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Abstract. Quasi-varieties of first-order structures were studied by N.
Weaver [7] to generalize varieties of algebras; he also established some
Malcev like conditions for these classes of structures. Following this line
we extend some results of functional completeness of algebras to first-
order structures. Specifically, we formulate and characterize a notion of
quasiprimality for first-order structures.
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1. Introduction

Functional completeness of algebras has been studied by many authors ([1], [2],
3]). In [7], N. Weaver extends some of the results of this study to classes of

first-order structures.
This paper is an attempt to extend a result of A. F. Pixley [3] to first-order
structures. Let us recall some basic definitions.

Definition 1.1. Let E be a nonempty set, and g : E* — E be a ternary function.
(1) g is called a Malcev function if g(a,b,b) = a = g(b,b,a) for all a,b € E.
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(ii) g is called a majority function if g(a,a,b) = g(a,b,a) = g(b,a,a) = a for all
a,be k.

(iii) g is called a Pizley function if g(a,a,b) = g(b,a,b) = g(b,a,a) = b for all
a,be k.

(iv) The discriminator function on E is the ternary function d defined by

d(a,b,c) = {Z ZjZiZ

Let A = (A; F4) be an algebra of type F. A is called nontrivial if A contains at
least two elements; we will say that A is minimal if it has no proper subalgebra.

Consider the type F := F U {c,;a € A} obtained from the type F' by adding a
constant symbol ¢, for each element a € A. Then the terms of type F4 are called
the polynomials of A.

A function f: A" — A, n > 1, is called:

e a term function of A if there is some n-ary term t of type F' such that

f=t4
e a polynomial function of A if there is some n-ary term p of type Fa such
that f = p™.

A ternary term t(z,y, z) in the language of A (i.e., of type F') is called a Malcev
term (resp. a majority term, a Pizley term, a discriminator term) for A if the
induced function t* is a Malcev function (resp. a majority function, a Pixley
function, a discriminator function) on A.

Definition 1.2. Let A = (A; F4) be a finite nontrivial algebra.

(i) A is called functionally complete if every finitary function f : A™ — A,
n > 1, is a polynomial function of A.

(ii) A is called quasiprimal if every finitary function f: A" — A, n > 1, which
preserves the subuniverses of A% consisting of (the graphs of ) isomorphisms
between subalgebras of A is a term function.

A quasiprimal algebra A is characterized by any of the following two facts (cf. [1],
p. 175):

Fact 1. A has a discriminator term.

Fact 2. A has a Pixley term, and every subalgebra of A is simple.

When A is quasiprimal, it can be shown that every subuniverse of A? is either
the product of two subuniverses of A or (the graph of) an isomorphism between
two subalgebras of A.

An n-ary function f : A™ — A which preserves isomorphisms between subal-
gebras of A must preserve the identity map idg = /g for each subalgebra B of A;
so h must preserve the subuniverses of A, and consequently any product B x D
of two subuniverses.

Now, a lemma of Baker and Pixley (cf. [1], page 172) states that if a finite
algebra A has a majority term, a function h: A" — A, n > 1, is a term function
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iff h preserves the subuniverses of A% This will be our main tool, noting that
A? = V4 is the largest congruence of A, and in the case of a quasiprimal algebra,
h preserves the subuniverses of A? iff h preserves the (graphs of) isomorphisms
between subalgebras of A.

The work of N. Weaver [7] is based on the notion of x-congruence on first-order
structures.

Definition 1.3. ([7]) Let 2 = (A; F*; R*) and B = (B; F®; R®) be first-order
structures of the same type (F'; R).
(i) A morphism X\ : A — B is called a x-morphism if for any m-ary r € R, and
ary .. am € A, {ay, ... am) € Y% iff (May), ..., Mam)) € r®. In this case,
the substructure A(2L) of B is called a *-image of .
(ii) A congruence 0 of U is called a x-congruence if it is compatible with the
relations of A; that is, for any m-ary r € R and (u;,v;) € 0 for 1 < i <
m, (Ui, ..., Up) €Y% ff (v1,...,0,) € X%
(iii) A class K of structures of the same type is called a x-variety if it is closed
under products, substructures and x-images.

So, x-congruences are exactly the kernels of x-morphisms.

The set Con, () of x-congruences of 2 is a sublattice of Con(2); in fact Con, ()
is a complete lattice with smallest element idy = A 4, and largest element denoted
by lg; in general 1oy # A? = V4.

Using x-congruences, N. Weaver established some Malcev like conditions, and a
structure theorem for x-varieties. In [5] we gave a notion of functionally complete
first-order structure relative to x-congruences. Our aim here is to follow this

line and formulate a notion of quasiprimality for a first order structure A =
(A; F*; R*) where V4 is replaced by 1g.

Notation. Let 2l = (A; F*; R*) be a first-order structure.
(i) Let 6 be an equivalence relation on A and a be an element of A; then [a]y is

the 0 equivalence class of a. When 6 = 1g, we simply denote the equivalence
class of a by a.

(ii) For a subset X of A, Sg(X) denotes the subuniverse of 2 generated by X;
if X ={x1,...,2,}, we simply denote Sg(X) by Sg(z1,...,z,).

(iii) Given two elements a := {(a(1),...,a(n)) and b := (b(1),...,b(n)) of A", let
H(a,b) denote the subuniverse of 2? defined as follows:

H{a,b) = Sg((a(1),b(1)), ..., (a(n), b(n))).

(iv) For a nonzero natural number m, let m be the set {1,2,...,m}.
Throughout, 2 = (A; F*; R*) will be a finite nontrivial first-order structure.

In Section 2 we give some necessary and sufficient conditions under which 1y
compatible functions are interpolated by terms on 1g classes. Section 3 is devoted
to formulating and characterizing a notion of quasiprimality for 2. An example
is given in Section 4.
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2. Term interpolation of functions

In this section we examine some necessary and sufficient conditions for term in-
terpolation of 1y compatible function. For this we need to adapt some definitions
on algebras to the situation of first-order structures we want to investigate.

Definition 2.1. Let 2l = (A; F*; R¥) be a first-order structure and h : A™ — A,
n > 1, be a function.

(i) h is said to be termal on classes if for each element a € A, there is an n-ary
term t such that t* and h coincide on ([a]1, )" = @".

(ii) h is said to be weakly termal if for any subset E of A™ satisfying property

1o

a,b € E implies (a(i),b(i)) € 1g for 1 <i < n, (P)

there is an n-ary term t such that t* and h coincide on E.

(iii) An n-ary term t represents h on classes if for each a € A, t* and h coincide
on a”. In this case we say that h is term representable on classes by t.

Remark 2.1. We note that:

(i) Weakly termal functions and functions which are term representable on
classes are termal on classes.

(ii) For a unary function h, weakly termal and termal on classes are equivalent,
and h is term representable on classes means h is a term function.

(iii) A constant function h is termal on classes iff it is a term function.

Example 2.1. Let A = (Zy0;+, —,,0) be the ring of integers modulo 40, 6 be
the congruence associated to the ideal 5Zy.
Consider the relations r := [0]p x [2]p and s := [1]g X [3]p X [4]g on A = Zyy.
For the structure A = (A;r,s) = (Zy; +, —, +,0;7,5), one can see that 1y = 6.
We use the following terms to define the functions we need: ¢;(z,y,2) =
T4+y+z, to(x,y, 2) :=xy + z, and t3(z,y, 2) = xy=z.
(a4 b+c if [alg=[bs;
(i) Define the function f : A* — A by f(a,b,c)=1 ab+ cif [a]y # [blo=]cl;
| abc  elsewhere.
Then the term ¢; represents f on classes, and f is also weakly termal.
(a0 + b+ cif [a]p=[b]o;
(ii) Define the function g : A*> — A by g(a,b, c)= < abc if [as# [b]s and a#0;

\ ab 4+ ¢ elsewhere.

Then t; represents g on classes.

Let u = (0,2,3) € A% and E(u) := {x € A% : (z(i),u(i)) € 6 for 1 <i < 3}.
x(3) if z(1) =0;

(1) - x(2) - x(3) if not.

So there is no term representing g on E(u), and g is not weakly termal.

For each = € E(u), g(z) =
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a+b+c if [a]lyg = [0]p;
abc if not.

(iii) Define the function h: A% — A by h(a,b,c) = {

Then, h is weakly termal; but there is no term representing h on classes.
a if [alg=[0]y;
(iv) Define the function A : A* — A by A(a,b,¢)=< b if [a]g#[0]y and b#0;
ab + ¢ elsewhere.

The first projection 7T§3) represents A on [0]s = 0, the second projection 7r§3)

represents A on the other classes; so A is termal on classes. But there is
no term representing A\ on classes, and A is not weakly termal as it can be
verified on F(u) where u = (1,0,4) € A3.

a if [CL]@Z[O]Q;
(v) Define the function p: A* — A by p(a,b,c)=14 b if [a]y#[0]s and b=c;
¢ elsewhere.

Then p is not termal on classes.

We will use the following version of the lemma of Baker and Pixley.

Lemma 2.1. Suppose that A has a majority function which is termal on classes,
and let h : A" — A, n > 1, be a function.

(i) The following conditions are equivalent for an element u € A.

(iy) For any elements ey, e, ... e, of u?, the element hQ‘Q(el, cy€n) be-
longs to Sg(ey,. .., e,) in A2

(iy) For any subset E of ™ there is an n-ary term t such that t* and h
coincide on E.

(ii) h is weakly termal if and only if h preserves the subuniverses of ly.

Proof. (i): We only need to prove that (i;) implies (iz).

Let a,b € @"; then {(a(1),b(1)),. .., {a(n),b(n)) are elements of u?. By hypoth-
esis, 1% ({a(1), b(1). ..., (a(n), b(n))) belongs to Sg({a(1), (1)} ... (a(n), b(n)));
S0 for some n-ary term t R ((a(1),b(1)), ..., (a(n),b(n))) = t*((a(1),b(1)), ...,
(a(n),b(n))); that is h(a ) = t%(a) and h(b ) = t%(b).

Suppose that for any Ey C u" with 2 < card(Ey) < k, there is an n-ary term ¢
which coincides with h on Ey. If card(E) > k, let £y C E with card(Ey) = k+1,
and choose three distinct elements aq, as, a3 in E;. Then there are terms ¢y, ts, t3
such that ¢ coincides with h on Ej\{a;} for 1 <i < 3.

There is some b € A such that t3(E)) C b; but t*(ay) = h(az) = t3(as)
and t*(as) = h(as) = t3(as); so t*(E;) C b for each i. Now let t;, be a term
interpolating M on 53, and consider the term o(z) := t4(t1(x), t2(x), t3(z)), where
x = (z1,...,7,). Then h coincides with at least two of the t* on each e € E) for
1 <4 < 3, so that o®(e) = h(e) for each e € F;. Since F is finite, we can iterate
the process and obtain a term which coincides with h on E.
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(ii): The proof is essentially the same, using property (P), and can be found in
[6]. O

Recall that for a,be A", H(a,b) is the subuniverse Sg({a(1),b(1)), ..., {a(n),b(n)))
of A2. An argument similar to that used in the above lemma gives the following.

Corollary 2.2. Suppose that A has a majority function which is term repre-
sentable on classes, and there is some u € A such that card(u) > 3. Let

h : A" — A, n > 1, be a function such that for any elements a,b € |Ju",
u€A

(h(a),h(b)) € H(a,b). Then h is term representable on classes. O

Definition 2.2. Let h: A™ — A, n > 1, be a function.
(i) h is said to be 1y compatible if for any pairs (a;,b;) € 1y, 1 < i < n, we
have h° ({a1,b1), ..., (an,bp)) = (W (ay, ..., an), Kby, ..., b)) € 1q.
(ii) h is said to be compatible on a class u if there is some b € A such that
h(u™) Cb.
For example, consider the following ternary functions q and d on A:
{w if T=7y=7zand z # y;
(a): a(z,y,2) =
z  elsewhere.

x if x#y;
z  elsewhere.

(b): d(z,y,2) = {
Then, q is 19 compatible, but is a Pixley function only on classes; the discriminator
function d is compatible on classes.

A weakly termal function h : A — A is 1y compatible.

Let m and n be nonzero natural numbers, and a!, ..., a™ € |J u", and define
u€A

the elements a; of A™ by a; := (a'(i),...,a™(i)) for 1 < i < n. Consider the
set K(ay,...,a,) := {z € A™; (x(i),z(j)) € H(a',d’) for i,j € m}. Then
Sg(ai,...,a,) C K(ay,...,a,) as subuniverses of A™.

Theorem 2.3. Consider the following properties on 2A:

(i) Every n-ary function which preserves the subuniverses of 1o, n > 1, is term
representable on classes.

(ii) Let m and n be nonzero natural numbers:
(iiy) If a,b € |Ju", then H(a,b) = Sg(a(l),...,a(n)) x Sg(b(1),...,b(n))

u€A
or H(a,b) C 1qy.
(iip) Ifal,...,a™ € Ju", and a; :== (a'(i),...,a™(i)) for 1 < i < n, then

Sg(ay,...,an,) :efA((al, Cey Q).
Then (1)=-(ii1) and (ii)=(i).
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Proof. (i) = (ii;): Obviously, H(a,b) C Sg(a(1),...,a(n)) x Sg(b(1),...,b(n)).
Assume H(a,b) € 1a; then there is some i € n such that (a(i), b(i )> ¢ Ly
W.l.o.g. let : = 1. To show that Sg(a(1),...,a(n)) x Sg(b(1),...,b(n)) C H(a,b)
let (u,v) € Sg(a(l),...,a(n))xSg(b(1),...,b(n)). There are terms t; and t9 such
that u = t3(a) and v = t3(b). Consider the function h : A® — A defined by

tHx) if ze€a(l);
hz) =< () if zeb);
xz(1)  elsewhere.

Then h preserves the subuniverses of 1y. By (i) let ¢ be a term representing h on
classes; we have (u,v) = (h(a), (D)) = (t*(a), (b)) = t**((a, b)) € H(a,b).

So H(a,b) = Sg(a(l),...,a(n)) x Sg(b(1),...,b(n)) holds.
(ii) = (i): Let h: A™ — A be a function which preserves the subuniverses of 1g;

let a',...,a™ be the distinct elements of |Ju", and a; := (a'(i),...,a™(i)) for
u€A
1< <n.

Let k,l € m be arbltrary If <ak 1),al(1)) € 1% then (h(a®), h(a')) € H(a*, a');
if not H(a ,a') = Sg(ak(1),...,a*(n)) x Sg(a'(1),...,al(n)) by (ii;), so that
(h(a*), h(a")) € H(a*,a').

Thus (h(a'),...,h(a™)) € K(ay,...,a,) = Sg(ay,...,a,) by (iiz). So there is
an n-ary term ¢ such that (h(a'),..., h(a™)) = t*"(ay,...,a,); that is (h(a'), ...,
h(a™)) = (t*(at),...,t*(a™)), and t represents h on classes. O

If 2 is a minimal structure (i.e. 2 has no proper substructure), property (ii;) of
the above theorem implies that A2 is the only subuniverse of 22 that may not be
contained in 1g.

Definition 2.3. 2 satisfies the class subuniverse property (briefly CSP), if it
satisfies the condition (iiz) of Theorem 2.3.

Corollary 2.4. Suppose that A has a majority function which is termal on clas-
ses. Then each of the properties (i) and (i) of Theorem 2.3 is equivalent to this
third one:

(iii) Every weakly termal function is term representable on classes.

Proof.  From the hypothesis and Lemma 2.1 (ii), properties (i) and (iii) are
equivalent. So, we only have to prove that (i) and (ii) are equivalent. For this, we
must show that (i) implies (iis).
Let a', ..., a™ be elements of |Ju", and a; := (a'(i),...,a™(i)) for 1 < i < n.
ucA
Take an z € K(ay,...,a,). For each k € m, let J := {l € m : {a*(1),d'(1

)@ (1))
1y }; furthermore let a(k) be the minimum of Jy. If [y, [y are in Jj, < (1y), ( 9)) 1
an element of H(a",a?) and the later is Sg((a''(1),a%2(1)),. .., (a"(n),a2(n))).
From the proof of Lemma 2.1 (i), we can find a term ¢, such that z(l) = (al
for each [ € Jj.

€
S

)

la
2[
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Consider the function h : A" — A defined by:

2 : ——n _
h(u) = tory (W) ifuw € a(1)  for some k;
u(1) if not.

Let E be a subuniverse of 1y, and (b(j),c(j)) € E for 1 < j < n.
If b:= (b(1),...,b(n)) € a¥*(1) for some k, then so is ¢ := (¢(1),...,¢(n)) and
2

(), () = (3 (B), 12 (€)= 126, ((5(1), (1), . (b(m) () € E. Other-
wise, (h(b), h(c)) = (b(1),¢(1)) € E.

So h preserves the subuniverses of 1y, and there is a term ¢ representing h on
classes. Now, z = (z(1),...,z(m)) = (t*(al),...,t*(a™)) = *" ({ay, ..., ay)) is
an element of Sg(ai, ..., a,); thus we have (iiz). O

3. x-quasiprimality

We begin this section with a version of a Fleischer’s lemma on subuniverses of
product algebras in a permutable variety (cf. [1], p. 169). First we need a notion
of subdirect product suitable for our purpose.

Definition 3.1. Let B and B85 be substructures of A, and m; : B1 X By — By,
1 < <2, be the canonical projections. Let B be a substructure of By X Bs.

(i) B C By x By is called a subdirect product of By and By if m;(B) = B; for
i=1,2,

(ii) B C By X By is called a x-subdirect product if it is a subdirect product and
ker(m;) N B? is a x-congruence of B fori=1,2.

Note that for any *-congruence 6 of the x-subdirect product B of B, x B, m;(6)
is a *-congruence of B;.

Lemma 3.1. Let By, By be substructures of A and B C By X By be a x-subdirect
product such that Con,(8) is permutable. Then there are x-epimorphisms B, L\
D £ B, such that B = {{by, bs) € By x By : hy(b) = ha(bs)}.

Proof. Let 7, = m; |[g: B — B; be the restriction of m; to B, for 1 < i < 2.
Since B C B; x By is a x-subdirect product, each 7; is a x-epimorphism; then
pi = ker(7;) = ker(m;) N B? is in Con, (W), and so is p = p; V pa = p1 0 pa. Let
T : 9B — B/p be the canonical x-epimorphism; there are epimorphisms B, LiX
B/p i) B, such that 7 = h; o 7; for each i; moreover each h; is a x-morphism.

If (by,b2) € B, hi(b1) = hq o 11({b1,b2)) = hy o To((b1, ba)) = ha(by).
Conversely let (by,by) € By x By such that hi(by) = hs(by); there are elements
a; € By and ay € By such that (by,as) and (aj, be) are in B. Then 7((b1, as)) =
hi(b1) = ha(be) = 7({a1,bs)) and ({aq, bs), (b1, as)) € p = p1 o pa. Let (u,v) be
an element of B such that (a, by)pa(u,v)p1(b1,as); then by = v and u = by, so
(b1,by) = (u,v) € B. O
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A substructure 9B (or subuniverse B) of B, x B, is said to be rectangular if when-
ever (x,y), (u,v), (z,v) are in B then so is (u,y). Then Lemma 3.1 shows that
every x-subdirect product B C B, x B, with Con,(9B) permutable is rectangular.

For every substructure B of 2, the largest congruence of B is the restriction
of the largest congruence of %; that is, Vg = V4 N B2 For *-congruences, we
want 1y to act similarly as V 4 on substructures. Whence the following definition.

Definition 3.2. 1y is said to be hereditarily maximal if 1s = 1o N B? for each
substructure B of A.

Lemma 3.2. Let 2 be a structure such that 1y s hereditarily mazimal, and B
be a substructure of A such that B is contained in 1y.

(i) If A has a Malcev function which is termal on classes, then Con,(B) is
permutable.

(ii) If A has a Pizley function which is termal on classes, then Con.(B) is
arithmetical.

Proof. (i): For any 6, ¢ € Con,(B) and (a,b) € o ¢, let ¢ € B such that apcb;
now let a = (ay,az), b = (by,by) and ¢ = (cq, c2); then a;, b;, ¢; € @y for each i. Let
t(z,y, z) be a ternary term representing the given Malcev function on ay; then
a =1 (a,b,0)0t% (a,c,b)pt* (c,c,b) = b, and (a,b) € g o 6.

(ii): Let 6,¢,9 be in Con,(B), and (a,b) € 0 A (¢ o 9); then apcpb for some
c € B. Let a = (aj,as), b = (by,bs) and ¢ = {c1,¢ca); then a;, b;,¢; € ay for
each 7. Let t(z,y,z) be a ternary term representing the given Pixley function
on ar; then th(a, c, b)@tQ[Q(a,c, a) = a and tng(a,c, b)@th(b, ¢,b) =b. Soa =
% (a,b,0)(0 A ©)t* (a, ¢, b) (0 A ) (a,a,b) = b, and (a,b) € (O A1) o (0 A ),
thus 0 A (po) C(OAY)o(BAp). If 0 = Ap, we obtain p o) C 1hoyp. So
ON(pV)C(OANY)V(OAp), and Con,(B) is arithmetical. O

One of the main properties of a quasiprimal algebra A = (A; F4) is that every
subalgebra of A is simple. A notion of quasiprimality for first-order structures
may be expected to entail a similar property. Below we give a notion of simplicity
which fits with x-congruences.

Definition 3.3. Let B be a substructure of .

(i) A congruence 8 € Con,(B) is said to be simple if for everyb € B, [blyg = {b}
or [ble = [b]

(i1) B is said to be x-simple if every x-congruence of B is simple.

1o

(iii) A is said to be hereditarily x-simple if every substructure of A is x-simple.

It is proved in [6] that if the discriminator function d is termal on classes, then
is x-simple and Con, () is arithmetical.

Definition 3.4. Let B, and B, be substructures of A, 0; € Con(B;) for 1 <i <
2, and o : B1/01 — By /0y be an isomorphism.
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(i) The set E := {(b1,bs) € By X By: a(b1/01) = by/6s} is called the lifting of
a, and denoted by lift(a).

(ii) If E C 1y then E is called a 1y lifting, and « is called a 1y isomorphism.

If moreover 0, and 0y are simple then E is called a simple 1g lifting.

When 2 has a Malcev function which is termal on classes, we see from Lemma
3.1 and Lemma 3.2 that any subuniverse F of 1y is rectangular, thus is the lifting
of some 1y isomorphism « : B;/0; — By /b, where B; = m;(E) is a subuniverse
of A and 0; € Con,(B;) for 1 <i < 2. If moreover A is hereditarily x-simple then
E is a simple 1y lifting.

Theorem 3.3. Let A be a structure with 1y hereditarily mazximal. Then the fol-
lowing properties are equivalent:

(i) The discriminator function d is termal on classes.
(ii) A is hereditarily x-simple and has a Pizley function which is termal on
classes.
(i) Every function h : A — A, n > 1, which preserves simple 1y liftings is
termal on classes.

Proof. (i) = (ii): First note that the discriminator function d is a Pixley function.
For hereditary *-simplicity, let 8 be a substructure of 2, b € B and 0 €
Con,(B) such that [blg # {b}. Then there is some ¢ € B such that (b,c) € 0
and b # c¢. Now, for each u € [b]1,, (c,u) = (d(c,b,u),d(b,b,u)) € . Thus
[b]15s = [b]o, showing that 6 is a simple *-congruence.
(ii) = (iii): A Pixley function is also a Malcev function, thus subuniverses of 1y
are lg liftings, which are simple. From the given Pixley function, we can obtain
a majority function which is termal on classes. So by Lemma 2.1 (ii), h is weakly
termal, hence termal on classes.

(iii) = (i): Consider the function ¢ : A*> — A defined by

¢ if a=band b=7
q(a,b,c)=<a if a#b anda

b elsewhere.

Let E be the lifting of a simple 1y isomorphism « : B1/0; — By /0, and u, v, w
be elements of F.

e Suppose that u(1 ) v(1) = w(l), then [u(lg)]g1 = [v(1)]g, iff [u(2)]s, = [v(2)]s,-
[(u(1) = v(1) iff (u(2) = v(2))] implies ¢*" (u, v, w) € {u,w}.
(1) = o(0) ff (u(2) # o(2))] muplies (Dl = (Dl = ({1, =
[ui)l)]lmme% then ¢4 (u,v,w) € {{u(1),w(2)), (w(1),u(2))}, and the later is a
subset o

e Suppose that u(1) = v(1) # w(1). .
If [(u(1) = (1)) iff (u(2) = v(2))], then ¢* (u, v, w) € {u, v}
If [(u(1) = v(1)) iff (u(2) # v(2))], then ¢ (u,v,w) = u
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e Suppose that u(1) # v(1); then ¢** (u, v, w) = v.
So ¢ preserves E, and is termal on classes. Since ¢ coincides with d on classes,
d is also termal on classes. U

Definition 1.2 and the above theorem motivate the following definition.

Definition 3.5. (i) 2 is called weak x-quasiprimal if every function on A
which preserves simple 1y liftings is termal on classes.

(ii) A is called x-quasiprimal if every function on A which preserves simple 1g
liftings is term representable on classes.

So, Theorem 3.3 characterizes weak x-quasiprimality. Below we use the property
CSP (see Definition 2.3) in the characterization of x-quasiprimality.

Theorem 3.4. Suppose that 1g is hereditarily mazimal. Then 2 is x-quasiprimal
if and only if the following conditions are satisfied:

(i) The discriminator function d is term representable on classes.

(ii) For any monzero natural number n and a,b € |Ju", H(a,b) C 1y or
ucA

H(a,b) = Sg(a(1),...,a(n)) x Sg(b(1),...,b(n)).
(iii) A satisfies the CSP.

Proof. (=-): From the proof of Theorem 3.3, d is term representable on classes.

Since d is a Pixley function, we can obtain a majority function which is termal
on classes, and subuniverses of 1y are simple 1g liftings, thus the result follows
from Corollary 2.4.

<): Since d is term representable on classes and 1g is hereditarily maximal, the
subuniverses of 1y are simple 1y liftings, so the result follows from Theorem 2.3. [J

Note that in 2 = (A4; F*; R*), if for each m-ary r € R, r* is empty or 7% = A™,
the above results correspond to the standard notion of quasiprimality on algebras.
In particular, condition (i) in the above theorem may be replaced by “2 is
hereditarily *x-simple and has a Pixley function which is term representable on
classes”.
We end the section by examining the case of minimal structures.

Lemma 3.5. Let A be weak *-quasiprimal and minimal. Then:
(i) Any subuniverse of 1y is an automorphism or a simple x-congruence of 2.

(ii) If a subuniverse of 1y is a nontrivial automorphism of A, then N4 and lg
are the only x-congruences of 2.

Proof. (i): Let E be a subuniverse of 1lg; then E is the lifting of some isomor-
phism « : A/6; — A/6,, where 6, and 0, are simple x-congruences of 2.

If 6, = A4 then 65 = A 4; and « is an isomorphism of 2.

If 6 # A4 then 0y # A 4; and there is some a € A such that [alg, =@ # {a}.
Since E = lift(«) is a simple 1y lifting, we must have a(a) = a. Let b be any
element of A; by minimality b = t*(a) for some unary term t. Then a(b/6;) =
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a(t®?(a/0,)) = t¥%(a(a/0))) = t¥%2(a/by) = t*(a)/0s = b/bs; s0, o = Id 4y,
and 6; =05, = E.
(ii): Let a be a nontrivial automorphism with o C 1g. If ¢ € Con,(2A) such that
@ # Ay, then [a], = @ # {a}, for some a. Also b = a(a) # a, for otherwise the
fix points of o would form a proper subuniverse of . Moreover b € @ = [a].,.

Let ¢ be any element of A; then ¢ = t*(a) for some term ¢; now, d = t*(b) =
t*afa)) = a(t™(a)) = alc), and a(c) # c. Since {(c,d) = (t*(a),t*(b)) =
t*((a, b)) € p, we have d € [c], and [c], = . This shows that ¢ = 1y # Ay, O

Definition 3.6. The structure A is called x-demiprimal (resp. weak *-demipri-
mal) if it is minimal and every n-ary function h on A, n > 1, which preserves lgy
automorphisms and simple *-congruences is term representable (resp. termal) on
classes.

By Lemma 3.5, 2 is weak x-demiprimal if and only if 2 is weak x-quasiprimal and
minimal.

Theorem 3.6. The structure A is x-demiprimal if and only if the following con-
ditions are satisfied:

(i) A is x-quasiprimal.
(i) The only subuniverses of A* are A2, the simple x-congruences and ly auto-
morphisms of 2.

Proof. (=): If A is x-demiprimal, then the function ¢ defined in the proof of
Theorem 3.3 is term representable, hence d is also term representable. Since 2 is
minimal, by Lemma 3.5 the subuniverses of 1y are simple x-congruences and 1y
automorphisms of 2; these are the only simple 1g liftings of (. Therefore, 2 is
*-quasiprimal. From Theorem 2.3 it is clear that A? is the only subuniverse of 2>
which may not be contained in 1g .

(<): By (ii), 2 is minimal. From (i), dis term representable; and (ii) implies that
simple *-congruences and lg automorphisms are the only (simple) 1g liftings.
Since 2 is x-quasiprimal, every function which preserves these liftings is term
representable on classes; so 2 is x-demiprimal. O

In fact using Lemma 3.5 and the observation after Theorem 2.3, condition (ii) in
Theorem 3.6 may be stated as follows:

“ The only subuniverses of 22 other than A? are either 1y, id4 and the 1y auto-
morphisms, or the x-congruences”.

4. An example

We illustrate some of the notions and results of the preceding sections through a
finite ring.
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4.1. The basic universe

Let p and ¢ be prime natural numbers such that 2 < p < ¢; consider the ring A =
(Zysq;+,+,0), its ideal I = p*A = p*Z,3,, and the congruence § = {(a,b) € A?
a—bel}.

Define the relations r# := [0]y X [p]s X [p?]p and s* := [  [a]s. We obtain

(1<a<p?—1)
ag{0,p,p2}

a structure A = (A;r?, 1) = (Z5+, -, 0,74, s4).

Let (a,b), {c,d) € 0 such that (a,c) € r4; then a € [0]y and ¢ € [ply; so b € [0]y
and d € [ply; i.e., (b,d) € r*, showing that 6 is compatible with r4. Similarly we
verify that 6 is compatible with s4; so  is a %x-congruence of 2.

Now if ¢ is a congruence of 2 such that o & 6, then ¢ is not compatible
with 74; so 6 = 1y, and since A, is the only congruence contained in § we obtain
COTL*(QL) = {AA, lgl)

We note that the term #(z,y,2) := (x — y)?~'(x — 2) + 2 represents the dis-
criminator function on classes.

The subuniverses of 2 are of the form p*¢® A, where 0 < o < 3and 0 < 3 < 1.
For C' = p?A = p*Z,3,, we have the substructure € = (p*Z,3,; +, -, 0; 7%, s%), where
r=rAnNC3=0and s¢=s1NCr-3=4.

So 1¢ = C? = V¢ € 1g, and 1y is not hereditarily maximal.

4.2. The structure (2; p)

We consider the structure (;p) := (2,
Then 1(Ql;p) =0= 19[

The only subuniverse of (2;p) is B := pA = pZ3,, and B = (pZ,3,; +, -, 0, p;
r® s®), where r® = r4 N B? = 74 since 74 C B?, and s® = s4 N B®*3) = ().

I = p3Ais an ideal of the underlying ring B of 9B, and 1 = 0N B? = 19N B,
s0 1y is hereditarily maximal. Moreover, I is a minimal ideal of B, so we have
C’on*(%) = {AB, 1%}

Since the discriminator function on A is term representable on classes, (2;p)
is weak x-quasiprimal.

Let us look for the subuniverses of 1(g,,). Let £ be such a subuniverse; since
p is a constant of (;p), (p,p) is a constant of (2A;p)?; so A C E.

Suppose that Ap C F C lg; there is some (u,v) € 1y such that (u,v) € F
and u # v. If b € B such that b € @, then (b,u) = (t*(u,u,b),t*(u,v,b) € E; in
particular, (u + p3,u) € E, and (a + p*,a) € E for each a € B; so 13 C E.

Suppose that Ap C E ¢ lg; there is some (u,v) € E such that u € B; so
p does not divide u, and there are a, 3 such that au + fp = 1. Then a(u,v) +
Blp.p) = (L, 1+ a(v —u)).

If w=wv, we have (1,1) = a(u,v) + 3(p,p) € E, and A4 C E.

If uw # v, then {q,q) = ¢(1,1 + a(v —u)) € E since v —u € [ = p>A. But
(p,p) € E,s0(1,1) € Eand Ay C E. For each a € [1]1,, (a,1) =d((1,1),(1,1+
a(v—u)), (a,a)) € E; in particular (1+p?,1) € E, and (p*,0) € E; so [ x{0} C F,
and 19( - E.

3¢+, 0,p; r4, SA) where p is a constant.
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Therefore the only subuniverses of 1(g,,) are Ap, 1, Ay and 1g.
Consider the function h : A> — A defined by
~Ja1)-a(2 if a€0UPUPY
(@) = a(l) +a(2) elsewhere.

That is, the term t,(x,y) = xy represents h on 0 UP U p? and the term to(z,y) =
r + y represents h elsewhere. It is clear that h preserves the subuniverses of
L(apy; but there is no term representing h on classes: for the elements a = (1,1)
and b = (p,p) of A%, we have h(a) = t3(a) = 1 +1 =2 # 1 = t¥(a), and
h(b) =t3(b) =p? #p+p=2p=13(b). So (A;p) is not x-quasiprimal.

4.3. The structure (2; h, p)

Consider the structure ® = (A; h,p) = (Z,34; +, -, h, 0, p) where h is the function
defined above. Then B = pZ,;, is still the only subuniverse of ®, and h is com-
patible with 6; so 1o = 1y, and (B; h®) is the only substructure of ®. Moreover,
lp and 1(gp) have the same subuniverses.

We use Corollary 2.2 to show that ®© is x-quasiprimal. To this end, we need
the subuniverses of 2.

Since A = (Z34;+,-,0) is a ring (hence has a Malcev term), any subuniverse
of D? is the lifting of some isomorphism « : /6, — Dy/0, where D; is a
subuniverse of © and 6; € Con(®;) for each i; thus D; = B or D; = A = D for
each 7. Moreover Ay C E.

(i) Suppose that Ap C E C B?; then D; = B = D,. Since p is a constant and
p generates B, we have a(p/6,) = p/f2, and «(b/6;) = b/6, for each b € B, so
that 6, = 0, and o = idp/e,; that is, E = 6, is a congruence of ©; = (B; h). The
congruences of 9B are those associated to the ideals B = pA, p?A, p*A, pgA, p*qA
and {0} = p3qA; h preserves te congruences Ap (associated to {0}), 1y (asso-
ciated to p*A) and Vp = B? (associated to B = pA). For the congruence ¢
associated to p?A, let a,b € A? be the constant vectors with values p and p + p?
respectively; then (p,p + p*) € ¢, but ((h(a), (b)) = (p*,2(p + p*)) &€ ¢. So h is
not compatible with ¢, and ¢ is not a congruence of ©; = (B; h). Similarly, we
see that h is not compatible with the congruences of ‘B associated to the ideals
pgA and p*qA. So Ap, 1y and Vp are the only congruences of ®; (and hence the
only subuniverses of ® contained in B?).

(ii) Suppose that D; = A and Dy = B. Let b be an element of B such that
a(1/6y) = b/By. Since p is a constant in D, a(p/f;) = p/ba; so p/Oy = pb/0y,
and p — pb € 0. But Ap and 1y are the only congruences of 5 which are
different from Vp, = B2, and none of them can contain p — pb since b # 1; so
0y =Vp,=B? and E = A x B.

Similarly, D; = B and Dy, = A implies E = B x A.
(iii) Suppose that D; = A = Dy; then ©; =D = D,.

Let a be an element of A such that a(1/6,) = a/0s; since a(p/6y) = p/0s, we
have p/6y = pa/fs, and p — pa € O5. As in (i), we see that the only congruences
of ® are Ay, 1lp =1y ,and Vp = V4 = A2
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If 0 = Ay, then 6 = Ay, and p — pa € 0y iff a = 1; so « is the identity on
Aand F = Ay4.

If 92 = VA, then 91 = VA and £ = VA.

If 0y = 1p = 1g, then 6, = 1y, and pa — p € O, iff pa — p = kp> for some k.
So a = 1+ kp?; but a(1/6,)* = a(1/6,) implies a®> — a € By; i.e., p* must divide
kp* + k*p* = kp*(1 + kp*). So p divides k and a/0; = 1/65. Thus a(x/0;) = /6,
for each x € D, and « is the identity; this shows that £ = 15 = 1q.

Thus the subuniverses of ©? are Ap, 1, B?, B x A, Ax B, /A4, 1y, and
A2,
Now let g : A™ — A be a function preserving (simple) 1o liftings; then g preserves

B, and hence all subuniverses of ®2. For any elements a,b € |J u", we have the
ueD
following possibilities:

e a,b€ B" and ((a(1) = b(1)) or (a(1) #0(1))),
e (ac B"and b ¢ B") or (agZB” and b € B"),
o a,b¢ B and ((a(T) = b(1)) or (1) # (1)),
By checking for theses cases, we see that (g(a), g(b)) = ¢°° ((a(1),b(1)), ..., (a(n),
b(n))) is an element of Sg({a(1),b(1)),...,(a(n),b(n))) = H(a,b). By Corollary

2.2, g is term representable on classes; thus ® is x-quasiprimal.
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