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1. Introduction

A blocking set in a projective space P = PG(d, q) is a subset of P which meets
every line. Blocking sets have been investigated by several authors from many
points of view. The reader is referred to [2, 5, 7, 8] and papers cited there for a
survey on this topic.

Now, let F be a set of lines of P. A point set B of P is a blocking set with
respect to F (or an F-blocking set) if every line in F is incident with at least one
point of B. In [1] and [6], all minimum size blocking sets with respect to the set
of the external lines to a conic in PG(2, q) have been determined for q odd and q
even, respectively.

Let Q be a non-singular quadric or a cone in PG(3, q), and let F be the set
of the external lines to Q. If π is a plane, then π\Q is an F-blocking set. The
minimum size of π\Q is:
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(a) q2 − q, if Q is a hyperbolic quadric (π is a tangent plane);

(b) q2, if Q is an elliptic quadric (π is a secant plane);

(c) q2 − q, if Q is a cone (π is a plane sharing two distinct lines with Q).

The following two questions immediately arise.

1. Are these the correct sizes for the smallest blocking sets with respect to the
external lines to a non-singular quadric or a cone?

2. A blocking set of such a size is always of type π\Q, for some plane π?

In [4], an affirmative answer is given to both questions when Q is a hyperbolic
quadric and q is even. In this paper, we examine the other cases and again the
answer will be affirmative.

We note that if π is a plane and B is a blocking set with respect to the set of
the external lines to Q, then π ∩B is a blocking set in π with respect to the lines
in π external to π ∩ Q. Moreover, if B is of minimum size, then B ∩ Q = ∅.

Now, we state the main results of [1] and [6] which will be useful for the sequel
of this article.

Theorem 1.1. Let Γ be an irreducible conic of PG(2, q), q ≥ 9 odd. If B is a
blocking set with respect to the set of the external lines to Γ, then |B| ≥ q− 1 and
|B| = q − 1 if and only if B = L\Γ, where L is a secant line to Γ.

Theorem 1.2. Let Γ be an irreducible conic of PG(2, q), q even, and let n be its
nucleus. If B is a blocking set with respect to the set of the external lines to Γ,
then |B| ≥ q − 1 and |B| = q − 1 if and only if one of the following cases occurs:

(i) B = L\Γ, where L is a secant line to Γ;

(ii) B = L\(Γ ∪ {n}), where L is a tangent line to Γ;

(iii) q is a square and B = Π\(Γ ∪ {n}), where Π is a Baer subplane such that
|Π ∩ Γ| = √

q + 1.

Finally, if Q is a quadric in PG(3, q), by an external (tangent or secant) line we
mean a line external (tangent or secant) to Q. Similarly, a plane tangent or secant
to Q will be sometimes referred to as a tangent or secant plane.
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2. Hyperbolic quadric, q odd

Let Q be a hyperbolic quadric of PG(3, q), q ≥ 9 odd, and let F be the set of
all external lines to Q. Throughout this section, B denotes an F-blocking set of
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minimum size. Since, for any tangent plane π to Q, π\Q is an F-blocking set of
size q2 − q, necessarily

|B| ≤ q2 − q. (2.1)

Proposition 2.1. For an F-blocking set B of minimum size, |B| = q2−q. More-
over, |L ∩B| = 1 for any L ∈ F.

Proof. Counting in two ways the point-line pairs (x, L), x ∈ B ∩ L and L ∈ F,
yields

|B|q
2 − q

2
≥ q2(q − 1)2

2
. (2.2)

From (2.1) and (2.2),

q2(q − 1)2

2
= (q2 − q)

q2 − q

2
≥ |B|q

2 − q

2
≥ q2(q − 1)2

2
. (2.3)

From (2.3), it follows that the equality holds in both (2.1) and (2.2); so, the
statement is proved. �

Proposition 2.2. The following properties are valid:

(i) through any point in B, there exist q secant lines whose points not in Q are
in B;

(ii) if π is a secant plane, then |π ∩B| = q − 1 or q.

Proof. (i) Let p ∈ B and let L be an external line through p. By Proposition
2.1, L ∩ B = {p}. Every plane π through L is a secant plane so, by Theorem
1.1, |π ∩ B| ≥ q − 1. This implies, by Proposition 2.1, that there exist q planes
π1, π2, . . . , πq through L meeting B in q − 1 points and just one plane through L
intersecting B in q points. By Theorem 1.1, πi ∩ B = Li\Q (i = 1, . . . , q), where
Li is a secant line to Q.

(ii) Consider a line L in π external to Q. The arguments in (i) imply the state-
ment. �

Proposition 2.3. Through any point in B, there exists a tangent plane π such
that |π ∩B| ≥ (q − 1)2.

Proof. Let p ∈ B. By Proposition 2.2 (i), p lies on q secant lines L1, L2, . . . , Lq

such that |Li∩B| = q− 1, i = 1, 2, . . . , q. As q ≥ 9, (ii) of Proposition 2.2 implies
that the plane joining Li and Lj, i 6= j, is tangent to Q. Now, consider the two
tangent planes π′ and π′′ through L1. The lines L2, . . . , Lq are in π′ ∪ π′′; so,
q ≥ 9 implies that one of the two planes π′ and π′′, say π′, contains at least two
of such lines. Let L2, L3 ⊆ π′. If a line Li, i ≥ 4, exists not in π′, then through Li

there pass three distinct tangent planes 〈L1, Li〉, 〈L2, Li〉, 〈L3, Li〉, a contradiction.
Hence, the lines L1, L2, . . . , Lq all lie in π′ and the statement is proved. �

Now we can prove the following classification result.

Theorem 2.4. Let Q be a hyperbolic quadric in PG(3, q), q ≥ 9 odd. If B is a
minimum size blocking set with respect to the set of the external lines to Q, then
|B| = q2 − q and B = π\Q for some plane π tangent to Q.
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Proof. By Proposition 2.1, |B| = q2 − q. Now, let p ∈ B. By Proposition
2.3, a tangent plane π through p exists sharing with B at least (q − 1)2 points.
Assume that a point p′ exists in B\π. Again by Proposition 2.3, p′ lies in a
tangent plane π′ such that |π′ ∩B| ≥ (q − 1)2. Since |(π ∩ π′) ∩B| ≤ q − 1, then
|(π ∪ π′) ∩ B| ≥ 2q2 − 5q + 3, a contradiction to |B| = q2 − q as q ≥ 9. Hence,
B ⊆ π; so, |B| = q2 − q implies that B = π\Q and the statement is completely
proved. �

3. Elliptic quadric

Let Q be an elliptic quadric of PG(3, q), q ≥ 9, and let F be the set of all external
lines to Q. In this section, B denotes an F-blocking set of minimum size. Since,
for any secant plane π, π\Q is an F-blocking set of size q2, necessarily

|B| ≤ q2. (3.1)

Proposition 3.1. For any tangent plane π, |π ∩B| ≥ q.
If a tangent plane π meets B in exactly q points, then B ∩ π = L\Q for some

line L in π tangent to Q.

Proof. Counting in two ways the point-line pairs (x, L), x ∈ π ∩ B ∩ L and L a
line in π external to Q, gives |π ∩B|q ≥ q2. The first statement follows.

For the proof of the second statement, let π∩Q = {p0}. The set (B∩π)∪{p0}
is a blocking set in π and |(B ∩ π) ∪ {p0}| = q + 1; so, (B ∩ π) ∪ {p0} is a line.
The statement follows. �

Proposition 3.2. There exists a tangent line skew to B.

Proof. Assume that any tangent line shares at least one point with B. Counting
in two ways the point-line pairs (x, L), x ∈ B ∩ L and L a tangent line, yields
|B|(q+1) ≥ (q+1)(q2+1), a contradiction to (3.1); so, the statement is proved. �

Proposition 3.3. If L is a tangent line skew to B, then the tangent plane through
L meets B in exactly q points and |B ∩ π| = q − 1 for any secant plane through
L. Moreover, |B| = q2.

Proof. Counting points of B on planes through L, we obtain, by Proposition 3.1
and Theorems 1.1 and 1.2,

|B| ≥ q + q(q − 1) = q2;

so, the statement follows from (3.1). �

Proposition 3.4. There exist q + 1 lines L1, . . . , Lq+1 tangent to Q at distinct
points such that Li\Q ⊆ B, i = 1, . . . , q + 1, and such that the tangent plane
through Li only intersects B in Li \ Q.
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Proof. By Proposition 3.1, every tangent plane shares at least q points with B.
Denote by t the number of tangent planes meeting B in exactly q points. Counting
in two ways the point-plane pairs (x, π), x ∈ B ∩ π and π a tangent plane, gives

|B|(q + 1) ≥ tq + (q2 + 1− t)(q + 1)

from which, by Proposition 3.3, t ≥ q+1. The statement follows from Proposition
3.1. �

Now we can prove the following classification result.

Theorem 3.5. Let Q be an elliptic quadric in PG(3, q), q ≥ 9. If B is a minimum
size blocking set with respect to the set of the external lines to Q, then |B| = q2

and B = π\Q for some secant plane π to Q.

Proof. By Proposition 3.3, |B| = q2.

Case 1 q odd. By Proposition 3.2, there exists a tangent line L skew to B. Set
{p} = L ∩ Q. Moreover, denote by α0 the tangent plane to the point p and
by αi, i = 1, . . . , q, the secant planes through L. By Propositions 3.3 and 3.1
and Theorem 1.1, α0 ∩ B = T\{p}, where T is a line in α0 tangent to Q, and
αi ∩B = Li\Q, where Li is a secant line on p.

Let πi be the plane through L1 and Li, i = 2, . . . , q. Since πi is a secant plane
through p and |πi ∩ B| ≥ 2q − 2, then Proposition 3.3 implies that πi ∩ α0 = T .
Hence, the planes πi, i = 2, . . . , q, all coincide with the secant plane π joining L1

and T . Since |π ∩B| ≥ q2, necessarily B = π\Q.

Case 2 q even. By Proposition 3.4, there exist q + 1 lines L1, . . . , Lq+1 tangent
to Q at distinct points such that Li\Q ⊆ B, and such that the tangent plane πi

through Li meets B in Li\Q. So, Li meets πj, i 6= j, at a point of Lj. Therefore,
the lines Li pairwise intersect in a point of B.

Consider the plane π through L1 and L2, and let {n} = L1∩L2. Obviously, n
is the nucleus of the conic π ∩Q. Since any line Li, i = 3, . . . , q + 1, meets L1 and
L2, then Li ⊆ π and n ∈ Li since Li cannot intersect L1 and L2 in two distinct
points. Otherwise, it would be skew or secant to π∩Q. It therefore passes through
n. Since the only tangents to Q through n lie in π, the lines L3, . . . , Lq+1 all are
contained in π. Hence, the lines L1, . . . , Lq+1 all are contained in the plane π; so,
|π ∩B| ≥ q2. It follows that B = π\Q and the statement is completely proved. �

4. Cone

Let C be a cone of PG(3, q), q ≥ 9, and let F be the set of all external lines to
Q. In this section, B denotes an F-blocking set of minimum size. Since for any
plane π sharing two distinct lines with C, π\C is an F-blocking set of size q2 − q,
necessarily

|B| ≤ q2 − q. (4.1)

Proposition 4.1. |B| = q2 − q and, for any secant plane π, |B ∩ π| = q − 1.
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Proof. By Theorems 1.1 and 1.2, |π ∩ B| ≥ q − 1. Therefore, counting in two
ways the point-plane pairs (x, π), x ∈ B ∩ π and π a secant plane, gives

|B|q2 ≥ q3(q − 1). (4.2)

The statement follows from (4.1) and (4.2). �

Proposition 4.2. For any secant plane π, B ∩ π = L\C, where L is a line in π
secant to C.

Proof. Let B′ = B ∩ π and let Γ = C ∩ π. By Proposition 4.1, |π ∩B| = q − 1.
If q is odd, then the statement follows from Theorem 1.1.
If q is even, then one of the three cases in Theorem 1.2 must occur. Assume

that B′ = T\(Γ ∪ {n}), where T is a line in π tangent to Γ and where n is the
nucleus of Γ. If π′ is a secant plane through T other than π, then T\(Γ ∪ {n}) ⊆
B ∩ π′; so, by Proposition 4.1, T\(Γ∪ {n}) = B ∩ π′, a contradiction to Theorem
1.2 since the nucleus of the conic C ∩ π′ is a point of T\Γ distinct from n.

Now, assume that q is a square and B′ = Π\(Γ∪{n}), with Π a Baer subplane
of π sharing exactly

√
q + 1 points with Γ. Consider a line T in π tangent to Γ

at a point of Π and a secant plane π′ through T , distinct from π, such that the
nucleus n′ of C∩ π′ is in Π. By Proposition 4.1, |B ∩ π′| = q− 1; so, Theorem 1.2
implies that n′ /∈ B ∩ π′, a contradiction.

Hence, only the case (i) of Theorem 1.2 can occur.
The statement is completely proved. �

Theorem 4.3. Let C be a cone in PG(3, q), q ≥ 9. If B is a minimum size
blocking set with respect to the set of the external lines to C, then |B| = q2 − q
and B = π\C for some plane π sharing two distinct lines with C.

Proof. Let v be the vertex of C and let p ∈ C\{v}. By Proposition 4.1, |B| =
q2 − q; so, through p, a secant line L skew to B exists. Denote by r the point in
C ∩ L different from p, and by π1, . . . , πq the q secant planes through L.

By Proposition 4.2, πi∩B = Li\C, Li a secant for any i = 1, . . . , q. Obviously,
Li passes through p or r, i = 1, . . . , q. Assume that p ∈ Li and r ∈ Lj, i 6= j. Since
q ≥ 9, there exists a secant plane through Li and a point in Lj∩B; a contradiction
to Proposition 4.2. Hence, the q lines Li, i = 1, . . . , q, all pass through one of the
two points p and r, say p. By Proposition 4.2, the plane through L1 and Lj,
j = 2, . . . , q, is not a secant plane, so it is the plane π joining L1 and v. Therefore,
|π ∩B| ≥ q(q − 1); so B = π\C and the statement is proved. �
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