 351-361.

Addition and Subtraction of
Homothety Classes of Convex Sets

Valeriu Soltan

Department of Mathematical Sciences, George Mason University
4400 University Drive, Fairfax, VA 22030, USA

e-mail: vsoltan@gmu.edu

Abstract. Let SH denote the homothety class generated by a convex
set S ⊂ Rn: SH = {a + λS | a ∈ Rn, λ > 0}. We determine conditions
for the Minkowski sum BH + CH or the Minkowski difference BH ∼
CH of homothety classes BH and CH generated by closed convex sets
B, C ⊂ Rn to lie in a homothety class generated by a closed convex
set (more generally, in the union of countably many homothety classes
generated by closed convex sets).
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1. Introduction and main results

In what follows, everything takes place in the Euclidean space Rn. Let us recall
that a set B is homothetic to a set A provided B = a + λA for a suitable point
a and a scalar λ > 0. If A is a convex set, then the Minkowski sum of any two
homothetic copies of A is again a homothetic copy of A. In other words, the
homothety class

AH = {a + λA | a ∈ Rn, λ > 0}

is closed with respect to the Minkowski addition. We will say that closed convex
sets B and C form a pair of H-summands of a closed convex set A, or summands
of A with respect to homotheties, provided the Minkowski sum of any homothetic
copies of B and C is always homothetic to A. (See Schneider’s monograph [7]
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for an extensive treatment of the Minkowski addition and subtraction of convex
bodies.) In terms of homothety classes, B and C are H-summands of A if and
only if BH + CH ⊂ AH , where

BH + CH = {B′ + C ′ | B′ ∈ BH , C ′ ∈ CH}.

Our first result (see Theorem 1) describes the pairs of H-summands of a line-free
closed convex set in terms of homothety classes. In what follows, rec S denotes
the recession cone of a closed convex set S. In particular, rec S is a closed convex
cone with apex 0 such that S + rec S = S.

Theorem 1. For a pair of line-free closed convex sets B and C, the following
conditions (1)–(3) are equivalent.

(1) BH +CH belongs to a unique homothety class generated by a line-free closed
convex set.

(2) BH + CH lies in the union of countably many homothety classes generated
by line-free closed convex sets.

(3) There is a line-free closed convex set A such that:

(a) rec A = rec B + rec C,

(b) each of the sets B0 = B + rec A and C0 = C + rec A is homothetic
either to A or to rec A,

(c) if A is not a cone, then at least one of the sets B0, C0 is not a cone.

As follows from the proof of Theorem 1, a line-free closed convex set A with
properties (a)–(c) above satisfies the inclusion BH + CH ⊂ AH .

Corollary 1. For a pair of compact convex sets B and C, each of the conditions
(1)–(3) from Theorem 1 holds if and only if B and C are homothetic.

We note that Corollary 1 can be easily proved by using R̊adström’s cancellation
law [5]. The proof of Theorem 1 is based on the properties of exposed points of
the sum of two line-free closed convex sets formulated in Theorem 2. As usual,
exp S and ext S stand, respectively, for the sets of exposed and extreme points of
a convex set S.

Theorem 2. Let a line-free closed convex set A be the Minkowski sum of closed
convex sets B and C. Then both convex sets B0 = B + rec A and C0 = C + rec A
are closed and satisfy the following conditions:

(1) for any point a ∈ exp A there are unique points b ∈ exp B0 and c ∈ exp C0

such that a = b + c,

(2) the sets

expC B = {x ∈ exp B | ∃ y ∈ exp C such that x + y ∈ exp A},
expB C = {x ∈ exp C | ∃ y ∈ exp B such that x + y ∈ exp A}

are dense in exp B0 and exp C0, respectively.
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Remark 1. Theorem 2 seems to be new even for the case of compact convex sets.
Moreover, there are convex bodies B and C in R2 such that expC B 6= exp B and
expB C 6= exp C. Indeed, let B = {(x, y) | x2 + y2 ≤ 1} be the unit disk of the
coordinate plane R2, and C = {(x, y) | 0 ≤ x, y ≤ 1} be the unit square. Then
b = (0, 1) lies in exp B \ expC B.

Remark 2. Since exp A is dense in ext A, Theorem 2 remains true if we substitute
“ext ” for “exp ”. Then extCB = ext B and extBC = ext C provided both B and
C are compact (see [2]). One can easily construct unbounded closed convex sets
B and C in R2 such that extCB 6= ext B0 and extBC 6= ext C0.

Let us recall that the Minkowski difference X ∼ Y of any sets X and Y in Rn is
defined by X ∼ Y = {x ∈ Rn | x + Y ⊂ X}. If both X and Y are closed convex
sets, then the equality X ∼ Y = ∩{X − y | y ∈ Y } implies that X ∼ Y is also
closed and convex (possibly, empty). Given n-dimensional closed convex sets B
and C, we put

BH ∼
n

CH = {B′ ∼ C ′ | B′ ∈ BH , C ′ ∈ CH , dim (B′ ∼ C ′) = n}.

An important notion here is that of tangential set introduced by Schneider [7,
p. 136]: a closed convex set D of dimension n is a tangential set of a convex body
F provided F ⊂ D and through each boundary point of D there is a support
hyperplane to D that also supports F .

Theorem 3. For a pair of convex bodies B and C, the following conditions
(1)–(4) are equivalent:

(1) BH ∼
n

CH ⊂ BH ,

(2) BH ∼
n

CH lies in a unique homothety class generated by a convex body,

(3) BH ∼
n

CH lies in the union of countably many homothety classes generated

by convex bodies,

(4) B is homothetic to a tangential set of C.

Remark 3. Theorem 3 cannot be directly generalized to the case of unbounded
convex sets. Indeed, let B and C be convex sets in R2 given by

B = {(x, y) | x ≥ 0, xy ≥ 1}, C = {(x, y) | x ≥ 0, y ≥ 0, x + y ≤ 1}.

Then B ∼ γC = B for any γ > 0, while B is not homothetic to a tangential set
of C.

2. Proof of Theorem 2

We say that a closed halfspace P supports a closed convex set S provided the
boundary hyperplane of P supports S and the interior of P is disjoint from S. If
P = {x ∈ Rn | 〈x, e〉 ≤ α} where e is a unit vector and α is a scalar, then e is
called the outward unit normal to P .
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Lemma 1. Let S be a line-free closed convex set, and P be a closed halfspace
such that P ∩ rec S = {0}. Then:

(1) there is a translate of P that supports S,

(2) no translate of P contains an asymptotic ray of S,

(3) if a translate Q of P is disjoint from S, then for any point x ∈ bd Q the
tangent cone

Tx(S) = cl (∪{x + λ(S − x) | λ ≥ 0})

is line-free and satisfies the condition Q ∩ Tx(S) = {x}.

Proof. First we claim that for any vector x the intersection (x+P )∩S is compact.
Indeed, if (x + P ) ∩ S were unbounded, then rec ((x + P ) ∩ S) would contain a
ray with apex 0 . This and the equality rec ((x + P ) ∩ S) = P ∩ rec S contradict
the hypothesis.

(1) Let x+P be a translate of P that intersects S. Because (x+P )∩S is compact,
there is a translate y+P that supports (x+P )∩S. Obviously, y+P also supports
S.

(2) Assume for a moment that a translate z + P of P contains an asymptotic ray
l of S. If x + P is a translate of P that intersects S, then (x + P ) ∩ S should
contain the ray (x− z) + l, contradicting (a).

(3) The cone Tx(S) is line-free as a tangent cone of a line-free convex set S with
x 6∈ S. Assume that Q ∩ Tx(S) contains a point z 6= x. Then the ray [x, z) lies in
Q ∩ Tx(S), which implies that l = [x, z)− x lies in P ∩ rec S, a contradiction. 2

Lemma 2. Let S be a line-free closed convex set, P be a closed halfspace that
supports S, and e be the outward unit normal to P . For any ε > 0 there is a
closed halfspace P ′ such that S ∩P ′ is an exposed point of S and the outward unit
normal e′ to P ′ satisfies the inequality ‖e− e′‖ < ε.

Proof. Choose a point a ∈ S ∩ P , and let b = a − e. Then the unit ball with
center b lies in P and touches S at a. Let Br be the ball with center b and radius
r ∈]0, 1[. We can choose r so close to 1 that for any closed halfspace Q that
contains Br and is disjoint from S, the outward unit normal q to Q satisfies the
inequality ‖e− q‖ < ε.

As proved in [1], there is a pair of distinct parallel hyperplanes L and M both
separating S and Br such that the intersections S ∩ L and Br ∩M are exposed
points of S and Br, respectively. Let P ′ be the closed halfspace bounded by L
and containing Br. By the choice of r, the outward unit normal e′ to P ′ satisfies
the inequality ‖e− e′‖ < ε. 2

I am indebted to Rolf Schneider for his comment that Lemma 2 can be proved
by using a duality argument and the fact that the set of regular point of an
n-dimensional closed convex set S ⊂ Rn is dense in the boundary of S.
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Lemma 3. ([6, Corollary 9.1.2]) Let B and C be line-free closed convex sets
such that their sum A = B + C is also line-free. Then A is closed and rec A =
rec B + rec C. 2

We continue with the proof of Theorem 2. Because A is line-free, both B0 and C0

are also line-free. Lemma 3 implies that B0 and C0 are closed sets and rec B0 =
rec C0 = rec A.

Let a be an exposed point of A, and let P be a closed halfspace supporting A
such that A∩P = {a}. If a = b+ c, with b ∈ B and c ∈ C, then, as is easily seen,
the halfspace Q = (b− a) + P supports B at b, and the halfspace T = (c− a) + P
supports C at c. Moreover, B ∩ Q = {b} and C ∩ T = {c} since otherwise A
should intersect P along a set larger than {a}. Hence b ∈ exp B and c ∈ exp C.
Lemma 1 implies that B0 ∩ Q = {b} and C0 ∩ T = {c}. Thus b ∈ exp B0 and
c ∈ exp C0.

Regarding part (2) of the theorem, we will prove only that expC B is dense in
exp B0, since the second inclusion holds by the symmetry argument. First we
observe that expC B ⊂ exp B0. Indeed, let x ∈ expC B and y ∈ expB C be such
that x+y ∈ exp A. Choose a closed halfspace P with P ∩A = {x+y}. As above,
the halfspace Q = P − y satisfies Q ∩B0 = {x}. Hence x ∈ exp B0.

To prove the inclusion exp B0 ⊂ cl expC B, it suffices to show that

B0 = conv (cl expC B) + rec A. (∗)

Indeed, let (∗) be true. By [3, 4], we have B0 = conv (ext B0) + rec A. Moreover,
ext B0 ⊂ X for any set X ⊂ B0 with B0 = conv X + rec A. Then (∗) implies that
exp B0 ⊂ ext B0 ⊂ cl expC B.

Assume, for contradiction, that B0 6= conv (cl expC B) + rec A. Then there is
a point p ∈ exp B0 that does not lie in the line-free closed convex set B1 =
conv (cl expC B) + rec A. Let Q be the closed halfspace such that B0 ∩Q = {p}.
Because B1 ⊂ B0 and p 6∈ B1, we have B1 ∩ Q = ∅. Let e be the outward unit
normal to Q.

Since p 6∈ B1, the tangent cone Tp(B1) is line-free. Furthermore, Q∩Tp(B1) =
{p} (see Lemma 1). Hence there is a scalar ε > 0 such that any closed halfspace
H with the properties p ∈ bd H and ‖e − h‖ < ε, where h is the outward unit
normal for H, supports Tp(B1) at p only: H ∩ Tp(B1) = {p}.

Lemma 1 implies the existence of a translate of Q that supports A. By Lemma
2, there is a closed halfspace Q′ whose outward unit normal e′ satisfies ‖e−e′‖ < ε
and such that A ∩ Q′ is an exposed point of A. Let {a} = A ∩ Q′. As above,
a = b + c with b ∈ expC B and c ∈ expB C. Moreover, the closed halfspace
P = (b−a)+Q′ satisfies B0∩P = {b}. By the choice of ε, the halfspace P should
be disjoint from B1. The last is in contradiction with b ∈ expC B ⊂ B1. Hence
B0 = B1. 2
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3. Proof of Theorem 1

(3) ⇒ (1) Given points b, c and scalars β, γ > 0, we have

(b + βB) + (c + γC) = b + β(B + rec B) + c + γ(C + rec C)

= b + β(B + rec B + rec C) + c + γ(C + rec B + rec C)

= b + β(B + rec A) + c + γ(C + rec A)

= b + c + βB0 + γC0.

If A is a cone then A = rec A and βB0 + γC0 = A. Let A be distinct from a cone.
By (3c), at least one of the sets B0, C0 is not a cone. Assume, for example, that
B0 is not a cone. In this case,

βB0 + γC0 =

{
βx + γz + (βλ + γµ)A, if B0 = x + λA, C0 = z + µA,

βx + γz + βλA, if B0 = x + λA, C0 = z + rec A.

Summing up, (b + βB) + (c + γC) is homothetic to A. Hence BH + CH ⊂ AH .

Since (1) ⇒ (2) trivially holds, it remains to prove that (2) ⇒ (3). We need some
auxiliary lemmas.

Lemma 4. Line-free closed convex sets S and T are homothetic if and only if
rec S = rec T and the sets cl exp S and cl exp T are homothetic. 2

Lemma 5. If the sets B and C satisfy condition (2) of Theorem 1, then there
are scalars 0 < γ1 < γ2 such that B + γ1C and B + γ2C are homothetic.

Proof. Indeed, consider the family F = {B + γC | γ > 0}. Since F lies in the
union of countably many homothety classes, and since the elements of F depend
on an uncountable parameter γ, there is a pair of scalars 0 < γ1 < γ2 such that
the sets B + γ1C and B + γ2C are homothetic. 2

Continuing with (2) ⇒ (3), we are going to show that the set A = B + C satisfies
condition (3). By Lemma 3, A is a closed convex set with rec A = rec B + rec C.
Furthermore, Theorem 2 obviously implies that A is a cone if and only if both B
and C are cones, whence part (3c) also holds.

Hence it remains to prove (3b). If any of the sets B0, C0, say B0, is a cone, then
B0 = x + rec B0 = x + rec A for a suitable point x, and

C0 = C0 + rec A = C0 + (B0 − x) = A− x.

Thus we may assume that neither B0 nor C0 is a cone. In this case we will prove
that both B0 and C0 are homothetic to A. Since A = B0 + C0, it is sufficient to
show that B0 and C0 are homothetic. By Lemma 4, B0 and C0 are homothetic if
and only if the sets cl exp B0 and cl exp C0 are homothetic, and Theorem 2 implies
that the last are homothetic if and only if cl expC B and cl expB C are homothetic.

Choose any point a0 ∈ exp A. Then a0 = b0+c0 for suitable points b0 ∈ expC B
and c0 ∈ expB C. Translating B and C on vectors −b0 and −c0, respectively, we
may consider that a0 = b0 = c0 = 0 . We divide our consideration into two steps.
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1. If points a ∈ exp A \ {0}, b ∈ expC B, and c ∈ expB C are such that a = b + c,
then 0 , b, and c are collinear.

Indeed, assume the existence of a point a ∈ exp A \{0} and of points b ∈ expC B,
c ∈ expB C such that a = b + c but 0 , b, and c are not collinear. Then no three
of the points 0 , b + γ1c, b + γ2c, with 0 < γ1 < γ2, are collinear. Since b + γc is
an exposed point of B + γC, which has 0 as an exposed point, we conclude that
no two elements of the family {B + γC | γ > 0} are homothetic, contradicting
Lemma 5.

2. There is a scalar µ > 0 such that for any points a ∈ exp A \ {0}, b ∈ expC B,
and c ∈ expB C with a = b + c, we have c = µb.

Indeed, assume the existence of points a1, a2 ∈ exp A \ {0} and of corresponding
points b1, b2 ∈ expC B and c1, c2 ∈ expB C, with a1 = b1 + c1 and a2 = b2 + c2,
such that c1 = µ1b1 and c2 = µ2b2, where µ1 6= µ2. In this case, both b1 + γc1 =
(1+ γµ1)b1 and b2 + γc2 = (1+ γµ2)b2 are exposed points of B + γC for all γ > 0.
Since 0 is an exposed point of B + γC, γ > 0, and since the ratio

‖(1 + γµ1)b1 − 0‖
‖(1 + γµ2)b2 − 0‖

=
1 + γµ1

1 + γµ2

is a strictly monotone function of γ on ]0,∞), we conclude that no two elements
of the family {B + γC | γ > 0} are homothetic. The last is in contradiction with
Lemma 5.

Summing up, we conclude the existence of a scalar µ > 0 such that cl expC B =
µ cl expB C. By Lemma 4, B0 and C0 are homothetic. 2

4. Proof of Theorem 3

The key role here plays the following lemma, which is a slight generalization of
Lemma 3.1.10 from [7].

Lemma 6. Given a closed convex set B of dimension n and a convex body C, the
following conditions are equivalent:

(1) there is a scalar τ > 0 such that B is a tangential set of τC,

(2) there is a scalar τ > 0 such that B ∼ γC = (1− γ/τ)B for all γ ∈ ]0, τ [,

(3) there is a scalar γ > 0 such that B ∼ γC = λB with 0 < λ < 1.

Proof. (1) ⇒ (2) If B is a tangential set of τC for some τ > 0, then τC ⊂ B and
γC ⊂ γ/τB for any scalar γ ∈ ]0, τ [. In this case,

(1− γ/τ)B = B ∼ γ/τB ⊂ B ∼ γC.

To prove the opposite inclusion, choose any point x ∈ B ∼ γC. Equivalently,
x + γC ⊂ B. We claim that x + γ/τB ⊂ B. Indeed, let P = {Pα} be the family
of closed halfspaces each containing B such that the boundary hyperplane Hα of
every Pα ∈ P supports B at a regular boundary point. Obviously, B = ∩{Pα |
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Pα ∈ P}. Since B is a tangential set of τC, each Pα ∈ P contains τC and Hα

supports τC. Hence each halfspace γ/τPα contains γC and the hyperplane γ/τHα

supports γC. Then the inclusion x + γC ⊂ B implies that x + γ/τPα ⊂ Pα for
all Pα ∈ P . Thus

x + γ/τB = ∩{x + γ/τPα | Pα ∈ P} ⊂ {Pα | Pα ∈ P} = B,

implying that x ∈ B ∼ γ/τB = (1− γ/τ)B. Finally, B ∼ γC ⊂ (1− γ/τ)B.

Since (2) trivially implies (3), it remains to show that (3) ⇒ (1). Let B ∼ γC =
λB with 0 < λ < 1. Then

λ2B = λ(λB) = λ(B ∼ γC) = λB ∼ λγC

= (B ∼ γC) ∼ λγC = B ∼ (1 + λ)γC.

By induction on k = 1, 2, . . . we get

λkB = B ∼ (1 + λ + · · ·+ λk−1)γC = B ∼ γ 1−λk

1−λ
C.

As is easily seen, λkB → rec B when k →∞. By the compactness argument, we
have B ∼ ρkC → B ∼ ρC when ρk → ρ. Hence

rec B = B ∼ τC with τ =
γ

1− λ
.

It remains to prove that B is a tangential set of τC. Choose any point x ∈ bd B.
Then

λx ∈ λ bd B = bd (λB) = bd (B ∼ γC).

In particular, λx ∈ B ∼ γC, implying that λx + γC ⊂ B.
We claim that λx + γC contains a boundary point of B. Indeed, assume for

a moment that λx + γC ⊂ int B. Since C is compact, there is an open ball Uε of
radius ε > 0 centered at 0 such that the ε-neighborhood λx+γC +Uε of λx+γC
lies in B. Hence λx + Uε ⊂ B ∼ γC, in contradiction to λx ∈ bd (B ∼ γC).

Let y be a point of λx + γC that belongs to bd B. Then y = λx + γc for a
point c ∈ C and

v =
y − λx

1− λ
=

γc

1− λ
= τc ∈ τC ⊂ B.

Since y = (1 − λ)v + λx with x, y ∈ bd B and v ∈ B we conclude that the line
segment [x, v] lies in bd B. Hence any support hyperplane of B through y contains
x and v and thus supports B at x and τC at v. So B is a tangential set of τC.2

Remark 3. From the proof of Lemma 6 we conclude that if the sets B and C
satisfy condition (3) of the lemma, then B is a translate of a tangential set of
γ/(1− λ)C.
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Let us recall (see [7, p. 136]) that the inradius of a convex body B with respect to
a convex body C is defined by

rC(B) = max{λ ≥ 0 | x + λC ⊂ B}.

Lemma 7. Given convex bodies B and C, we have rC(B)rB(C) ≤ 1. The equality
rC(B)rB(C) = 1 holds if and only if B and C are homothetic.

Proof. Put s = rC(B) and t = rB(C). Then x+sC ⊂ B and z + tB ⊂ C for some
vectors x, z. In this case, tx + stC ⊂ tB ⊂ C − z, implying that st ≤ 1.

If st = 1 then from the inclusion above we deduce that tB = C − z, whence
B is homothetic to C. Conversely, if B = x + γC, γ > 0, then, as easy to see,
rB(C) = γ and rC(B) = γ−1. 2

Lemma 8. Given convex bodies B and C and a scalar ρ ∈]0, rC(B)[, we have
rC(B ∼ ρC) = rC(B)− ρ.

Proof. Indeed,

rC(B ∼ ρC) = max{λ ≥ 0 | x + λC ⊂ B ∼ ρC, x ∈ Rn}
= max{λ ≥ 0 | x + λC + ρC ⊂ B, x ∈ Rn}
= max{λ ≥ 0 | x + (λ + ρ)C ⊂ B, x ∈ Rn}
= rC(B)− ρ. 2

Lemma 9. Let B and C be convex bodies such that B ∼ ρC = z + µB for a
vector z and scalars ρ ∈ ]0, rC(B)[ and µ > 0. Then

1− ρr−1
C (B) ≤ µ ≤ 1− ρrB(C).

Proof. Let v be a vector such that v + rB(C)B ⊂ C. According to Lemma 7,
ρv + ρrB(C)B ⊂ ρC with ρrB(C) < rC(B)rB(C) ≤ 1. We have

B ∼ ρC = {x ∈ Rn | x + ρC ⊂ B} ⊂ {x ∈ Rn | x + ρv + ρrB(C)B ⊂ B}
= {x ∈ Rn | x + ρrB(C)B ⊂ B − ρv} = (B − ρv) ∼ ρrB(C)B

= (B ∼ ρrB(C)B)− ρv = (1− ρrB(C))B − ρv.

Hence

z + µB = B ∼ ρC ⊂ (1− ρrB(C))B − ρv,

which implies the inequality µ ≤ 1− ρrB(C).
On the other hand, there is a vector w such that w + rC(B)C ⊂ B, which

gives the inclusion ρC ⊂ ρr−1
C (B)(B − w). Thus

z + µB = B ∼ ρC = {x ∈ Rn | x + ρC ⊂ B}
⊃ {x ∈ Rn | x + ρr−1

C (B)(B − w) ⊂ B + ρr−1
C (B)w}

= {x ∈ Rn | x + ρr−1
C (B)B ⊂ B + ρr−1

C (B)w}
= (B + ρr−1

C (B)w) ∼ ρr−1
C (B)B

= r−1
C (B)w + (B ∼ ρr−1

C (B)B)

= r−1
C (B)w + (1− ρr−1

C (B))B,
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resulting in the inequality 1− ρr−1
C (B) ≤ µ. 2

Lemma 10. If T1, T2, . . . is a convergent sequence of tangential convex bodies of
a convex body C, then their limit is also a tangential body of C.

Proof. Let T = limk→∞ Tk. Choose a boundary point x of T . Then there is a
sequence of points xk ∈ bd Tk, k = 1, 2, . . . , such that x = limk→∞ xk. For each
point xk there is a hyperplane Hk supporting Tk at xk and also supporting C.
The sequence H1, H2, . . . contains a subsequence H ′

1, H
′
2, . . . that converges to a

hyperplane H. As is easily seen, H supports T at x and also supports C. Hence
T is a tangential body of C. 2

Proof of Theorem 3. (4) ⇒ (1) By Lemma 6, every n-dimensional set

(x + λB) ∼ (z + γC) = (x− z) + λ(B ∼ γ/λC), λ, γ > 0,

is homothetic to B. Hence BH ∼ CH ⊂ BH .

Since the implications (1) ⇒ (2) ⇒ (3) are trivial, it remains to show that (3) ⇒
(4). Consider the intervals

Ik = ]2−krC(B), 21−krC(B)[, k = 1, 2, . . . .

By the assumption, each family

Dk = {B ∼ λC | λ ∈ Ik, dim(B ∼ λC) = n}, k = 1, 2, . . . ,

lies in the union of countably many homothety classes. Hence there are scalars
δk, γk ∈ Ik and µk ∈ ]0, 1[ such that δk < γk and

B ∼ γkC = xk + µk(B ∼ δkC), xk ∈ Rn, k = 1, 2, . . . .

Since

B ∼ γkC = B ∼ (δkC + (γk − δk)C) = (B ∼ δkC) ∼ (γk − δk)C,

we have

(B ∼ δkC) ∼ (γk − δk)C = xk + µk(B ∼ δkC).

By Lemma 6 and Remark 3, B ∼ δkC is a translate of a tangential set of (γk −
δk)/(1− µk)C, or, equivalently, the body

Dk = (1− µk)/(γk − δk)(B ∼ δkC)

is a translate of a tangential set Tk of C. Lemma 9 implies that

µk ≥ 1− (γk − δk)r
−1
C (B − δkC),

which gives

1− µk

γk − δk

≤ 1

rC(B − δkC)
, k = 1, 2, . . . .
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By Lemma 8, rC(B ∼ δkC) = rC(B)− δk. Since δ1 > δ2 > · · · > 0, we have

1

rC(B − δ1C)
>

1

rC(B − δ2C)
> · · · > 1

rC(B)
.

As a result, all of D1, D2, . . . are contained in a neighborhood of B ∼ δ1C. Then
we can select a subsequence D′

1, D
′
2, . . . of D1, D2, . . . that converges to a convex

body D. Since each Dk is a translate of the tangential body Tk that contains C, the
respective subsequence T ′1, T

′
2, . . . converges to a convex body T . By Lemma 10,

T is a tangential body of C.
Finally, limk→∞(B ∼ δkC) = B implies that B is homothetic to T . 2
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