Groups in which the Bounded Nilpotency of Two-generator Subgroups is a Transitive Relation

Costantino Delizia Primož Moravec * Chiara Nicotera
1,3 Dipartimento di Matematica e Informatica, Università di Salerno Via Ponte don Melillo, 84084 - Fisciano (SA), Italy
${ }^{1}$ e-mail: cdelizia@unisa.it ${ }^{3}$ e-mail: cnicotera@unisa.it
${ }^{2}$ Fakulteta za Matematiko in Fiziko, Univerza v Ljubljani
Jadranska 19, 1000 Ljubljana, Slovenia
e-mail: primoz.moravec@fmf.uni-lj.si

Abstract

In this paper we describe the structure of locally finite groups in which the bounded nilpotency of two-generator subgroups is a transitive relation. We also introduce the notion of (nilpotent of class c)-transitive kernel. Our results generalize several known results related to the groups in which commutativity is a transitive relation.

MSC 2000: 20E15, 20D25
Keywords: nilpotent-transitive groups, (nilpotent of class c)-transitive kernel, locally finite groups, Frobenius groups

1. Introduction

Let c be a positive integer and let \mathfrak{N}_{c} denote the class of all groups which are nilpotent of class $\leq c$. A group G is said to be an $\mathfrak{N}_{c} T$-group if for all $x, y, z \in$ $G \backslash\{1\}$ the relations $\langle x, y\rangle \in \mathfrak{N}_{c}$ and $\langle y, z\rangle \in \mathfrak{N}_{c}$ imply $\langle x, z\rangle \in \mathfrak{N}_{c}$. In the case $c=1$ these groups are known as commutative-transitive groups (also CT-groups

[^0]0138-4821/93 \$ 2.50 © 2007 Heldermann Verlag
or $C A$-groups) and have been studied by several authors $[2,3,4,8,11,14,15]$. It is not difficult to see that $C T$-groups are precisely the groups in which centralizers of non-identity elements are abelian. The study of these groups was initiated by Weisner [14] in 1925, but there are some fallacies in his proofs. Nevertheless, it turns out that finite $C T$-groups are either soluble or simple. Finite nonabelian simple $C T$-groups have been classified by Suzuki [11]. He proved that every finite nonabelian simple $C T$-group is isomorphic to some $\operatorname{PSL}\left(2,2^{f}\right)$, where $f>1$. The complete description of finite soluble $C T$-groups has been given by Wu [15] (see also a paper of Lescot [8]), who has also obtained information on locally finite $C T$-groups and polycyclic $C T$-groups. At roughly the same time Fine et al. [4] introduced the notion of the commutative-transitive kernel of a group. This topic has been further explored by the first and the third author; see [2] and [3].

Passing to finite $\mathfrak{N}_{c} T$-groups with $c>1$ we first note that in these groups centralizers of non-identity elements are nilpotent. The converse is not true, however, as the example of $\operatorname{PSL}(2,9)$ shows (see Proposition 4.5). Compared to the CTcase, this may seem to be a certain disadvantage at first glance, but nevertheless we obtain satisfactory information on the structure of locally finite $\mathfrak{N}_{c} T$-groups. We show that soluble locally finite $\mathfrak{N}_{c} T$-groups are either Frobenius groups or belong to the class of groups in which every two-generator subgroup is nilpotent of class $\leq c$. Furthermore, we prove that finite $\mathfrak{N}_{c} T$-groups are either soluble or simple. This provides a generalization of results in [15]. Additionally, we show that the groups $\operatorname{PSL}\left(2,2^{f}\right)$, where $f>1$, and Suzuki groups $\operatorname{Sz}(q)$, with $q=2^{2 n+1}>2$, are the only finite nonabelian simple $\mathfrak{N}_{c} T$-groups for $c>1$. This result is probably the strongest evidence showing the gap between $C T$-groups and $\mathfrak{N}_{c} T$-groups with $c>1$. We also show that locally finite $\mathfrak{N}_{c} T$-groups are either locally soluble or simple. In the latter case we give a classification of these groups.

Another notion closely related to $C T$-groups is the commutative-transitive kernel of a group. Given a group G, we can construct a characteristic subgroup $T(G)$ as the union of a chain $1=T_{0}(G) \leq T_{1}(G) \leq \cdots$ in such way that $G / T(G)$ is a $C T$-group [4]. In [2] it is proved that if G is locally finite, then $T(G)=$ $T_{1}(G)$. Similar results have also been obtained in [3] for other classes of groups, such as supersoluble groups. In analogy with this we introduce the notion of the \mathfrak{N}_{c}-transitive kernel of a group and prove that it has similar properties like the commutative-transitive kernel.

In the final section we present some examples of $\mathfrak{N}_{2} T$-groups. In particular, we present Frobenius $\mathfrak{N}_{2} T$-groups with nonabelian kernel and Frobenius $\mathfrak{N}_{2} T$ groups with noncyclic complement. We also show that some finite linear groups with nilpotent centralizers are in a certain sense far from being $\mathfrak{N}_{c} T$-groups.

2. $\mathfrak{N}_{c} \boldsymbol{T}$-groups

In this section we investigate the structure of locally finite $\mathfrak{N}_{c} T$-groups. In the beginning we exhibit some basic properties of these groups. For positive integers $r>1$ and n denote by $\mathfrak{N}(r, n)$ the class of all groups in which every r-generator subgroup is nilpotent of class $\leq n$. Every finite $\mathfrak{N}(r, n)$-group is nilpotent by Zorn's
theorem (see Theorem 12.3.4 in [10]). It is now clear that every locally nilpotent $\mathfrak{N}_{c} T$-group is also an $\mathfrak{N}(2, c)$-group. In fact, every $\mathfrak{N}_{c} T$-group with nontrivial center is an $\mathfrak{N}(2, c)$-group. On the other hand, the property $\mathfrak{N}_{c} T$ behaves badly under taking quotients and forming direct products. For, it is known that every free (soluble) group is a $C T$-group [15]. Moreover if G and H are $\mathfrak{N}_{c} T$-groups and there exist $x, y \in G$ such that $\langle x, y\rangle$ is not nilpotent, then it is easy to see that $G \times H$ is not an $\mathfrak{N}_{d} T$-group for any $d \in \mathbb{N}$.

Our first result shows that the classes of $\mathfrak{N}_{c} T$-groups form a chain.
Proposition 2.1. Let c and d be integers, $c \geq d \geq 1$. Then every $\mathfrak{N}_{d} T$-group is also an $\mathfrak{N}_{c} T$-group.

Proof. Let G be an $\mathfrak{N}_{d} T$-group. Let $x, y, z \in G \backslash\{1\}$ and suppose that the groups $\langle x, y\rangle$ and $\langle y, z\rangle$ are nilpotent of class $\leq c$. By the above remarks $\langle x, y\rangle$ and $\langle y, z\rangle$ are nilpotent of class $\leq d$. As G is an $\mathfrak{N}_{d} T$-group, it follows that $\langle x, z\rangle$ is nilpotent of class $\leq d$, hence it is nilpotent of class $\leq c$.

The following lemma is crucial for the description of soluble locally finite $\mathfrak{N}_{c} T$ groups.

Lemma 2.2. Let G be a locally finite $\mathfrak{N}_{c} T$-group with nontrivial Hirsch-Plotkin radical H. Then the factor group G / H acts fixed-point-freely on H by conjugation.

Proof. As the Hirsch-Plotkin radical H is a locally nilpotent $\mathfrak{N}_{c} T$-group, it is also an $\mathfrak{N}(2, c)$-group. Let y be a nontrivial element in H. Suppose there exists $a \in C_{G}(y) \backslash H$. Since the group $\langle a, y\rangle$ is abelian and H is an $\mathfrak{N}(2, c)$-group, we conclude that the group $\langle a, h\rangle$ is nilpotent of class $\leq c$ for every $h \in H$, since G is an $\mathfrak{N}_{c} T$-group. By conjugation we get that $\left\langle a^{g}, h\right\rangle$ is also nilpotent of class $\leq c$ for all $g \in G$ and $h \in H$. As G is an $\mathfrak{N}_{c} T$-group, this implies that the group $\left\langle a, a^{g}\right\rangle$ is nilpotent of class $\leq c$ for every $g \in G$. In particular, we have $1=\left[a^{g},{ }_{c} a\right]=\left[a, g,{ }_{c} a\right]$ for all $g \in G$, hence a is a left $(c+1)$-Engel element of G. As G is locally finite, this implies that $a \in H$ (see, for instance, Exercise 12.3.2 of [10]), which is a contradiction.

Theorem 2.3. Every locally finite soluble $\mathfrak{N}_{c} T$-group is either an $\mathfrak{N}(2, c)$-group or a Frobenius group whose kernel and complement are both $\mathfrak{N}(2, c)$-groups. Conversely, every locally finite Frobenius group in which kernel and complement are both $\mathfrak{N}\left(2\right.$, c)-groups is an $\mathfrak{N}_{c} T$-group.

Proof. Let G be a locally finite soluble $\mathfrak{N}_{c} T$-group and suppose G is not in $\mathfrak{N}(2, c)$. Let N be its Hirsch-Plotkin radical. As N is also an $\mathfrak{N}_{c} T$-group, it is an $\mathfrak{N}(2, c)$ group. By Lemma $2.2 G / N$ acts fixed-point-freely on N, hence G is a Frobenius group with the kernel N and a complement H; see, for instance, Proposition 1.J. 3 in [7]. Since H has a nontrivial center [7, Theorem 1.J.2], we have that $H \in \mathfrak{N}(2, c)$. Besides, N is nilpotent by the same result from [7].

Conversely, let G be a locally finite Frobenius group with the kernel N and a complement H and suppose that both N and H are $\mathfrak{N}(2, c)$-groups. Let $x, y, z \in$ $G \backslash\{1\}$ and let the groups $\langle x, y\rangle$ and $\langle y, z\rangle$ be nilpotent of class $\leq c$. Suppose
$x \in N$ and $y \notin N$. Then the equation $\left[x,{ }_{c} y\right]=1$ implies $\left[x,{ }_{c-1} y\right]=1$, since H acts fixed-point-freely on N. By the same argument we get $x=1$, which is not possible. This shows that if $x \in N$ then $y \in N$ and similarly also $z \in N$. But in this case $\langle x, z\rangle$ is clearly nilpotent of class $\leq c$, since N is an $\mathfrak{N}(2, c)$-group. Thus we may assume that $x, y, z \notin N$. Let $x \in H^{g}$ and $y \in H^{k}$ for some $g, k \in G$ and suppose $H^{g} \neq H^{k}$. We clearly have $C_{G}(x) \leq H^{g}$ and $C_{G}(y) \leq H^{k}$. Let α be any simple commutator of weight c with entries in $\{x, y\}$. As $\langle x, y\rangle$ is nilpotent of class $\leq c$, we have $\alpha \in C_{G}(x) \cap C_{G}(y)=1$. This implies that $\langle x, y\rangle$ is nilpotent of class $\leq c-1$. Continuing with this process, we end at $x=y=1$ which is impossible. Hence we conclude that $\langle x, y\rangle \leq H^{g}$ and similarly also $\langle y, z\rangle \leq H^{g}$. Therefore we have $\langle x, z\rangle \leq H^{g}$. But H^{g} is an $\mathfrak{N}(2, c)$-group, hence the group $\langle x, z\rangle$ is nilpotent of class $\leq c$. This concludes the proof.

Theorem 2.3 can be further refined when we restrict ourselves to finite groups.
Theorem 2.4. Let G be a finite group. Then G is a soluble $\mathfrak{N}_{c} T$-group if and only if it is either an $\mathfrak{N}(2, c)$-group or a Frobenius group with the kernel which is an $\mathfrak{N}(2, c)$-group and a complement which is nilpotent of class $\leq c$.

Proof. By Theorem 2.3 we only need to show that if G is a finite soluble $\mathfrak{N}_{c} T$ group which is not an $\mathfrak{N}(2, c)$-group, then every complement H of the Frobenius kernel N of G is nilpotent of class $\leq c$. Suppose N is not abelian. Then the order of H is odd, hence all Sylow subgroups of H are cyclic. This implies that H is cyclic. Assume now that N is abelian. Then all the Sylow p-subgroups of H are cyclic for $p \neq 2$, whereas the Sylow 2-subgroup is either cyclic or a generalized quaternion group $Q_{2^{n}}$ [5]. Moreover, since $H \in \mathfrak{N}(2, c)$, we obtain $n \leq c+1$. As H is nilpotent and all its Sylow subgroups are nilpotent of class $\leq c$, the nilpotency class of H does not exceed c.

Let G be a finite $\mathfrak{N}_{c} T$-group and suppose $G \notin \mathfrak{N}(2, c)$. If the Fitting subgroup of G is nontrivial, then Lemma 2.2 together with Theorem 2.4 shows that G is soluble and so its structure is completely determined by Theorem 2.4. The complete classification of finite insoluble $\mathfrak{N}_{c} T$-groups is described in our next result. Note that it has been shown in [11] that the groups $\operatorname{PSL}\left(2,2^{f}\right)$, where $f>1$, are the only finite insoluble $\mathfrak{N}_{1} T$-groups. Passing to finite $\mathfrak{N}_{c} T$-groups with $c>1$, we obtain an additional family of simple groups.

Theorem 2.5. Let G be a finite $\mathfrak{N}_{c} T$-group with $c>1$. Then G is either soluble or simple. Moreover, G is a nonabelian simple $\mathfrak{N}_{c} T$-group if and only if it is isomorphic either to $\operatorname{PSL}\left(2,2^{f}\right)$, where $f>1$, or to $\operatorname{Sz}(q)$, the Suzuki group with parameter $q=2^{2 n+1}>2$.

Proof. It is easy to see that in every finite $\mathfrak{N}_{c} T$-group G the centralizers of nontrivial elements are nilpotent, i.e., G is a $C N$-group. Suppose that G is not soluble. By a result of Suzuki [12, Part I, Theorem 4], G is a $C I T$-group, i.e., the centralizer of any involution in G is a 2 -group. Let P and Q be any Sylow p-subgroups of G and suppose that $P \cap Q \neq 1$. Since P and Q are $\mathfrak{N}(2, c)$-groups and G is
an $\mathfrak{N}_{c} T$-group, we conclude that $\langle P, Q\rangle$ is an $\mathfrak{N}(2, c)$-group, hence it is nilpotent. This shows that $\langle P, Q\rangle$ is a p-group, which implies $P=Q$. Therefore Sylow subgroups of G are independent. Combining Theorem 1 in Part I and Theorem 3 in Part II of [12], we conclude that G has to be simple. Additionally, we also obtain that G is a $Z T$-group, that is, G is faithfully represented as a doubly transitive permutation group of odd degree in which the identity is the only element fixing three distinct letters. The structure of these groups is described in [13]. It turns out that G is isomorphic either to $\operatorname{PSL}\left(2,2^{f}\right)$, where $f>1$, or to $\mathrm{Sz}(q)$ with $q=2^{2 n+1}>2$.

It remains to prove that $\operatorname{PSL}\left(2,2^{f}\right)$ and $\operatorname{Sz}(q)$ are $\mathfrak{N}_{c} T$-groups. For projective special linear groups this has been done in [11]. Now, let $G=\operatorname{Sz}(q)$ where $q=2^{2 n+1}>2$. By Theorem 3.10 c) in [6] G has a nontrivial partition $\left(G_{i}\right)_{i \in I}$, where for every $i \in I$ the group G_{i} is either cyclic or nilpotent of class ≤ 2. Moreover, the proof of result 3.11 in [6] implies that for all $g \in G \backslash\{1\}$ the relation $g \in G_{i}$ implies that $C_{G}(g) \leq G_{i}$. Let $x, y, z \in G \backslash\{1\}$ and suppose that the groups $\langle x, y\rangle$ and $\langle y, z\rangle$ are nilpotent of class ≤ 2. Let a and b be nontrivial elements in $Z(\langle x, y\rangle)$ and $Z(\langle y, z\rangle)$, respectively, and suppose that $a \in G_{i}$ and $b \in G_{j}$ for some $i, j \in I$. Then $y \in C_{G}(a) \cap C_{G}(b) \leq G_{i} \cap G_{j}$, hence $i=j$. But now we get $x, z \in G_{i}$ and since G_{i} is nilpotent of class ≤ 2, the same is true for the group $\langle x, z\rangle$. Hence G is an $\mathfrak{N}_{2} T$-group. By Proposition $2.1 G$ is an $\mathfrak{N}_{c} T$-group for every $c>1$.

It is proved in [15] that every locally finite insoluble $C T$-group is isomorphic to $\operatorname{PSL}(2, F)$ for some locally finite field F. For $\mathfrak{N}_{c} T$-groups, where $c>1$, we have the following result.
Theorem 2.6. Let $c>1$ and let G be a locally finite $\mathfrak{N}_{c} T$-group which is not locally soluble. Then there exists a locally finite field F such that G is isomorphic either to $\operatorname{PSL}(2, F)$ or to $\mathrm{Sz}(F)$.

Proof. Let G be a locally finite $\mathfrak{N}_{c} T$-group and suppose that G is not locally soluble. Then G contains a finite insoluble subgroup, hence every finite subgroup of G is contained in some finite insoluble subgroup of G. Using Theorem 2.5, we conclude that every finitely generated subgroup of G has a faithful representation of degree 4 over some field of even characteristic. By Mal'cev's representation theorem [7, Theorem 1.L.6], G has a faithful representation of the same degree over a field which is an ultraproduct of some finite fields. Hence G is a linear periodic group. It is not difficult to see that G has to be simple. Namely, the set of all finite nonabelian simple subgroups of G is a local system of G. By a theorem of Winter [7] the group G is countable. Thus we obtain a chain $\left(G_{i}\right)_{i \in \mathbb{N}}$ of nonabelian finite simple subgroups in G such that G is the union of this chain. By Theorem 2.5 we have either $G_{i} \cong \operatorname{PSL}\left(2, F_{i}\right)$ or $G_{i} \cong \operatorname{Sz}\left(F_{i}\right)$ for suitable finite fields $F_{i}, i \in \mathbb{N}$. On the other hand, $P S L(2, F)$ does not contain any Suzuki group as a subgroup and vice versa (this follows from [13] and Dickson's theorem in [5]). Therefore we either have $G_{i} \cong \operatorname{PSL}\left(2, F_{i}\right)$ for all $i \in \mathbb{N}$ or $G_{i} \cong \operatorname{Sz}\left(F_{i}\right)$ for all $i \in \mathbb{N}$. By a theorem of Kegel [7, Theorem 4.18] there exists a locally finite field F such that either $G \cong \operatorname{PSL}(2, F)$ or $G \cong \operatorname{Sz}(F)$.

Let the group G be locally finite and locally soluble. If G is an $\mathfrak{N}_{2} T$-group, then Theorem 2.5 implies that every finitely generated subgroup of G is either a 2Engel group or a Frobenius group with the kernel which is a 2-Engel group and a complement which is nilpotent of class ≤ 2. As every 2 -Engel group is nilpotent of class ≤ 3 (see $[9$, p. 45]), the derived length of finitely generated subgroups of G is bounded, so G is actually soluble. Therefore we have:

Corollary 2.7. Let G be a locally finite $\mathfrak{N}_{2} T$-group. Then G is either soluble or simple.

The structure of locally finite $\mathfrak{N}_{c} T$-groups, where $c>2$, is more complicated. Namely, Bachmuth and Mochizuki [1] constructed an insoluble \mathfrak{N} (2,3)-group of exponent 5 . This is a locally finite $\mathfrak{N}_{3} T$-group in which all finite subgroups are nilpotent. Therefore the result of Corollary 2.7 is no longer true for $\mathfrak{N}_{c} T$-groups with $c>2$.

3. \mathfrak{N}_{c}-transitive kernel

Let G be a group and let c be a positive integer. Put $T_{0}^{(c)}(G)=1$ and let $T_{1}^{(c)}(G)$ be the group generated by all commutators $\left[x_{1}, x_{2}, \ldots, x_{c+1}\right]$ for $x_{i} \in$ $\{a, b\}$, where a and b are nontrivial elements of G such that there exist $t \in \mathbb{N}_{0}$ and $y_{1}, \ldots, y_{t} \in G \backslash\{1\}$ with $\left\langle a, y_{1}\right\rangle \in \mathfrak{N}_{c},\left\langle y_{1}, y_{2}\right\rangle \in \mathfrak{N}_{c}, \ldots,\left\langle y_{t}, b\right\rangle \in \mathfrak{N}_{c}$. It is clear that $T_{1}^{(c)}(G)$ is a characteristic subgroup of G. For $n>1$ we define $T_{n}^{(c)}(G)$ inductively by $T_{n}^{(c)}(G) / T_{n-1}^{(c)}(G)=T_{1}^{(c)}\left(G / T_{n-1}^{(c)}(G)\right)$. So we get a chain $1=T_{0}^{(c)}(G) \leq T_{1}^{(c)}(G) \leq \cdots \leq T_{n}^{(c)}(G) \leq \cdots$ of characteristic subgroups of the group G. We define

$$
T^{(c)}(G)=\bigcup_{n \in \mathbb{N}_{0}} T_{n}^{(c)}(G)
$$

to be the (nilpotent of class c)-transitive kernel or, shorter, \mathfrak{N}_{c}-transitive kernel of the group G. In the case $c=1$ this definition coincides with the usual definition of the commutative-transitive kernel given in [4]. From the definition it also follows that $T^{(c)}(G)$ is a characteristic subgroup of G and that $T^{(c)}(G)=1$ if and only if G is an $\mathfrak{N}_{c} T$-group. Moreover, $G / T^{(c)}(G)$ is an $\mathfrak{N}_{c} T$-group for every group G. Additionally, notice that $T^{(c)}(G)=T_{n}^{(c)}(G)$ for some $n \in \mathbb{N}_{0}$ if and only if $G / T_{n}^{(c)}(G)$ is an $\mathfrak{N}_{c} T$-group. We use the notation $\Gamma_{t}(G)=\left\langle\gamma_{t}(\langle a, b\rangle) \mid a, b \in G\right\rangle$. It is easy to see that $T^{(c)}(G) \leq \Gamma_{c+1}(G)$.

In [2] it is proved that if G is a locally finite group, then $T^{(1)}(G)=T_{1}^{(1)}(G)$. In this section we shall show that we have an analogous result for the \mathfrak{N}_{c}-transitive kernel.

Proposition 3.1. Let G be a group and H a subgroup of G. Let c be a positive integer and suppose that the set $\mathcal{S}=\left\{h \in H \mid\langle h, k\rangle \in \mathfrak{N}_{c}\right.$ for all $\left.k \in H\right\}$ contains a nontrivial element. Then the group $H T_{1}^{(c)}(G) / T_{1}^{(c)}(G)$ is an $\mathfrak{N}(2, c)$-group.

Proof. Let $z \in \mathcal{S} \backslash\{1\}$. For all $a, b \in H \backslash\{1\}$ we have $\gamma_{c+1}(\langle a, b\rangle) \leq T_{1}^{(c)}(H)$, since the groups $\langle a, z\rangle$ and $\langle z, b\rangle$ are nilpotent of class $\leq c$. This implies that $\Gamma_{c+1}(H)=T_{1}^{(c)}(H) \leq T_{1}^{(c)}(G)$, so $H T_{1}^{(c)}(G) / T_{1}^{(c)}(G)$ is an $\mathfrak{N}(2, c)$-group.

Note that Proposition 3.1 implies that if G is a finite group, then every Sylow subgroup of $G / T_{1}^{(c)}(G)$ is an $\mathfrak{N}(2, c)$-group. In particular, if G is finite then the Fitting subgroup of $G / T_{1}^{(c)}(G)$ is an $\mathfrak{N}(2, c)$-group.

Proposition 3.2. The class of finite $\mathfrak{N}_{c} T$-groups is closed under taking quotients.
Proof. By Theorem 2.5 it suffices to consider finite soluble $\mathfrak{N}_{c} T$-groups. So suppose that G is a finite soluble $\mathfrak{N}_{c} T$-group. If $G \in \mathfrak{N}(2, c)$, then we are done. Otherwise, G is a Frobenius group with the kernel $F=\operatorname{Fitt}(G)$ which is an $\mathfrak{N}(2, c)$-group and a complement H which is nilpotent of class $\leq c$ by Theorem 2.4. If N is a normal subgroup of G, then we have either $N \leq F$ or $F \leq N$. If $F \leq N$, then G / N is nilpotent of class $\leq c$, hence it is an $\mathfrak{N}_{c} T$-group. Assume now that N is a proper subgroup of F. Then $G / N=F / N \rtimes H$, where the action of H on F / N is induced by the conjugation on F with elements of H. Since the subgroup N is invariant under the action of H, we conclude that H acts fixed-point-freely on F / N by Satz 8.10 in [5]. Therefore G / N is an $\mathfrak{N}_{c} T$-group by Theorem 2.4.

The following result is a generalization of Theorem 3 in [2]:
Theorem 3.3. Let G be a finite group. Then $T^{(c)}(G)=T_{1}^{(c)}(G)$ for every positive integer c.

Proof. If $T_{1}^{(c)}(G)=1$ or $T_{1}^{(c)}(G)=\Gamma_{c+1}(G)$, then we have nothing to prove. So we may assume that $1 \neq T_{1}^{(c)}(G)<\Gamma_{c+1}(G)$. Additionally, we may suppose that $T^{(c)}(H)=T_{1}^{(c)}(H)$ for every proper subgroup H of G. Let $\mathcal{F}=\{1 \neq$ $\left.H \triangleleft G \mid \Gamma_{c+1}(H) \leq T_{1}^{(c)}(G)\right\}$. Then this set is not empty since $T_{1}^{(c)}(G) \in \mathcal{F}$. So \mathcal{F} has a maximal element N. First of all, it is clear that $N \neq G$, since $T_{1}^{(c)}(G) \neq \Gamma_{c+1}(G)$. Furthermore, since $N T_{1}^{(c)}(G) / T_{1}^{(c)}(G)$ is an $\mathfrak{N}(2, c)$-group, the group $N T_{1}^{(c)}(G)$ also belongs to \mathcal{F}, so we have $T_{1}^{(c)}(G) \leq N$ by the maximality of N. Let $F / T_{1}^{(c)}(G)$ be the Fitting subgroup of $G / T_{1}^{(c)}(G)$. Since $N / T_{1}^{(c)}(G)$ is an $\mathfrak{N}(2, c)$-group, it is nilpotent, hence $N / T_{1}^{(c)}(G) \leq F / T_{1}^{(c)}(G)$. On the other hand, since $F / T_{1}^{(c)}(G)$ is an $\mathfrak{N}(2, c)$-group, we have that $\Gamma_{c+1}(F) \leq T_{1}^{(c)}(G)$. Thus $F \in \mathcal{F}$, hence $F=N$ by the maximality of N in \mathcal{F}. Consider now the set $\mathcal{S}=\left\{h \in N \mid\langle h, k\rangle \in \mathfrak{N}_{c}\right.$ for all $\left.k \in N\right\}$. Here we have to consider the following two cases.
Case 1. Suppose that $\mathcal{S} \neq\{1\}$ and let h be a nontrivial element of \mathcal{S}. Let $y \in N \backslash\{1\}$ and let $a \in C_{G}(y)$. For every $b \in N$ we have $\gamma_{c+1}(\langle a, b\rangle) \leq T_{1}^{(c)}(G)$, since $\langle a, y\rangle,\langle y, h\rangle$ and $\langle h, b\rangle$ are in \mathfrak{N}_{c}. Additionally we have that $\left\langle a^{g}, y^{g}\right\rangle,\left\langle y^{g}, h\right\rangle$, $\left\langle h, y^{k}\right\rangle$ and $\left\langle y^{k}, a^{k}\right\rangle$ are in \mathfrak{N}_{c} for all $g, k \in G$. Hence $\gamma_{c+1}\left(\left\langle a^{g}, a^{k}\right\rangle\right) \leq T_{1}^{(c)}(G)$ for all $g, k \in G$. In particular, this implies that $a T_{1}^{(c)}(G)$ is a left $(c+1)$-Engel
element of the group $G / T_{1}^{(c)}(G)$, hence it is contained in the Fitting subgroup of $G / T_{1}^{(c)}(G)$ by Theorem 12.3 .7 in [10]. This gives that $a \in N$. By Satz 8.5 in [5] G is a Frobenius group and N is its kernel. Let A be a complement of N in G. Since $T_{1}^{(c)}(A) \leq A \cap T_{1}^{(c)}(G) \leq A \cap N=1$, it follows that A is an $\mathfrak{N}_{c} T$-group. Moreover the center of A is nontrivial by [5, Satz 8.18], so A is an $\mathfrak{N}(2, c)$-group. Therefore G is soluble. If the nilpotency class of N does not exceed c, then G is an $\mathfrak{N}_{c} T$-group by Theorem 2.3 and $T_{1}^{(c)}(G)=1$, which is a contradiction. Hence we may suppose that the nilpotency class of N is greater than c. Consider the group $G / T_{1}^{(c)}(G)=N / T_{1}^{(c)}(G) \rtimes A T_{1}^{(c)}(G) / T_{1}^{(c)}(G)$. This is a Frobenius group with the kernel $N / T_{1}^{(c)}(G) \in \mathfrak{N}(2, c)$ and complement $A T_{1}^{(c)}(G) / T_{1}^{(c)}(G)$ which is also an $\mathfrak{N}(2, c)$-group. By Theorem 2.3 the group $G / T_{1}^{(c)}(G)$ is an $\mathfrak{N}_{c} T$-group, hence $T^{(c)}(G)=T_{1}^{(c)}(G)$ in this case.
Case 2. Suppose now that $\mathcal{S}=\{1\}$. Let $\Phi(G)$ be the Frattini subgroup of G. If $T_{1}^{(c)}(G) \leq \Phi(G)$, then the nilpotency of the group $N / T_{1}^{(c)}(G)$ implies that N is nilpotent, which is a contradiction. Hence $T_{1}^{(c)}(G) \not \leq \Phi(G)$, so there exists a maximal subgroup M of G such that $T_{1}^{(c)}(G) \not 又 M$. Then $G=M T_{1}^{(c)}(G)$ and $T_{1}^{(c)}(M)=T^{(c)}(M)$ since $M<G$. From $T_{1}^{(c)}(M) \leq T_{1}^{(c)}(G) \cap M$ we now obtain that $G / T_{1}^{(c)}(G)$ is an $\mathfrak{N}_{c} T$-group, since it is a homomorphic image of the $\mathfrak{N}_{c} T$-group $M / T_{1}^{(c)}(M)$. So $T^{(c)}(G)=T_{1}^{(c)}(G)$, as required.

Corollary 3.4. Let G be a locally finite group. Then $T^{(c)}(G)=T_{1}^{(c)}(G)$ for every positive integer c.
Proof. It suffices to show that if G is locally finite, then $G / T_{1}^{(c)}(G)$ is an $\mathfrak{N}_{c} T$ group. Let $x, y, z \in G \backslash T_{1}^{(c)}(G)$ and suppose that the groups $\langle x, y\rangle T_{1}^{(c)}(G) / T_{1}^{(c)}(G)$ and $\langle y, z\rangle T_{1}^{(c)}(G) / T_{1}^{(c)}(G)$ are nilpotent of class $\leq c$. This means that $\gamma_{c+1}(\langle x, y\rangle)$ $\leq T_{1}^{(c)}(G)$ and $\gamma_{c+1}(\langle y, z\rangle) \leq T_{1}^{(c)}(G)$. Let $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ and $\left\{\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{r^{\prime}}\right\}$ be the sets of all simple commutators of weight $c+1$ with entries from $\{x, y\}$ and $\{y, z\}$, respectively. For every $i=1, \ldots, r$ we have

$$
\alpha_{i}=\prod_{t=1}^{n_{i}}\left[x_{i, t, 1}, \ldots, x_{i, t, c+1}\right]^{\epsilon_{i, t}},
$$

where $\epsilon_{i, t}= \pm 1, x_{i, t, j} \in\left\{a_{i, t}, b_{i, t}\right\}$ for some $a_{i, t}, b_{i, t} \in G$ for which there exist $y_{i, t, 1}, \ldots, y_{i, t, s_{i, t}}$ in G such that $\left\langle a_{i, t}, y_{i, t, 1}\right\rangle,\left\langle y_{i, t, 1}, y_{i, t, 2}\right\rangle, \ldots,\left\langle y_{i, t, s_{i, t}}, b_{i, t}\right\rangle$ are nilpotent of class $\leq c$, for all $i=1, \ldots, r, j=1, \ldots, c+1$ and $t=1, \ldots, n_{i}$. Similarly,

$$
\bar{\alpha}_{i^{\prime}}=\prod_{t^{\prime}=1}^{m_{i^{\prime}}}\left[\bar{x}_{i^{\prime}, t^{\prime}, 1}, \ldots, \bar{x}_{i^{\prime}, t^{\prime}, c+1}\right]^{\bar{\epsilon}_{i^{\prime}, t^{\prime}}}
$$

where $\bar{\epsilon}_{i^{\prime}, t^{\prime}}= \pm 1, \bar{x}_{i^{\prime}, t^{\prime}, j} \in\left\{\bar{a}_{i^{\prime}, t^{\prime}}, \bar{b}_{i^{\prime}, t^{\prime}}\right\}$ for some $\bar{a}_{i^{\prime}, t^{\prime}}, \bar{b}_{i^{\prime}, t^{\prime}} \in G$ for which there exist $\bar{y}_{i^{\prime}, t^{\prime}, 1}, \ldots, \bar{y}_{i^{\prime}, t^{\prime}, s_{i^{\prime}, t t^{\prime}}^{\prime}}$ in G such that $\left\langle\bar{a}_{i^{\prime}, t^{\prime}}, \bar{y}_{i^{\prime}, t^{\prime}, 1}\right\rangle,\left\langle\bar{y}_{i^{\prime}, t^{\prime}, 1}, \bar{y}_{i^{\prime}, t^{\prime}, 2}\right\rangle, \ldots,\left\langle\bar{y}_{i^{\prime}, t^{\prime}, s_{i^{\prime}, t t^{\prime}}^{\prime}}, \bar{b}_{i^{\prime}, t^{\prime}}\right\rangle$ are nilpotent of class $\leq c$, for all $i^{\prime}=1, \ldots, r^{\prime}, j=1, \ldots, c+1$ and $t^{\prime}=1, \ldots, m_{i^{\prime}}$. Let H be the subgroup of G generated by all

$$
x, y, z, x_{i, t, j}, \bar{x}_{i^{\prime}, t^{\prime}, j}, a_{i, t}, \bar{a}_{i^{\prime}, t^{\prime}}, y_{i, t, k}, \bar{y}_{i^{\prime}, t^{\prime}, k^{\prime}},
$$

where $i=1, \ldots, r, i^{\prime}=1, \ldots, r^{\prime}, t=1, \ldots, n_{i}, t^{\prime}=1, \ldots, m_{i^{\prime}}, j=1, \ldots, c+1$, $k=1, \ldots, s_{i, t}$ and $k^{\prime}=1, \ldots, s_{i^{\prime}, t^{\prime}}^{\prime}$. Then $\gamma_{c+1}(\langle x, y\rangle) \leq T_{1}^{(c)}(H)$ and $\gamma_{c+1}(\langle y, z\rangle) \leq$ $T_{1}^{(c)}(H)$. Since $H / T_{1}^{(c)}(H)$ is an $\mathfrak{N}_{c} T$-group by Theorem 3.3, we have $\gamma_{c+1}(\langle y, z\rangle) \leq$ $T_{1}^{(c)}(H) \leq T_{1}^{(c)}(G)$. This concludes the proof.

Remark 3.5. Let G be a locally nilpotent group, and let $c \geq 1$ be any positive integer. It easily follows from Proposition 3.1 that $T_{1}^{(c)}(G)=T^{(c)}(G)=\Gamma_{c+1}(G)$.

Remark 3.6. Let G be a supersoluble group. It is proved in [3] that $T^{(1)}(G)=$ $T_{1}^{(1)}(G)$. It is to be expected that the same holds true for \mathfrak{N}_{c}-transitive kernel where $c>1$, and that the proofs require only suitable modifications of those in [3].

4. Examples and non-examples

Theorem 2.4 completely describes the structure of finite soluble $\mathfrak{N}_{c} T$-groups. At least in the case $c \leq 2$ we are able to obtain more detailed information about these groups, using the descriptions of fixed-point-free actions on finite abelian groups obtained by Zassenhaus [16].

Example 4.1. Let G be a finite soluble $\mathfrak{N}_{1} T$-group (or $C T$-group) which is not abelian. Then $G=F \rtimes\langle x\rangle$ where F is abelian and $\langle x\rangle$ acts fixed-point-freely on F (see Theorem 2.4 or Theorem 10 of [15]). Suppose $F=\bigoplus_{i=1}^{m} F_{i}$ where $F_{i} \cong \mathbb{Z}_{p_{i}}^{n_{i}}$ and $e_{i} \neq e_{j}$ if $p_{i}=p_{j}$. Let k be the order of $\langle x\rangle$. Then it follows from [16] that $x=\left(x_{1}, \ldots, x_{m}\right)$ where $\left\langle x_{i}\right\rangle$ is a fixed-point-free automorphism group of order k on G_{i} for all $i=1, \ldots, m$. Conversely, for every x with this property the group $\langle x\rangle$ acts fixed-point-freely on F. Note also that a necessary and sufficient condition for the existence of a fixed-point-free automorphism on F is given in Theorem 2 of [15].

As the class of $\mathfrak{N}(2,2)$-groups coincides with the variety of 2-Engel groups, Theorem 2.4 implies that a finite soluble $\mathfrak{N}_{2} T$-group is either 2-Engel or it is a Frobenius group with the kernel F which is 2-Engel and a complement H which is nilpotent of class ≤ 2. Thus it follows from Levi's theorem (see [9, p. 45]) that F is nilpotent of class ≤ 3. Moreover, if $|H|$ is even, then F is abelian. In this case, H is either a cyclic group or the quaternion group Q_{8} of order 8 or $C_{m} \times Q_{8}$ where m is odd. Our next example shows that there is essentially only one possibility of having a Frobenius $\mathfrak{N}_{2} T$-group with the prescribed kernel and a complement isomorphic to Q_{8}.

Example 4.2. Let F be a finite abelian group and $F=\bigoplus_{i=1}^{m} F_{i}$ where $F_{i} \cong \mathbb{Z}_{p_{i}}^{n_{i}}$ and $e_{i} \neq e_{j}$ if $p_{i}=p_{j}$. Then it follows from [16] that F admits a quaternion fixed-point-free automorphism group H of order 8 if and only if $2 \nmid p_{i}$ and $2 \mid n_{i}$
for all $i=1, \ldots, m$. In this case, H is conjugated to the group $\langle x, y\rangle$ where the restrictions of x and y on F_{i} can be presented by matrices

$$
A_{i}=\bigoplus_{j=1}^{n_{i} / 2}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad B_{i}=\bigoplus_{j=1}^{n_{i} / 2}\left(\begin{array}{cc}
\alpha_{i} & \beta_{i} \\
\beta_{i} & -\alpha_{i}
\end{array}\right)
$$

where $i=1, \ldots, m$ and $\alpha_{i}^{2}+\beta_{i}^{2} \equiv-1 \bmod p_{i}^{e_{i}}$ for all $i=1, \ldots, m$.
In the following example we present a Frobenius group G with abelian kernel F and a complement H which is isomorphic to $C_{p} \times Q_{8}$, where p is an arbitrary odd prime. Of course, in this case G is an $\mathfrak{N}_{2} T$-group.

Example 4.3. Let q be a prime such that $p \mid(q-1)$ and let $F=C_{q}^{2}$. Let $a, b \in \mathbb{Z}_{q}$ be such that $a^{2}+b^{2}+1 \equiv 0 \bmod q$. Consider the automorphisms of C_{q}^{2} represented by the following matrices over \mathbb{Z}_{q} :

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad, \quad B=\left(\begin{array}{cc}
a & b \\
b & -a
\end{array}\right), \quad X=\left(\begin{array}{cc}
\zeta & 0 \\
0 & \zeta
\end{array}\right) .
$$

Here ζ is a primitive p-th root modulo q. Then we have $\langle A, B, X\rangle \cong C_{p} \times Q_{8}$ and it can be verified that $H=\langle A, B, X\rangle$ acts fixed-point-freely on F. The corresponding Frobenius group $F \rtimes H$ is an $\mathfrak{N}_{2} T$-group, but it is not an $\mathfrak{N}_{1} T$ group.

On the other hand, if the order of H is odd, then H is cyclic and the group F may be nonabelian. In the next example we show that this is indeed so.

Example 4.4. Let $D=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times\left\langle x_{3}\right\rangle \times\left\langle x_{4}\right\rangle$ be an elementary group of order 16. Put $D_{1}=D \rtimes\langle a\rangle$, where a is an element of order 2 acting on D in the following way: $\left[x_{1}, a\right]=x_{3} x_{4},\left[x_{2}, a\right]=x_{4},\left[x_{3}, a\right]=\left[x_{4}, a\right]=1$. We make another split extension $F=D_{1} \rtimes\langle b\rangle$, where b induces an automorphism of order 2 on D_{1} in the following way: $\left[x_{1}, b\right]=x_{3},\left[x_{2}, b\right]=x_{3} x_{4}$ and $\left[x_{3}, b\right]=\left[x_{4}, b\right]=[a, b]=1$. The group F is nilpotent of class 2 and $|F|=64$. Consider the following map on F :

$$
x_{1}^{\alpha}=x_{2}, x_{2}^{\alpha}=x_{1} x_{2}, x_{3}^{\alpha}=x_{4}, x_{4}^{\alpha}=x_{3} x_{4}, a^{\alpha}=a b, b^{\alpha}=a .
$$

It can be verified that α is an automorphism of order 3 on F. Moreover, α acts fixed-point-freely on F. The corresponding split extension $G=F \rtimes\langle\alpha\rangle$ is an $\mathfrak{N}_{2} T$ group of order 192 with the kernel F. One can verify that this is the smallest example of a non-nilpotent soluble $\mathfrak{N}_{2} T$-group having the nonabelian Frobenius kernel.

Finite simple groups with nilpotent centralizers are classified in [12] and [13]. It turns out that every finite nonabelian simple $C N$-group is of one of the following types:
(i) $\operatorname{PSL}\left(2,2^{f}\right)$, where $f>1$;
(ii) $\mathrm{Sz}(q)$, the Suzuki group with parameter $q=2^{2 n+1}>2$;
(iii) $\operatorname{PSL}(2, p)$, where p is either a Fermat prime or a Mersenne prime;
(iv) $\operatorname{PSL}(2,9)$;
(v) $\operatorname{PSL}(3,4)$.

By Theorem 2.5 only groups listed under (i) and (ii) are $\mathfrak{N}_{c} T$-groups for $c>1$. Our aim is to show that in groups (iii)-(v) we can always find such nontrivial elements x, y and z that the groups $\langle x, y\rangle$ and $\langle y, z\rangle$ are nilpotent of class ≤ 2, yet the group $\langle x, z\rangle$ is not even nilpotent. We call such a triple of elements a bad triple.

Proposition 4.5. In the groups $\operatorname{PSL}(2,9)$ and $\operatorname{PSL}(3,4)$ there exist bad triples of elements.

Proof. First we want to show that our proposition holds true for PSL(3,4). To this end, consider the matrices

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

over the Galois field $\mathrm{GF}(4)$. It is easy to see that A, B and C belong to $\mathrm{SL}(3,4)$. Besides, these matrices are not in the center of $\operatorname{SL}(3,4)$ and a straightforward calculation shows that $[A, B]=[B, C, C]=[C, B, B]=1$. Let \bar{A}, \bar{B} and \bar{C} be the homomorphic images of A, B and C, respectively, under the canonical homomorphism $\operatorname{SL}(3,4) \rightarrow \operatorname{PSL}(3,4)$. Then the group $\langle\bar{A}, \bar{B}\rangle$ is abelian and $\langle\bar{B}, \bar{C}\rangle$ is nilpotent of class 2. On the other hand, $\langle\bar{A}, \bar{C}\rangle$ is not nilpotent, since $[A, C],[A, C, C] \notin Z(\mathrm{SL}(3,4))$ and $[A, C, C, C]=[A, C, C]$.

A similar argument also works for the group $\operatorname{PSL}(2,9)$. In this case, we have to consider the following matrices in $\operatorname{SL}(2,9)$:

$$
A=\left(\begin{array}{cc}
\zeta^{3} & 0 \\
0 & \zeta^{5}
\end{array}\right), B=\left(\begin{array}{cc}
\zeta^{2} & 0 \\
0 & \zeta^{6}
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{cc}
1 & \zeta^{4} \\
\zeta^{4} & \zeta^{4}
\end{array}\right) .
$$

Here ζ is a generator of the multiplicative group of $\mathrm{GF}(9)$. If \bar{A}, \bar{B} and \bar{C} are the corresponding elements of $\operatorname{PSL}(2,9)$, then it is a routine to verify that the group $\langle\bar{A}, \bar{B}\rangle$ is abelian and $\langle\bar{B}, \bar{C}\rangle$ is nilpotent of class 2 , but $\langle\bar{A}, \bar{C}\rangle$ is not nilpotent.

Finally we consider the groups $\operatorname{PSL}(2, p)$ where p is a Fermat prime or a Mersenne prime. If $p=5$, then $\operatorname{PSL}(2,5) \cong \operatorname{PSL}(2,4)$ is an $\mathfrak{N}_{1} T$-group by [11]. For $p>5$ the situation is completely different.

Proposition 4.6. If p is a Fermat prime or a Mersenne prime and $p \neq 5$, then $\operatorname{PSL}(2, p)$ contains a bad triple of elements.

Proof. First we cover the case of Fermat primes. For this we need the following number-theoretical result:
Claim 1. If p is a Fermat prime, then there exists $x \in \mathbb{Z}_{p}$ such that $2 x^{2} \equiv-1$ $\bmod p$.

Proof of Claim 1. Let $p=2^{2^{n}}+1$ for some $n>1$. It is enough to show that $2^{2^{n}-1}$ is a quadratic residue modulo p. Let P be the set of all integers $a \in\{0, \ldots, p-1\}$ which are primitive roots modulo p and let Q be the set of all $a \in\{0, \ldots, p-1\}$ which are not quadratic residues modulo p. We shall show that $P=Q$. First, if $a \notin Q$, then there exists an integer t such that $t^{2} \equiv a \bmod p$. By Euler's theorem, $a^{\phi(p) / 2} \equiv t^{\phi(p)} \equiv 1 \bmod p$, hence a is not a primitive root modulo p (here ϕ is the Euler function). This shows that $P \subseteq Q$. To prove the converse inclusion, note that p has exactly $\phi(\phi(p))$ incongruent primitive roots and exactly $(p-1) / 2$ quadratic non-residues. Hence

$$
|P|=\phi(\phi(p))=\phi(p-1)=\phi\left(2^{2^{n}}\right)=2^{2^{n}-1}=\frac{p-1}{2}=|Q|
$$

and therefore $P=Q$. Since $2^{2^{n}-1} \notin P=Q$, we have that $2^{2^{n}-1} \equiv x^{2} \bmod p$ for some $x \in \mathbb{Z}_{p}$, hence $2 x^{2} \equiv-1 \bmod p$, as desired.

Now we are ready to finish the proof. Let $c, x \in \mathbb{Z}_{p}$ be such that $c^{2} \equiv-1$ $\bmod p, c \not \equiv-c \bmod p$ and $2 x^{2} \equiv-1 \bmod p(\operatorname{such} x$ exists by Claim 1$)$. Let

$$
A=\left(\begin{array}{cc}
2 x & 0 \\
0 & -x
\end{array}\right), \quad B=\left(\begin{array}{cc}
c & 0 \\
0 & -c
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{cc}
x & x \\
x & -x
\end{array}\right)
$$

be matrices in $\mathrm{SL}(2, p) \backslash Z(\mathrm{SL}(2, p))$. It is clear that A and B commute, and a short calculation shows that $[B, C, C]$ and $[C, B, B]$ belong to $Z(\mathrm{SL}(2, p))$. To prove that $\operatorname{PSL}(2, p)$ is not an $\mathfrak{N}_{c} T$-group for any $c>1$ it suffices to show that $\left[C,{ }_{n} A\right] \notin Z(\mathrm{SL}(2, p))$ for any $n \in \mathbb{N}$. More precisely, we shall prove that

$$
\left[C,{ }_{n} A\right]=x^{3 \cdot 2^{n}-2}\left(\begin{array}{cc}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right)
$$

where $a_{n}, b_{n}, c_{n}, d_{n} \in \mathbb{Z}_{p}$ are such that at least one of b_{n}, c_{n} and at least one of a_{n}, d_{n} are not zero. First note that this is true for $n=1$, hence we may assume that $n>1$. Then

$$
\left[C,{ }_{n+1} A\right]=x^{3 \cdot 2^{n+1}-2}\left(\begin{array}{cc}
a_{n+1} & b_{n+1} \\
c_{n+1} & d_{n+1}
\end{array}\right)
$$

where $a_{n+1}=-2 a_{n} d_{n}-4 b_{n} c_{n}, b_{n+1}=3 b_{n} d_{n}, c_{n+1}=2 a_{n} c_{n}$ and $d_{n+1}=b_{n} c_{n}-$ $2 a_{n} d_{n}$. If both b_{n+1} and c_{n+1} are zero, then $a_{n}=d_{n}=0$ which is not possible by the induction assumption. Similarly, if $a_{n+1}=d_{n+1}=0$, then $a_{n} d_{n}=-2 b_{n} c_{n}$ and $b_{n} c_{n}=2 a_{n} d_{n}$, hence $5 b_{n} c_{n}=0$, a contradiction since $p>5$. This concludes the proof for Fermat primes.

Assume now that p is a Mersenne prime. In this case we need the following auxiliary result:
Claim 2. If p is a Mersenne prime, then there exist $x, y \in \mathbb{Z}_{p}$ such that $x^{2}-x+1 \equiv 0$ $\bmod p$ and $x y^{4} \equiv 2 y^{2}+1 \bmod p$.
Proof of Claim 2. First note that since p is a Mersenne prime, $p-1$ is divisible by 6 . The congruence equation $x^{3} \equiv-1 \bmod p$ is clearly solvable, hence it has $\operatorname{gcd}(3, p-1)=3$ incongruent solutions. This shows that the equation $x^{2}-x+1=0$ is solvable in \mathbb{Z}_{p}. Let x_{1} and x_{2} be its solutions. Then $x_{2}=x_{1}^{-1}=1-x_{1}$. We claim
that at least one of $1+x_{1}, 1+x_{2}$ is a quadratic residue modulo p. For this note that since $(p-1) / 2$ is odd, Euler's criterion implies that for every $a \in \mathbb{Z}_{p} \backslash\{0\}$ we have that precisely one of a and $-a$ is a quadratic residue modulo p. Furthermore, since $\operatorname{gcd}\left(2^{k}, p-1\right)=\operatorname{gcd}(2, p-1)$, every quadratic residue modulo p is also a 2^{k}-power residue modulo p. Suppose $1+x_{1}$ is not a square residue modulo p. Then $-1-x_{1}$ is a quadratic residue modulo p and $1+x_{2}=2-x_{1}=1-x_{1}^{2}=x_{1}^{2}\left(-1-x_{1}\right)$ is a square residue modulo p. So from now on we assume x is such that $1-x+x^{2} \equiv 0$ $\bmod p$ and $1+x$ is a square residue modulo p. Then the equation $x t^{2}-2 t-1=0$ has two solutions in \mathbb{Z}_{p}, namely $t_{1,2}=x^{-1}(1 \pm c)=x^{2}(-1 \mp c)$, where $c^{2}=1+x$ in \mathbb{Z}_{p}. In order to ensure the existence of y it suffices to prove that $-1 \mp c$ are square residues modulo p. Since $(-1+c)(-1-c)=-x=x^{4}$, we have that $-1+c$ and $-1-c$ are either both squares or both non-squares in \mathbb{Z}_{p}. Assume that they are not squares. Then $1+c$ and $1-c$ are squares in \mathbb{Z}_{p}. For every square q in \mathbb{Z}_{p} denote by \sqrt{q} the square in \mathbb{Z}_{p} for which $(\sqrt{q})^{2}=q$. Let $u=\sqrt{1-c}$ and $v=\sqrt{1+c}$. Then $(u+v)^{2}=u^{2}+v^{2}+2 u v=2\left(1+\sqrt{1-c^{2}}\right)=2(1+\sqrt{-x})=2\left(1+x^{2}\right)$. Since $p \equiv-1 \bmod 8,2$ is a square residue modulo p, hence $1+x^{2}$ is a square in \mathbb{Z}_{p}. On the other hand, $-1-x^{2}=-x=x^{4}$ is also a square in \mathbb{Z}_{p}. This leads to a contradiction, hence our claim is proved.

Let x and y be as above and let

$$
A=\left(\begin{array}{ll}
0 & x^{2} \\
x & 0
\end{array}\right) \quad, \quad B=\left(\begin{array}{cc}
x & x \\
-1 & -x
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{cc}
0 & y \\
-y^{-1} & 0
\end{array}\right)
$$

be matrices in $\mathrm{SL}(2, p) \backslash Z(\mathrm{SL}(2, p))$. It is not difficult to check that $[A, B]=-1$, hence $[A, B] \in Z(\mathrm{SL}(2, p))$. Beside that, we have $[B, C, C]=\left(a_{i j}\right)_{i, j}$, and a straightforward calculation shows that $a_{11}-a_{22}=x-x^{2} y^{4}-2 x^{4} y^{2}=0$ by Claim 2. Similarly, we obtain $a_{21}=a_{12}=0$, hence $[B, C, C]$ belongs to $Z(\mathrm{SL}(2, p))$. Furthermore, it can be checked that the same holds true for $[C, B, B]$. On the other hand, an induction argument shows that

$$
\left[A,{ }_{n} C\right]=\left(\begin{array}{cc}
y^{(-2)^{n}} x^{2^{n+1}} & 0 \\
0 & y^{-(-2)^{n}} x^{2^{n}}
\end{array}\right)
$$

for every $n \in \mathbb{N}$. If $\left[A,{ }_{n} C\right] \in Z(\operatorname{SL}(2, p))$ for some $n \in \mathbb{N}$, then $y^{(-2)^{m}} x^{2^{m+1}}=$ $y^{-(-2)^{m}} x^{2^{m}}=1$ in \mathbb{Z}_{p} for every $m>n$. Besides we have that $x^{2^{k}}$ is either $x-1$ or $-x$, depending on whether k is odd or even, respectively. Suppose $m>n$ and let m be even. Then $\left[A,{ }_{m} C\right]=1$ implies $y^{2^{m}}(x-1)=1$ and $y^{-2^{m}} x=-1$. Similarly, from $\left[A,{ }_{m+1} C\right]=1$ we obtain $y^{-2^{m+1}} x=-1$ and $y^{2^{m+1}}(x-1)=1$. This implies $y^{2^{m}}=1$ and hence $x=-1$, which contradicts the choice of x.

References

[1] Bachmuth, S.; Mochizuki, H. Y.: Third Engel Groups and the MacdonaldNeumann Conjecture. Bull. Aust. Math. Soc. 5 (1971), 379-386. Zbl 0221.20053
[2] Delizia, C.; Nicotera, C.: On the Commutative-Transitive Kernel of Locally Finite Groups. Algebra Colloq. 10(4) (2003), 567-570. Zbl 1037.20023
[3] Delizia, C.; Nicotera, C.: On the Commutative-Transitive Kernel of Certain Infinite Groups. JP Journal of Algebra, Number Theory Appl. 5(3) (2005), 421-427.

Zbl 1094.20010
[4] Fine, B.; Gaglione, A.; Rosenberger, G.; Spellman, D.; The Commutative Transitive Kernel. Algebra Colloq. 4 (1997), 141-152. Zbl 0901.20011
[5] Huppert, B.: Endliche Gruppen I. Springer-Verlag, Berlin 1967.
Zbl 0217.07201
[6] Huppert, B.; Blackburn, N.: Finite Groups III. Springer-Verlag, New York 1982. Zbl 0514.20002
[7] Kegel, O. H.; Wehrfritz, B. A. F.: Locally Finite Groups. North-Holland Publishing Comp., 1973. Zbl 0259.20001
[8] Lescot, P.: A Note on CA-groups. Commun. Algebra 18(3) (1990), 833-838. Zbl 0701.20009
[9] Robinson, D. J. S.: Finiteness Conditions and Generalized Soluble Groups. Part 2, Springer-Verlag, Berlin 1972.

Zbl 0243.20033
[10] Robinson, D. J. S.: A Course in the Theory of Groups. Springer-Verlag, New York 1995.

Zbl 0836.20001
[11] Suzuki, M.: The Nonexistence of Certain Type of Simple Groups of Odd Order. Proc. Am. Math. Soc. 8 (1957), 686-695. Zbl 0079.03104
[12] Suzuki, M.: Finite Groups with Nilpotent Centralizers. Trans. Am. Math. Soc. 99(3) (1961), 425-470.

Zbl 0101.01604
[13] Suzuki, M.: On a Class of Doubly Transitive Groups. Ann. Math. 75 (1962), 105-145. Zbl 0106.24702
[14] Weisner, L.: Groups in Which the Normaliser of Every Element Except Identity is Abelian. Bulletin A. M. S. 31 (1925), 413-416. JFM 51.0112.06
[15] Wu, Y. F.: Groups in Which Commutativity Is a Transitive Relation. J. Algebra 207 (1998), 165-181.

Zbl 0909.20021
[16] Zassenhaus, H.: Über endliche Fastkörper. Abh. Math. Semin. Univ. Hamb. 11 (1935), 187-220.

Zbl 0011.10302 and JFM 61.0126.01

Received July 7, 2005

[^0]: *The second author was partially supported by G.N.S.A.G.A. He also wishes to thank the Department of Mathematics and Informatics at the University of Salerno for its excellent hospitality

