Sums of d th Powers in Non-commutative Rings

Susanne Pumplün
School of Mathematics, University of Nottingham
University Park, Nottingham NG7 2RD, United Kingdom
e-mail: susanne.pumpluen@nottingham.ac.uk

Abstract

Sums of d th powers in central simple algebras and other non-commutative rings are investigated. MSC 2000: 11E76 (primary); 11E04, 12E05 (secondary) Keywords: sums of d-th powers, forms of higher degree, higher trace forms, higher Pythagoras number, non-commutative rings, d-th level

Introduction

The study of sums of squares in fields or rings is a classical number theoretic problem and goes back to Diophantes, Fermat, Lagrange and Gauss who studied how to express integers as sums of squares. The classical notion of level of a field was generalized to commutative rings (see Pfister [14] and Dai, Lam and Peng [3] for lists of references), and then to non-commutative rings (e.g. to division rings and hence quaternion algebras over fields) for instance by Leep [8] and Lewis [11]. Becker [1] studied sums of (2n)th powers in fields and rings using higher level orderings. There does not seem to be much literature about sums of d th powers in a non-commutative ring, or even in a non-associative algebra (whereas for $d=2$, see for instance Leep, Shapiro, Wadsworth [9], or the references in [15]). Quadratic trace forms play a role when investigating sums of squares in fields or certain types of algebras (for instance central simple ones).

There is an intimate relationship between sums of d th powers and higher trace forms of degree d. The trace form of degree d of an algebra A determines whether or not 0 can be represented as a non-trivial sum of d th powers in A. Moreover,

0138-4821/93 \$ 2.50 © 2007 Heldermann Verlag
higher trace forms provide examples of absolutely indecomposable forms of arbitrary even degree which are (even strongly) anisotropic and become isotropic under a suitable quadratic field extension. Independently of their connection to sums of d th powers, higher trace forms associated to algebras constitute an interesting class of forms of degree d, and were previously studied by O'Ryan and Shapiro [12] (for central simple algebras), by Harrison [4] (for commutative algebras only), and also by Wesolowski [20], and in [16].

One might argue that the appropriate generalization of sums of d th powers to the non-commutative case is rather sums of products of d th powers: for $d=2$, a central division algebra D over a field k admits an ordering if and only if -1 is not a sum of products of squares in D [18], which is the analogue of a wellknown characterization for a formally real field. Accordingly, one can define a d th product level, a d th product Pythagoras number and so forth (cf. Cimpric [2] for results on these "higher product levels" of non-commutative rings in a very general sense). We refrain from following this approach, since several well-known results on sums of squares can be rephrased effortlessly to sums of d th powers in non-commutative rings (and even to sums of d th powers in certain non-associative algebras), see for instance Theorem 1 or Proposition 3.

1. Preliminaries

1.1.

Let k be a field of characteristic 0 or greater than d. A d-linear form over k is a k-multilinear map $\theta: V \times \cdots \times V \rightarrow k$ (d-copies of V) on a finite-dimensional vector space V over k which is symmetric; i.e., $\theta\left(v_{1}, \ldots, v_{d}\right)$ is invariant under all permutations of its variables. A form of degree d over k is a map $\varphi: V \rightarrow k$ on a finite-dimensional vector space V over k such that $\varphi(a v)=a^{d} \varphi(v)$ for all $a \in k$, $v \in V$ and where the map $\theta: V \times \cdots \times V \rightarrow k$ defined by

$$
\theta\left(v_{1}, \ldots, v_{d}\right)=\frac{1}{d!} \sum_{1 \leq i_{1}<\cdots<i_{l} \leq d}(-1)^{d-l} \varphi\left(v_{i_{1}}+\cdots+v_{i_{l}}\right)
$$

$(1 \leq l \leq d)$ is a d-linear form over k. If we can write φ in the form $a_{1} x_{1}^{d}+\ldots+a_{m} x_{m}^{d}$ we use the notation $\varphi=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and call φ diagonal.

A d-linear space (V, θ) is called non-degenerate if $v=0$ is the only vector such that $\theta\left(v, v_{2}, \ldots, v_{d}\right)=0$ for all $v_{i} \in V$. The orthogonal $\operatorname{sum}\left(V_{1}, \theta_{1}\right) \perp\left(V_{2}, \theta_{2}\right)$ of two d-linear spaces $\left(V_{i}, \theta_{i}\right), i=1,2$, is the k-vector space $V_{1} \oplus V_{2}$ together with the d-linear form $\left(\theta_{1} \perp \theta_{2}\right)\left(u_{1}+v_{1}, \ldots, u_{d}+v_{d}\right)=\theta_{1}\left(u_{1}, \ldots, u_{d}\right)+\theta_{2}\left(v_{1}, \ldots, v_{d}\right)$.

A d-linear space (V, θ) is called decomposable if $(V, \theta) \cong\left(V_{1}, \theta_{1}\right) \perp\left(V_{2}, \theta_{2}\right)$ for two non-zero d-linear spaces $\left(V_{i}, \theta_{i}\right), i=1,2$. A non-zero d-linear space (V, θ) is called indecomposable if it is not decomposable. We distinguish between indecomposable ones and absolutely indecomposable ones; i.e., d-linear spaces which stay indecomposable under each algebraic field extension.

Let l / k be a finite field extension and $s: l \rightarrow k$ a non-zero k-linear map. If Γ : $V \times \cdots \times V \rightarrow l$ is a non-degenerate d-linear form over l then $s \Gamma: V \times \cdots \times V \rightarrow k$
is a non-degenerate d-linear form over k, with V viewed as a k-vector space. If the map s is the trace of the field extension l / k, we write $\operatorname{tr}_{l / k}(\Gamma)$ or $\operatorname{tr}_{l / k}(V, \Gamma)$ instead of $\left(V, \operatorname{tr}_{l / k} \Gamma\right)$.

A form $\varphi: V \rightarrow k$ of degree d over k is called isotropic if there is a non-zero element $x \in V$ such that $\varphi(x)=0$, otherwise it is called anisotropic. The form $\varphi: V \rightarrow k$ is called weakly isotropic if, for some integer m, the orthogonal sum of m copies $m \times \varphi$ of φ is isotropic. It is called strongly anisotropic if the orthogonal sum of m copies $m \times \varphi_{d}(x)$ is anisotropic for all integers m.

1.2.

Let R be a unital commutative ring and let the term "algebra" over R refer to a unital non-associative strictly power-associative R-algebra. We assume that R can be viewed as a subring of the algebra A via the map $R \rightarrow A, a \rightarrow a 1$.

Let A denote either a non-commutative unital ring with $1 \neq 0$, or an R algebra. Write A^{d} for the set of d th powers of elements in A and ΣA^{d} for the set of all non-trivial sums of d th powers of elements in A; i.e., for the set of all elements of the form $\sum_{i=1}^{m} a_{i}^{d}$ where each $a_{i} \in A$ and not all a_{i} are zero. For an element $a \in A$ the smallest number n such that $a=a_{1}^{d}+\cdots+a_{n}^{d}$ with all $a_{i} \in A$ is the length $l_{d}(a)$ of a. The smallest positive integer m such that -1 is a sum of d th powers in A is called the d th level (or power Stufe in [13]) of A, denoted $s_{d}(A)$. If there is no such integer, we set $s_{d}(A)=\infty$. In case d is odd, $s_{d}(k)=1$. We write $v_{d}(A)$ for the smallest number m (if it exists) such that every element $a \in A$ which can be written as a sum or difference of $m d$ th powers of elements in A; i.e., $a=e_{1} a_{1}^{d}+\cdots+e_{m} a_{m}^{d}$ with all $a_{i} \in A$ and with $e_{i} \in\{1,-1\}$, and ∞ otherwise. (For a comprehensive survey on the results in the commutative case until 1970, see [5, p. 38].) If every element in A can be written as a sum or difference of d th powers of elements in A and $s_{d}(A)<\infty$, then $A=\sum A^{d}$. The dth Pythagoras number $p_{d}(A)$ of A is the smallest number q (if it exists) such that every sum of d th powers of elements in A can be written as a sum of $q d$ th powers of elements in A, and ∞ otherwise. In other words, $p_{d}(A)=\sup \left\{l_{d}(a) \mid a \in \sum A^{d}\right\}$. Note that $p_{d}(A)=v_{d}(A)$ for odd integers d, so the invariant $v_{d}(A)$ only is interesting for even d. Obviously, $l_{d}(-1)=s_{d}(A) \leq p_{d}(A)$ by definition.

The case $d=2$ is easily settled in the non-commutative case as well, since $[5$, $(7.9),(7.10)]$ also hold in this more general setting:

Lemma 1. (i) Let A be a non-commutative ring where $2 \in A^{\times}$. Then $v_{2}(A) \leq 2$.
(ii) Let A be a non-associative algebra over a ring R with $2 \in R^{\times}$where $R \subset$ $\operatorname{Center}(A)=\{c \in A \mid[c, A]=[c, A, A]=[A, c, A]=[A, A, c]=0\}$. Then $v_{2}(A) \leq 2$. In particular, if $s_{2}(R)<\infty$ then $A=\sum A^{2}$ and $p_{2}(A) \leq$ $1+s_{2}(R)$.
(iii) Let A be a commutative non-associative algebra over a unital commutative ring R, where $R \subset \operatorname{Center}(A)$ (e.g. a Jordan algebra). Then $v_{2}(A) \leq 3$. In particular, if $s_{2}(R)<\infty$, then $A=\sum A^{2}$ and $p_{2}(A) \leq 2+s_{2}(R)$.

2. Sums of powers in commutative rings and central simple algebras

The Pythagoras number is a very delicate invariant, which is already difficult to get a hold on for $d=2$. For $d=2$ it is most interesting if $s_{2}(R)=\infty$, because otherwise it is bounded above by $s_{2}(R)+2$ or even by $s_{2}(R)+1$ if 2 is a unit in R. This situation is also true for $d \geq 2$ and A an R-algebra:

Proposition 1. Let R be a unital commutative ring where d is an invertible element. Let R contain a primitive dth root of unity ω. Let A be an algebra over R, where $R \subset \operatorname{Nuc}(A) \cap \operatorname{Comm}(A)=\operatorname{Center}(A)$. If $\omega \in \Sigma R^{d}$, then

$$
A=\Sigma A^{d} .
$$

More precisely,

$$
s_{d}(A) \leq p_{d}(A) \leq d^{d-2}\left(1+l_{d}(\omega)+\cdots+l_{d}\left(\omega^{d-1}\right)\right)
$$

gives an upper estimate for the dth Pythagoras number of A. In particular, if $p_{d}(R)$ is finite, then

$$
p_{d}(A) \leq d^{d-2}\left(1+(d-1) p_{d}(R)\right) .
$$

Proof. The proof is similar to the one given in $[9,1.1]$ for $d=2$: let $l_{m}=l_{d}\left(\omega^{m}\right)$, then $\omega^{m}=\sum_{i=1}^{l_{m}} x_{i, m}^{d}$ in R, with $x_{i, m} \in R$ for each $m, 1 \leq m \leq d-1$. Let $d=3$. Then

$$
\begin{aligned}
& (a+1)^{3}=a^{3}+3 a^{2}+3 a+1 \\
& (a+\omega)^{3}=a^{3}+3 \omega a^{2}+3 \omega^{2} a+1 \text { and } \\
& \left(a+\omega^{2}\right)^{3}=a^{3}+3 \omega^{2} a^{2}+3 \omega a+1
\end{aligned}
$$

Therefore

$$
(a+1)^{3}+\omega(a+\omega)^{3}+\omega^{2}\left(a+\omega^{2}\right)^{3}=9 a
$$

This implies

$$
a=\frac{1}{9}\left((a+1)^{3}+\omega(a+\omega)^{3}+\omega^{2}\left(a+\omega^{2}\right)^{3}\right) .
$$

For every $a \in A$, we compute more generally

$$
a=d^{d-2}\left(\left(\frac{a+1}{d}\right)^{d}+\omega\left(\frac{a+\omega}{d}\right)^{d}+\cdots+\omega^{d-1}\left(\frac{a+\omega^{d-1}}{d}\right)^{d}\right)
$$

and thus $a \in \Sigma A^{d}$. Thus a is a sum of $S d$ th powers of elements of the algebra A, where $S=d^{d-2}\left(1+l_{d}(\omega)+\cdots+l_{d}\left(\omega^{d-1}\right)\right)$.

Since $l_{d}\left(\omega^{m}\right) \geq 1$ for all m, notice that S must be at least as large as d^{d-1}.
If ω cannot be written as a sum of d th powers in A, this upper bound does not exist and we do not know whether $p_{d}(A)$ is finite at all.

Lemma 2. If k is a field containing a primitive dth root of unity ω for some $d>2$ (hence char k does not divide d), then k is non-real.

Proof. If 4 divides d, then k contains $\sqrt{-1}$. If p divides d, where p is an odd prime, then k contains a primitive p th root of unity ζ. Since $\zeta=\zeta^{p+1}$, every ζ^{m} is a square in k. Then k is non-real, since $-1=\zeta+\zeta^{2}+\cdots+\zeta^{p-1}$.

Remark 1. (i) Let k be a field which contains a primitive d th root of unity ω such that $\omega \in \Sigma k^{d}$. The d th Pythagoras number $p_{d}(k)$ of k was shown to be finite already in [5, p. 104]. However, the bounds obtained there were given using a function $V(d)$ with $V(d) \leq 3(d-2)((\mu-1)!)^{\mu}$ where $\mu=(d-1)^{d-1}$ for $d \geq 3$ and not using the $l_{d}\left(\omega^{m}\right), 1 \leq m \leq d-1$.
(ii) Let $p \neq 2$ be a prime and let k be a field of characteristic 0 or greater than p which contains a primitive p th root of unity ω. The form $\left\langle 1, \omega, \ldots, \omega^{p-1}\right\rangle$ of degree p over k is universal [17, 9.3 (iii)]; i.e., each element of k occurs as a value of the form. If $\omega \in \Sigma k^{p}$, then each element of k is a sum of $S p$-th powers of elements of k, where now

$$
S=\left(1+l_{p}(\omega)+\cdots+l_{p}\left(\omega^{p-1}\right)\right)
$$

and $p_{d}(k) \leq S$.
(iii) Let R be a unital commutative ring where $d \in R^{\times}$containing a primitive d th root of unity ω. Then $\omega \in \sum R^{d}$ if and only if $R=\sum R^{d}$ (Proposition 1).
(iv) Let k be an infinite field containing a primitive d th root of unity ω, such that $\left|k^{\times} / k^{\times d}\right|$ is finite. Then $\omega \in \sum k^{d}$ if and only if $k=\sum k^{d}$ if and only if $-1 \in \sum k^{d}$. (The last equivalence was proved in $[5,(7.14)]$.)

Remark 2. (i) If R is a non-real field containing a primitive d th root of unity ω satisfying $\omega \in \sum R^{d}$, then $p_{d}(R)$ is finite and so is $p_{d}(A)$ for any algebra A over R as in Proposition 1. If R is a formally real field and d even, however, $p_{d}(R)$ may be infinite [5, (7.30)]. For a field R of characteristic zero, Tornheim [19] proved the upper bound

$$
p_{d}(R) \leq(d+1) s_{d}(R) G(d) \leq(d+1) 2^{d} s_{d}(R)
$$

where $G(d)$ is the Waring constant.
(ii) If A is a unital commutative algebra over a field k of characteristic 0 such that $s_{d}(A)$ is finite, then

$$
p_{d}(A) \leq 2^{d-2}\left(1+s_{d}(A)\right)
$$

[5, (7.29)]. So again the d th Pythagoras number of A seems to be most interesting when A is an algebra over a formally real field k (and when d is even), or when $s_{d}(A)=\infty$.

Corollary 1. Let k be a field of characteristic 0 with $s_{d}(k)<\infty$ containing a primitive dth root of unity ω where $\omega \in \sum k^{d}$. Then

$$
p_{d}(A) \leq d^{d-2}\left(1+(d-1) 2^{d-2}\left(1+s_{d}(k)\right)\right) .
$$

Proof. Since $r=p_{d}(k) \leq 2^{d-2}\left(1+s_{d}(k)\right)$, we get $p_{d}(A) \leq d^{d-2}(1+(d-1) r) \leq$ $d^{d-2}\left(1+(d-1) 2^{d-2}\left(1+s_{d}(k)\right)\right)$.

In particular, if k is a non-real field of characteristic 0 such that $\left|k^{\times} / k^{\times d}\right|$ is finite containing a primitive d th root of unity, then

$$
p_{d}(A) \leq d^{d-2}\left(1+(d-1) 2^{d-2}\left(1+s_{d}(k)\right)\right)
$$

for any algebra A as above.
Remark 3. Let D be a central simple division algebra over a field k. Given any integer $d \geq 2$ it is clear that $-1 \in \sum D^{d}$ implies $0 \in \sum D^{d}$. If k contains a primitive d th root of unity ω and $\omega \in \sum k^{d}$, then k is non-real and we also know $D=\sum D^{d}$ by Proposition 1. For $d=2,-1 \in \sum D^{d}$ if and only if $0 \in \sum D^{d}$ if and only if $D=\sum D^{d}[9$, Theorem D$]$.

Let p be a prime number. For sums of d th powers, $d=p^{r}$, fields of characteristic p play a special role. Let k be a field of characteristic p and let A be an octonion algebra over k (indeed, even any algebra with a scalar involution), or a central simple associative algebra over k. Then

$$
\sum A^{p^{r}} \subset\left\{x \in A \mid t r_{A}(x) \in k^{p^{r}}\right\}
$$

because

$$
\operatorname{tr}_{A / k}(x)^{p^{r}}=\operatorname{tr}_{A / k}\left(x^{p^{r}}\right)
$$

For $d=2$ and central simple associative algebras the above inclusion was proved to be an equality in [9, Theorem C]. This generalizes to sums of d th powers in A for $d=p^{r}$:

Theorem 1. Let k be a field of prime characteristic p and A a central simple associative algebra over k. Then

$$
\sum A^{p^{r}}=\left\{a \in A \mid t r_{A / k}(a) \in k^{p^{r}}\right\}
$$

In particular, $A=\sum A^{p^{r}}$ if and only if k is perfect.
Proof. The proof that $\left\{a \in A \mid \operatorname{tr}_{A}(a) \in k^{p^{r}}\right\} \subset \sum A^{p^{r}}$ is analogous to the one given in [9], we sketch it for the convenience of the reader: If $A=k$ this is trivial, so assume that A is different from k. $\sum A^{p^{r}}$ is an additive subgroup of A which is invariant.

Suppose first that A is not a division algebra. If $A \cong M_{2}\left(\mathbb{F}_{2}\right)$ we obtain the desired result by a tedious but straightforward computation. If $A \cong M_{n}(D)$ for a division algebra D over $k, n>1$, and $A \not \approx M_{2}\left(\mathbb{F}_{2}\right)$ then $\operatorname{ker} \operatorname{tr}_{A / k} \subset \sum A^{p^{r}}$ (Kasch's Theorem [9, (4.1)]).

If A is a division algebra over k, view A as an algebra over the field $k^{p^{r}}$. Then A is algebraic over $k^{p^{r}}$ and $\sum A^{p^{r}}$ is an invariant $k^{p^{r}}$-subspace of A. Therefore $\operatorname{ker}\left(\operatorname{tr}_{A / k}\right) \subset \sum A^{p^{r}}$ (Asano's Theorem [9, (4.2)]).

To see that $M=\left\{a \in A \mid t r_{A / k}(a) \in k^{p^{r}}\right\} \subset \sum A^{p^{r}}$ let $a \in M$, then $\operatorname{tr}_{A / k}(a)=$ $s^{p^{r}} \in k^{p^{r}}$. Since $\operatorname{tr}_{A / k}: A \rightarrow k$ is surjective, there exists an element $b \in A$ such that $\operatorname{tr}_{A / k}(b)=1$, thus $\operatorname{tr}_{A / k}\left(b^{p^{r}}\right)=\operatorname{tr}_{A / k}(b)^{p^{r}}=1$ and

$$
\operatorname{tr}_{A / k}\left(a+s^{p^{r}}(p-1) b^{p^{r}}\right)=\operatorname{tr}_{A / k}(a)+s^{p^{r}}(p-1) \operatorname{tr} r_{A / k}\left(b^{p^{r}}\right)=s^{p^{r}}+(p-1) s^{p^{r}}=0
$$

hence

$$
a-(s b)^{p^{r}}=a-s^{p^{r}}(p-1) b^{p^{r}} \in \operatorname{ker}\left(\operatorname{tr}_{A / k}\right) \subset \sum A^{p^{r}}
$$

and therefore also $a \in \sum A^{p^{r}}$.

3. Trace forms of higher degree

We fix the ensuing conventions: Let k be a field and let A be a unital, not necessarily associative, strictly power-associative k-algebra which is finite-dimensional as a k-vector space. Let

$$
P_{A, a}(X)=X^{n}-s_{1}(a) X^{n-1}+s_{2}(a) X^{n-2}+\cdots+(-1)^{n} s_{n}(a)
$$

be the generic minimal polynomial of $a \in A$. The coefficient $s_{1}(a)=\operatorname{tr}_{A / k}(a)$ is called the generic trace of $a \in A, n$ the degree. The generic trace induces a bilinear form $t_{A}: A \times A \rightarrow F, t_{A}(x, y)=\operatorname{tr}_{A / k}(x y)$, the bilinear trace form of A. Its associated quadratic form is given by $x \rightarrow \operatorname{tr}_{A / k}\left(x^{2}\right)$. If the bilinear trace form on A is symmetric, non-degenerate and associative (i.e., $\operatorname{tr}_{A / k}(x y, z)=\operatorname{tr}_{A / k}(x, y z)$), then A is separable. Conversely, if A is associative, alternative or a Jordan algebra, and if A is separable, then the bilinear trace form $\operatorname{tr}_{A / k}$ on A is symmetric, nondegenerate and associative [6, (32.4) ff.].
Let $d \geq 2$ and let $\operatorname{char}(k)=0$ or $\operatorname{char}(k)>d$. For any algebra A over k,

$$
\varphi_{d}: A \rightarrow k, \varphi_{d}(a)=t r_{A / k}\left(a^{d}\right)
$$

is a form of degree d over k, the higher trace form of degree d on A. If A has a non-degenerate associative symmetric bilinear trace form, φ_{d} is non-degenerate [16].

Lemma 3. Let k be a field of characteristic 0 . Let l be a finite Galois extension of k. The following are equivalent:
(i) l is not formally real.
(ii) 0 is a non-trivial sum of dth powers of elements in l for all positive integers $d \geq 2$.
(iii) The form $\varphi_{d}(x)=\operatorname{tr}_{l / k}\left(x^{d}\right)$ of degree d is weakly isotropic for all positive integers $d \geq 2$.

Proof. The equivalence of (i) and (ii) was proved in [5, p. 84].
The fact that (ii) implies (iii) is trivial.
It remains to show that (iii) implies (ii):

Let $n=[l: k]$. Let $\sigma_{1}, \ldots, \sigma_{n}$ be the distinct embeddings of l in an algebraic closure of k. We have

$$
\operatorname{tr}_{l / k}(b)=\sum_{i=1}^{n} \sigma_{i}(b)
$$

for each element $b \in l$. If the higher trace form $\varphi_{d}(x)=\operatorname{tr}_{l / k}\left(x^{d}\right)$ of degree d is weakly isotropic then there are elements $a_{i} \in l$ which are not all zero such that

$$
0=\sum_{i=1}^{m} \operatorname{tr}_{l / k}\left(a_{i}^{d}\right)=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} \sigma_{j}\left(a_{i}\right)^{d}\right) .
$$

Hence 0 is a non-trivial sum of d th powers in l.

Remark 4. Let l be a finite Galois extension of k. If 0 is a non-trivial sum of d th powers in l (e.g. if l is non-real), then analogously as above, the form $\varphi(x)=\operatorname{tr}_{l / k}\left(c x^{d}\right)$ of degree d, also denoted $\operatorname{tr}_{l / k}(\langle c\rangle)$, is weakly isotropic for any $c \in l^{\times}$.

Conversely, suppose $c \in \sum l^{d}$. Let $\sigma_{1}, \ldots, \sigma_{n}$ be the distinct embeddings of l in an algebraic closure of k, then

$$
\operatorname{tr}_{l / k}(b)=\sum_{i=1}^{n} \sigma_{i}(b)
$$

for each element $b \in l$. If the form $\operatorname{tr}_{l / k}(\langle c\rangle)$ of degree d is weakly isotropic, then there are elements $a_{i} \in l$ which are not all zero such that

$$
0=\sum_{i=1}^{m} \operatorname{tr}_{l / k}\left(c a_{i}^{d}\right)=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} \sigma_{j}(c) \sigma_{j}\left(a_{i}\right)^{d}\right) .
$$

Hence 0 is a non-trivial sum of d th powers in l since $c \in \sum l^{d}$ by assumption.

Lemma 4. Let $d \geq 2$, and let A be an algebra over k in which 0 is a non-trivial sum of dth powers of elements in A. Then the higher trace form $\varphi_{d}(x)=\operatorname{tr}_{A / k}\left(x^{d}\right)$ of degree d is weakly isotropic.

This was proved in [9, Lemma 2.1] for central simple associative algebras over k and in $[15,2.4]$ for non-associative algebras over k with scalar involution, both times for $d=2$. Note that for d odd, the trace form $\varphi_{d}(x)=\operatorname{tr}_{A / k}\left(x^{d}\right)$ of degree d is always weakly isotropic for any algebra A over k. The proof of Lemma 4 is trivial. The more interesting implication is of course the remaining one.

Proposition 2. Let A be any k-algebra with a scalar involution ${ }^{-}$(e.g. a composition algebra), and let $d \geq 2$. Then 0 is a non-trivial sum of dth powers in A if and only if the higher trace form $\varphi_{d}(x)=\operatorname{tr}_{A / k}\left(x^{d}\right)$ of degree d is weakly isotropic.

Proof. If φ_{d} is weakly isotropic then there are $a_{i} \in A$ not all zero such that $0=\sum_{i=1}^{m} \operatorname{tr}_{A / k}\left(a_{i}^{d}\right)=a_{1}^{d}+\bar{a}_{1}^{d}+\cdots+a_{m}^{d}+\bar{a}_{m}^{d}$ and thus 0 is a non-trivial sum of d th powers in A.

For a central simple algebra A over a field k of characteristic not 2,0 is a nontrivial sum of squares if and only if the quadratic trace form $\varphi_{2}(x)=\operatorname{tr}_{A / k}\left(x^{2}\right)$ is weakly isotropic (Lewis [10, Theorem]). For $d \geq 2$ we obtain:

Proposition 3. Let A be a central simple associative k-algebra, and let $d \geq 2$.
(i) Let A be a division algebra over k and let k be formally real. Then 0 is a non-trivial sum of dth powers in A if and only if the higher trace form $\varphi_{d}(x)=\operatorname{tr}_{A / k}\left(x^{d}\right)$ of degree d is weakly isotropic.
(ii) If k is not formally real, then 0 is a non-trivial sum of d th powers in A and the higher trace form $\varphi_{d}(x)=\operatorname{tr}_{A / k}\left(x^{d}\right)$ of degree d is weakly isotropic.

Proof. (i) The proof closely follows the one of [10, Theorem].
(ii) If k is not formally real, then -1 is a sum of d th powers in $k[5, \mathrm{p} .84]$, and thus 0 is a sum of d th powers already in k (and by Lemma 3, the higher trace form $\varphi_{d}(x)=\operatorname{tr}_{A / k}\left(x^{d}\right)$ of degree d is weakly isotropic).

Remark 5. Let k be a formally real field and A a central simple algebra over k containing zero divisors. Then the higher trace form of A of degree d is isotropic, but for d even, we do not know whether 0 is a non-trivial sum of d th powers in A. However, Vaserstein [21] showed that for all sufficiently large n, every matrix in $\operatorname{Mat}_{n}(\mathbb{Z})$ is the sum of at most $10 d$ th powers. Hence 0 is a non-trivial sum of d th powers in $A=\operatorname{Mat}_{n}(D)$ for any division algebra D over k for all sufficiently large n.

For a unital non-commutative ring or an R-algebra A, clearly $\sum A^{d} \subset \sum A^{e}$ for each integer e dividing d. This implies that for a central simple division algebra D over k the fact that $0 \notin \sum D^{2}$ yields that $\sum D^{2}$ must be properly contained in D for any even integer d. With the help if this easy observation we rephrase some examples from [9]:

Example 1. (i) Let k be a formally real field (e.g. $k=\mathbb{Q}$). Put $K=k\left(x_{1}, \ldots, x_{n}\right.$, $\left.y_{1}, \ldots, y_{n}\right)$ and $D=\left(x_{1}, y_{1}\right)_{K} \otimes \cdots \otimes\left(x_{n}, y_{n}\right)_{K}$. Then D is a central simple algebra over K without zero divisors and $0 \notin \sum D^{2}[9,2.5]$, thus $\sum D^{d}$ is a proper subset of D for any even integer d. Hence the absolutely indecomposable higher trace form $\varphi_{d}(x)=\operatorname{tr}_{D / k}\left(x^{d}\right)$ of degree d is strongly anisotropic for even d. In particular, consider the function field of genus zero $K_{0}=k(x, t)\left(\sqrt{a t^{2}+b}\right)$ of the projective curve associated with a quaternion division algebra $(a, b)_{K}$ over $K=k(x)$. Put $D=(x, t)_{k(x, t)}$, then D is a quaternion division algebra over $k(x, t)$ which splits under the quadratic field extension K_{0} of $k(x, t)$. Thus the absolutely indecomposable strongly anisotropic higher trace form φ_{d} of degree d on D becomes isotropic over K_{0}. (For a central simple algebra A over k containing zero divisors the higher
trace form $\varphi_{d}(a)=\operatorname{tr}_{A / k}\left(a^{d}\right)$ on A of degree d is isotropic for any $d \geq 2$.) It is an example of a strongly anisotropic absolutely indecomposable form of even degree, which becomes isotropic under a suitable quadratic field extension.
(ii) Let k be a formally real field, s an integer, and $E=U D\left(k, 2^{s}\right)$ the universal division algebra of degree 2^{s} over k. Then $0 \notin \sum E^{2}[9,2.6]$, hence $\sum E^{d}$ is a proper subset of E for any even integer d and the absolutely indecomposable higher trace form $\varphi_{d}(x)=t r_{E / k}\left(x^{d}\right)$ of degree d is strongly anisotropic for every even integer d. For d even, the higher u-invariant $u(d, k)=\infty$ if k is formally real. For each integer m this gives an example of an anisotropic form of degree d and dimension $m 2^{2 s}$, which decomposes into absolutely indecomposable forms of dimension $2^{2 s}$.

Acknowledgements. Part of this paper was written during the author's stay at University of Trento which was financed by the "Georg-Thieme-Gedächtnisstiftung" (Deutsche Forschungsgemeinschaft).

References

[1] Becker, E.: Summen n-ter Potenzen in Körpern. J. Reine Angew. Math. 307/308 (1979), 8-30.

Zbl 0398.12012
[2] Cimpric, J.: Higher product levels of noncommutative rings. Commun. Alg. 29 (2001), 193-200.

Zbl 0996.16028
[3] Dai, Z. D.; Lam, T.-Y.; Peng, C. K.: Levels in algebra and topology. Bull. Am. Math. Soc., New Ser. 3 (1980), 845-848. Zbl 0435.10016
[4] Harrison, D. K.: A Grothendieck ring of higher degree forms. J. Algebra 35 (1975), 123-138.

Zbl 0309.15016
[5] Joly, J.-R.: Sommes de puissances d-ièmes dans un anneau commutatif. Acta Arith. 17 (1970), 37-114. Zbl 0206.34001
[6] Knus, M. A.; Merkurjev, A.; Rost, M.; Tignol, J.-P.: The Book of Involutions. AMS Coll. Publications, 44 (1998). Zbl 0955.16001
[7] Lam, T. Y.: A First Course in Noncommutative Rings. 2nd ed., Graduate Texts in Mathematics 131, Springer-Verlag New-York 2001. Zbl 0980.16001
[8] Leep, D. B.: Levels of Division Algebras. Glasg. Math. J. 32 (1990), 365-370. Zbl 0727.12004
[9] Leep, D. B.; Shapiro, D. B.; Wadsworth, A. R.: Sums of Squares in Division Algebras Math. Z. 190 (1985), 151-162. Zbl 0548.16019
[10] Lewis, D.: Sums of Squares in Central Simple Algebras. Math. Z. 190 (1985), 497-498.

Zbl 0563.16010
[11] Lewis, D.: Levels of quaternion algebras. Rocky Mt. J. Math. 19 (1989), 787-792. Zbl 0709.12002
[12] O'Ryan, M.; Shapiro, D. B.: Centers of higher degree forms. Linear Algebra Appl. 371 (2003), 301-314.
[13] Pall, S.; Rajwade, A. R.: Power Stufe of Galois fields. Bull. Soc. Math. Belg., Ser. A 35 (1983), 123-130.

Zbl 0603.12009
[14] Pfister, A.: Quadratic forms with applications to algebraic geometry and topology. London Mathematical Society Lecture Notes Series 217, Cambridge University Press, Cambridge 1995.

Zbl 0847.11014
[15] Pumplün, S.: Sums of squares in octonion algebras. Proc. Am. Math. Soc. 133 (2005), 3143-3152. Zbl pre02188234
[16] Pumplün, S.: Indecomposable forms of higher degree. Math. Z. 253(2) (2006), 347-360.

Zbl 1090.11024
[17] Rupprecht, C.: Cohomological invariants for higher degree forms. PhD Thesis, Universität Regensburg, 2003.
[18] Szele, T.: On ordered skewfields. Proc. Amer. Math. Soc. 3 (1936), 81-92.
[19] Tornheim, L.: Sums of n-th powers in fields of prime characteristics. Duke Math. J. 4 (1938), 359-362. Zbl 0019.00302 and JFM 64.0093.02
[20] Wesolowski, A.: Automorphism and similarity groups of forms determined by the characteristic polynomial. Commun. Alg. 27(7) (1999), 3109-3116.

Zbl 0935.11014
[21] Vaserstein, L.: On the sum of powers of matrices. Linear Multilinear Algebra 21 (1987), 261-270.

Zbl 0637.10041

Received March 21, 2006

