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Abstract. Quasi-varieties of first-order structures were studied by N.
Weaver [7] to generalize varieties of algebras; he also established some
Malcev like conditions for these classes of structures. Following this line
we extend some results of functional completeness of algebras to first-
order structures. Specifically, we formulate and characterize a notion of
quasiprimality for first-order structures.
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1. Introduction

Functional completeness of algebras has been studied by many authors ([1], [2],
[3]). In [7], N. Weaver extends some of the results of this study to classes of
first-order structures.

This paper is an attempt to extend a result of A. F. Pixley [3] to first-order
structures. Let us recall some basic definitions.

Definition 1.1. Let E be a nonempty set, and g : E3 → E be a ternary function.

(i) g is called a Malcev function if g(a, b, b) = a = g(b, b, a) for all a, b ∈ E.
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(ii) g is called a majority function if g(a, a, b) = g(a, b, a) = g(b, a, a) = a for all
a, b ∈ E.

(iii) g is called a Pixley function if g(a, a, b) = g(b, a, b) = g(b, a, a) = b for all
a, b ∈ E.

(iv) The discriminator function on E is the ternary function d defined by

d (a, b, c) =

{
a if a 6= b;

c if a = b.

Let A = (A;FA) be an algebra of type F . A is called nontrivial if A contains at
least two elements; we will say that A is minimal if it has no proper subalgebra.

Consider the type FA := F ∪ {ca; a ∈ A} obtained from the type F by adding a
constant symbol ca for each element a ∈ A. Then the terms of type FA are called
the polynomials of A.

A function f : An → A, n ≥ 1, is called:

• a term function of A if there is some n-ary term t of type F such that
f = tA,

• a polynomial function of A if there is some n-ary term p of type FA such
that f = pA.

A ternary term t(x, y, z) in the language of A (i.e., of type F ) is called a Malcev
term (resp. a majority term, a Pixley term, a discriminator term) for A if the
induced function tA is a Malcev function (resp. a majority function, a Pixley
function, a discriminator function) on A.

Definition 1.2. Let A = (A;FA) be a finite nontrivial algebra.

(i) A is called functionally complete if every finitary function f : An → A,
n ≥ 1, is a polynomial function of A.

(ii) A is called quasiprimal if every finitary function f : An → A, n ≥ 1, which
preserves the subuniverses of A2 consisting of (the graphs of) isomorphisms
between subalgebras of A is a term function.

A quasiprimal algebra A is characterized by any of the following two facts (cf. [1],
p. 175):

Fact 1. A has a discriminator term.
Fact 2. A has a Pixley term, and every subalgebra of A is simple.

When A is quasiprimal, it can be shown that every subuniverse of A2 is either
the product of two subuniverses of A or (the graph of) an isomorphism between
two subalgebras of A.

An n-ary function f : An → A which preserves isomorphisms between subal-
gebras of A must preserve the identity map idB = 4B for each subalgebra B of A;
so h must preserve the subuniverses of A, and consequently any product B ×D
of two subuniverses.

Now, a lemma of Baker and Pixley (cf. [1], page 172) states that if a finite
algebra A has a majority term, a function h : An → A, n ≥ 1, is a term function
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iff h preserves the subuniverses of A2. This will be our main tool, noting that
A2 = ∇A is the largest congruence of A, and in the case of a quasiprimal algebra,
h preserves the subuniverses of A2 iff h preserves the (graphs of) isomorphisms
between subalgebras of A.

The work of N. Weaver [7] is based on the notion of ?-congruence on first-order
structures.

Definition 1.3. ([7]) Let A = (A;FA;RA) and B = (B;FB;RB) be first-order
structures of the same type (F ;R).

(i) A morphism λ : A→ B is called a ?-morphism if for any m-ary r ∈ R, and
a1, . . . , am ∈ A, 〈a1, . . . , am〉 ∈ rA iff 〈λ(a1), . . . , λ(am)〉 ∈ rB. In this case,
the substructure λ(A) of B is called a ?-image of A.

(ii) A congruence θ of A is called a ?-congruence if it is compatible with the
relations of A; that is, for any m-ary r ∈ R and 〈ui, vi〉 ∈ θ for 1 ≤ i ≤
m, 〈u1, . . . , um〉 ∈ rA iff 〈v1, . . . , vm〉 ∈ rA.

(iii) A class K of structures of the same type is called a ?-variety if it is closed
under products, substructures and ?-images.

So, ?-congruences are exactly the kernels of ?-morphisms.

The set Con?(A) of ?-congruences of A is a sublattice of Con(A); in fact Con?(A)
is a complete lattice with smallest element idA = 4A, and largest element denoted
by 1A; in general 1A 6= A2 = ∇A.

Using ?-congruences, N. Weaver established some Malcev like conditions, and a
structure theorem for ?-varieties. In [5] we gave a notion of functionally complete
first-order structure relative to ?-congruences. Our aim here is to follow this
line and formulate a notion of quasiprimality for a first order structure A =
(A;FA;RA) where ∇A is replaced by 1A.

Notation. Let A = (A;FA;RA) be a first-order structure.
(i) Let θ be an equivalence relation on A and a be an element of A; then [a]θ is

the θ equivalence class of a. When θ = 1A, we simply denote the equivalence
class of a by a.

(ii) For a subset X of A, Sg(X) denotes the subuniverse of A generated by X;
if X = {x1, . . . , xn}, we simply denote Sg(X) by Sg(x1, . . . , xn).

(iii) Given two elements a := 〈a(1), . . . , a(n)〉 and b := 〈b(1), . . . , b(n)〉 of An, let
H(a, b) denote the subuniverse of A2 defined as follows:

H(a, b) = Sg(〈a(1), b(1)〉, . . . , 〈a(n), b(n)〉).

(iv) For a nonzero natural number m, let m be the set {1, 2, . . . ,m}.
Throughout, A = (A;FA;RA) will be a finite nontrivial first-order structure.

In Section 2 we give some necessary and sufficient conditions under which 1A
compatible functions are interpolated by terms on 1A classes. Section 3 is devoted
to formulating and characterizing a notion of quasiprimality for A. An example
is given in Section 4.
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2. Term interpolation of functions

In this section we examine some necessary and sufficient conditions for term in-
terpolation of 1A compatible function. For this we need to adapt some definitions
on algebras to the situation of first-order structures we want to investigate.

Definition 2.1. Let A = (A;FA;RA) be a first-order structure and h : An → A,
n ≥ 1, be a function.

(i) h is said to be termal on classes if for each element a ∈ A, there is an n-ary
term t such that tA and h coincide on ([a]1A)n = an.

(ii) h is said to be weakly termal if for any subset E of An satisfying property

a, b ∈ E implies 〈a(i), b(i)〉 ∈ 1A for 1 ≤ i ≤ n, (P )

there is an n-ary term t such that tA and h coincide on E.

(iii) An n-ary term t represents h on classes if for each a ∈ A, tA and h coincide
on an. In this case we say that h is term representable on classes by t.

Remark 2.1. We note that:

(i) Weakly termal functions and functions which are term representable on
classes are termal on classes.

(ii) For a unary function h, weakly termal and termal on classes are equivalent,
and h is term representable on classes means h is a term function.

(iii) A constant function h is termal on classes iff it is a term function.

Example 2.1. Let A = (Z40; +,−, ·, 0) be the ring of integers modulo 40, θ be
the congruence associated to the ideal 5Z40.

Consider the relations r := [0]θ × [2]θ and s := [1]θ × [3]θ × [4]θ on A = Z40.
For the structure A = (A; r, s) = (Z40; +,−, ·, 0; r, s), one can see that 1A = θ.

We use the following terms to define the functions we need: t1(x, y, z) :=
x+ y + z, t2(x, y, z) := xy + z, and t3(x, y, z) := xyz.

(i) Define the function f : A3 → A by f(a, b, c)=


a+ b+ c if [a]θ =[b]θ;

ab+ c if [a]θ 6= [b]θ =[c]θ;

abc elsewhere.

Then the term t1 represents f on classes, and f is also weakly termal.

(ii) Define the function g : A3 → A by g(a, b, c)=


a+ b+ c if [a]θ =[b]θ;

abc if [a]θ 6=[b]θ and a 6=0;

ab+ c elsewhere.

Then t1 represents g on classes.
Let u = 〈0, 2, 3〉 ∈ A3 and E(u) := {x ∈ A3 : 〈x(i), u(i)〉 ∈ θ for 1 ≤ i ≤ 3}.

For each x ∈ E(u), g(x) =

{
x(3) if x(1) = 0;

x(1) · x(2) · x(3) if not.

So there is no term representing g on E(u), and g is not weakly termal.
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(iii) Define the function h : A3 → A by h(a, b, c) =

{
a+ b+ c if [a]θ = [0]θ;

abc if not.

Then, h is weakly termal; but there is no term representing h on classes.

(iv) Define the function λ : A3 → A by λ(a, b, c)=


a if [a]θ =[0]θ;

b if [a]θ 6=[0]θ and b 6=0;

ab+ c elsewhere.

The first projection π
(3)
1 represents λ on [0]θ = 0, the second projection π

(3)
2

represents λ on the other classes; so λ is termal on classes. But there is
no term representing λ on classes, and λ is not weakly termal as it can be
verified on E(u) where u = 〈1, 0, 4〉 ∈ A3.

(v) Define the function µ : A3 → A by µ(a, b, c)=


a if [a]θ =[0]θ;

b if [a]θ 6=[0]θ and b=c;

c elsewhere.

Then µ is not termal on classes.

We will use the following version of the lemma of Baker and Pixley.

Lemma 2.1. Suppose that A has a majority function which is termal on classes,
and let h : An → A, n ≥ 1, be a function.

(i) The following conditions are equivalent for an element u ∈ A.

(i1) For any elements e1, e2, . . . , en of u2, the element hA
2
(e1, . . . , en) be-

longs to Sg(e1, . . . , en) in A2.

(i2) For any subset E of un there is an n-ary term t such that tA and h
coincide on E.

(ii) h is weakly termal if and only if h preserves the subuniverses of 1A.

Proof. (i): We only need to prove that (i1) implies (i2).
Let a, b ∈ un; then 〈a(1), b(1)〉, . . . , 〈a(n), b(n)〉 are elements of u2. By hypoth-

esis, hA
2
(〈a(1), b(1)〉, . . . , 〈a(n), b(n)〉) belongs to Sg(〈a(1), b(1)〉, . . . , 〈a(n), b(n)〉);

so for some n-ary term t, hA
2
(〈a(1), b(1)〉, . . . , 〈a(n), b(n)〉) = tA

2
(〈a(1), b(1)〉, . . . ,

〈a(n), b(n)〉); that is h(a) = tA(a) and h(b) = tA(b).
Suppose that for any E0 ⊆ un with 2 ≤ card(E0) ≤ k, there is an n-ary term t

which coincides with h on E0. If card(E) > k, let E1 ⊆ E with card(E1) = k+ 1,
and choose three distinct elements a1, a2, a3 in E1. Then there are terms t1, t2, t3
such that tAi coincides with h on E1\{ai} for 1 ≤ i ≤ 3.

There is some b ∈ A such that tA1 (E1) ⊆ b; but tA1 (a2) = h(a2) = tA3 (a2)
and tA1 (a3) = h(a3) = tA2 (a3); so tAi (E1) ⊆ b for each i. Now let t4 be a term

interpolating M on b
3
, and consider the term σ(x) := t4(t1(x), t2(x), t3(x)), where

x = (x1, . . . , xn). Then h coincides with at least two of the tAi on each e ∈ E1 for
1 ≤ i ≤ 3, so that σA(e) = h(e) for each e ∈ E1. Since E is finite, we can iterate
the process and obtain a term which coincides with h on E.
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(ii): The proof is essentially the same, using property (P ), and can be found in
[6]. �

Recall that for a, b∈An, H(a, b) is the subuniverse Sg(〈a(1), b(1)〉, . . . , 〈a(n), b(n)〉)
of A2. An argument similar to that used in the above lemma gives the following.

Corollary 2.2. Suppose that A has a majority function which is term repre-
sentable on classes, and there is some u ∈ A such that card(u) ≥ 3. Let
h : An → A, n ≥ 1, be a function such that for any elements a, b ∈

⋃
u∈A

un,

〈h(a), h(b)〉 ∈ H(a, b). Then h is term representable on classes. �

Definition 2.2. Let h : An → A, n ≥ 1, be a function.

(i) h is said to be 1A compatible if for any pairs 〈ai, bi〉 ∈ 1A, 1 ≤ i ≤ n, we
have hA2

(〈a1, b1〉, . . . , 〈an, bn〉) = 〈hA(a1, . . . , an), hA(b1, . . . , bn)〉 ∈ 1A.

(ii) h is said to be compatible on a class u if there is some b ∈ A such that
h(un) ⊆ b.

For example, consider the following ternary functions q and d on A:

(a): q(x, y, z) =

{
x if x = y = z and x 6= y;

z elsewhere.

(b): d(x, y, z) =

{
x if x 6= y;

z elsewhere.

Then, q is 1A compatible, but is a Pixley function only on classes; the discriminator
function d is compatible on classes.

A weakly termal function h : An → A is 1A compatible.
Let m and n be nonzero natural numbers, and a1, . . . , am ∈

⋃
u∈A

un, and define

the elements ai of Am by ai := 〈a1(i), . . . , am(i)〉 for 1 ≤ i ≤ n. Consider the
set K(a1, . . . , an) := {x ∈ Am; 〈x(i), x(j)〉 ∈ H(ai, aj) for i, j ∈ m}. Then
Sg(a1, . . . , an) ⊆ K(a1, . . . , an) as subuniverses of Am.

Theorem 2.3. Consider the following properties on A:

(i) Every n-ary function which preserves the subuniverses of 1A, n ≥ 1, is term
representable on classes.

(ii) Let m and n be nonzero natural numbers:

(ii1) If a, b ∈
⋃

u∈A

un, then H(a, b) = Sg(a(1), . . . , a(n)) × Sg(b(1), . . . , b(n))

or H(a, b) ⊆ 1A.

(ii2) If a1, . . . , am ∈
⋃

u∈A

un, and ai := 〈a1(i), . . . , am(i)〉 for 1 ≤ i ≤ n, then

Sg(a1, . . . , an) = K(a1, . . . , an).

Then (i)⇒(ii1) and (ii)⇒(i).
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Proof. (i) ⇒ (ii1): Obviously, H(a, b) ⊆ Sg(a(1), . . . , a(n))× Sg(b(1), . . . , b(n)).
Assume H(a, b) * 1A; then there is some i ∈ n such that 〈a(i), b(i)〉 6∈ 1A;
W.l.o.g. let i = 1. To show that Sg(a(1), . . . , a(n))×Sg(b(1), . . . , b(n)) ⊆ H(a, b)
let 〈u, v〉 ∈ Sg(a(1), . . . , a(n))×Sg(b(1), . . . , b(n)). There are terms t1 and t2 such
that u = tA1 (a) and v = tA2 (b). Consider the function h : An → A defined by

h(x) =


tA1 (x) if x ∈ a(1)

n
;

tA2 (x) if x ∈ b(1)
n
;

x(1) elsewhere.

Then h preserves the subuniverses of 1A. By (i) let t be a term representing h on
classes; we have 〈u, v〉 = 〈h(a), h(b)〉 = 〈tA(a), tA(b)〉 = tA

2
(〈a, b〉) ∈ H(a, b).

So H(a, b) = Sg(a(1), . . . , a(n))× Sg(b(1), . . . , b(n)) holds.

(ii) ⇒ (i): Let h : An → A be a function which preserves the subuniverses of 1A;
let a1, . . . , am be the distinct elements of

⋃
u∈A

un, and ai := 〈a1(i), . . . , am(i)〉 for

1 ≤ i ≤ n.
Let k, l ∈ m be arbitrary. If 〈ak(1), al(1)〉 ∈ 1A, then 〈h(ak), h(al)〉 ∈ H(ak, al);

if not H(ak, al) = Sg(ak(1), . . . , ak(n)) × Sg(al(1), . . . , al(n)) by (ii1), so that
〈h(ak), h(al)〉 ∈ H(ak, al).

Thus 〈h(a1), . . . , h(am)〉 ∈ K(a1, . . . , an) = Sg(a1, . . . , an) by (ii2). So there is
an n-ary term t such that 〈h(a1), . . . , h(am)〉 = tA

m
(a1, . . . , an); that is 〈h(a1), . . . ,

h(am)〉 = 〈tA(a1), . . . , tA(am)〉, and t represents h on classes. �

If A is a minimal structure (i.e. A has no proper substructure), property (ii1) of
the above theorem implies that A2 is the only subuniverse of A2 that may not be
contained in 1A.

Definition 2.3. A satisfies the class subuniverse property (briefly CSP ), if it
satisfies the condition (ii2) of Theorem 2.3.

Corollary 2.4. Suppose that A has a majority function which is termal on clas-
ses. Then each of the properties (i) and (ii) of Theorem 2.3 is equivalent to this
third one:

(iii) Every weakly termal function is term representable on classes.

Proof. From the hypothesis and Lemma 2.1 (ii), properties (i) and (iii) are
equivalent. So, we only have to prove that (i) and (ii) are equivalent. For this, we
must show that (i) implies (ii2).

Let a1, . . . , am be elements of
⋃

u∈A

un, and ai := 〈a1(i), . . . , am(i)〉 for 1 ≤ i ≤ n.

Take an x ∈ K(a1, . . . , an). For each k ∈ m, let Jk := {l ∈ m : 〈ak(1), al(1)〉 ∈
1A}; furthermore let σ(k) be the minimum of Jk. If l1, l2 are in Jk, 〈x(l1), x(l2)〉 is
an element of H(al1 , al2) and the later is Sg(〈al1(1), al2(1)〉, . . . , 〈al1(n), al2(n)〉).
From the proof of Lemma 2.1 (i), we can find a term tσ(k) such that x(l) = tAσ(k)(a

l)
for each l ∈ Jk.



122 E. R. Alomo Temgoua, M. Tonga: Quasiprimality for first-order structures

Consider the function h : An → A defined by:

h(u) =

{
tAσ(k)(u) if u ∈ ak(1)

n
for some k;

u(1) if not.

Let E be a subuniverse of 1A, and 〈b(j), c(j)〉 ∈ E for 1 ≤ j ≤ n.

If b := 〈b(1), . . . , b(n)〉 ∈ ak(1)
n

for some k, then so is c := 〈c(1), . . . , c(n)〉 and
〈h(b), h(c)〉 = 〈tAσ(k)(b), t

A
σ(k)(c)〉 = tA

2

σ(k)(〈b(1), c(1)〉, . . . , 〈b(n), c(n)〉) ∈ E. Other-

wise, 〈h(b), h(c)〉 = 〈b(1), c(1)〉 ∈ E.
So h preserves the subuniverses of 1A, and there is a term t representing h on

classes. Now, x = 〈x(1), . . . , x(m)〉 = 〈tA(a1), . . . , tA(am)〉 = tA
m
(〈a1, . . . , an〉) is

an element of Sg(a1, . . . , an); thus we have (ii2). �

3. ?-quasiprimality

We begin this section with a version of a Fleischer’s lemma on subuniverses of
product algebras in a permutable variety (cf. [1], p. 169). First we need a notion
of subdirect product suitable for our purpose.

Definition 3.1. Let B1 and B2 be substructures of A, and πi : B1 ×B2 → Bi,
1 ≤ i ≤ 2, be the canonical projections. Let B be a substructure of B1 ×B2.

(i) B ⊆ B1 ×B2 is called a subdirect product of B1 and B2 if πi(B) = Bi for
i = 1, 2.

(ii) B ⊆ B1×B2 is called a ?-subdirect product if it is a subdirect product and
ker(πi) ∩B2 is a ?-congruence of B for i = 1, 2.

Note that for any ?-congruence θ of the ?-subdirect product B of B1×B2, πi(θ)
is a ?-congruence of Bi.

Lemma 3.1. Let B1,B2 be substructures of A and B ⊆ B1×B2 be a ?-subdirect

product such that Con?(B) is permutable. Then there are ?-epimorphisms B1
h1→

D
h2← B2 such that B = {〈b1, b2〉 ∈ B1 ×B2 : h1(b1) = h2(b2)}.

Proof. Let τi = πi �B: B → Bi be the restriction of πi to B, for 1 ≤ i ≤ 2.
Since B ⊆ B1 ×B2 is a ?-subdirect product, each τi is a ?-epimorphism; then
ρi = ker(τi) = ker(πi) ∩ B2 is in Con?(B), and so is ρ = ρ1 ∨ ρ2 = ρ1 ◦ ρ2. Let

τ : B → B/ρ be the canonical ?-epimorphism; there are epimorphisms B1
h1→

B/ρ
h2← B2 such that τ = hi ◦ τi for each i; moreover each hi is a ?-morphism.

If 〈b1, b2〉 ∈ B, h1(b1) = h1 ◦ τ1(〈b1, b2〉) = h2 ◦ τ2(〈b1, b2〉) = h2(b2).

Conversely let 〈b1, b2〉 ∈ B1 × B2 such that h1(b1) = h2(b2); there are elements
a1 ∈ B1 and a2 ∈ B2 such that 〈b1, a2〉 and 〈a1, b2〉 are in B. Then τ(〈b1, a2〉) =
h1(b1) = h2(b2) = τ(〈a1, b2〉) and (〈a1, b2〉, 〈b1, a2〉) ∈ ρ = ρ1 ◦ ρ2. Let 〈u, v〉 be
an element of B such that 〈a1, b2〉ρ2〈u, v〉ρ1〈b1, a2〉; then b2 = v and u = b1, so
〈b1, b2〉 = 〈u, v〉 ∈ B. �
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A substructure B (or subuniverse B) of B1×B2 is said to be rectangular if when-
ever 〈x, y〉, 〈u, v〉, 〈x, v〉 are in B then so is 〈u, y〉. Then Lemma 3.1 shows that
every ?-subdirect product B ⊆ B1×B2 with Con?(B) permutable is rectangular.

For every substructure B of A, the largest congruence of B is the restriction
of the largest congruence of A; that is, ∇B = ∇A ∩ B2. For ?-congruences, we
want 1A to act similarly as ∇A on substructures. Whence the following definition.

Definition 3.2. 1A is said to be hereditarily maximal if 1B = 1A ∩ B2 for each
substructure B of A.

Lemma 3.2. Let A be a structure such that 1A is hereditarily maximal, and B

be a substructure of A2 such that B is contained in 1A.

(i) If A has a Malcev function which is termal on classes, then Con?(B) is
permutable.

(ii) If A has a Pixley function which is termal on classes, then Con?(B) is
arithmetical.

Proof. (i): For any θ, ϕ ∈ Con?(B) and 〈a, b〉 ∈ θ ◦ϕ, let c ∈ B such that aϕcθb;
now let a = 〈a1, a2〉, b = 〈b1, b2〉 and c = 〈c1, c2〉; then ai, bi, ci ∈ a1 for each i. Let
t(x, y, z) be a ternary term representing the given Malcev function on a1; then
a = tA

2
(a, b, b)θtA

2
(a, c, b)ϕtA

2
(c, c, b) = b, and 〈a, b〉 ∈ ϕ ◦ θ.

(ii): Let θ, ϕ, ψ be in Con?(B), and 〈a, b〉 ∈ θ ∧ (ϕ ◦ ψ); then aψcϕb for some
c ∈ B. Let a = 〈a1, a2〉, b = 〈b1, b2〉 and c = 〈c1, c2〉; then ai, bi, ci ∈ a1 for
each i. Let t(x, y, z) be a ternary term representing the given Pixley function
on a1; then tA

2
(a, c, b)θtA

2
(a, c, a) = a and tA

2
(a, c, b)θtA

2
(b, c, b) = b. So a =

tA
2
(a, b, b)(θ ∧ ϕ)tA

2
(a, c, b) (θ ∧ ψ)tA

2
(a, a, b) = b, and 〈a, b〉 ∈ (θ ∧ ψ) ◦ (θ ∧ ϕ),

thus θ ∧ (ϕ ◦ ψ) ⊆ (θ ∧ ψ) ◦ (θ ∧ ϕ). If θ = 4B, we obtain ϕ ◦ ψ ⊆ ψ ◦ ϕ. So
θ ∧ (ϕ ∨ ψ) ⊆ (θ ∧ ψ) ∨ (θ ∧ ϕ), and Con?(B) is arithmetical. �

One of the main properties of a quasiprimal algebra A = (A;FA) is that every
subalgebra of A is simple. A notion of quasiprimality for first-order structures
may be expected to entail a similar property. Below we give a notion of simplicity
which fits with ?-congruences.

Definition 3.3. Let B be a substructure of A.

(i) A congruence θ ∈ Con?(B) is said to be simple if for every b ∈ B, [b]θ = {b}
or [b]θ = [b]1B.

(ii) B is said to be ?-simple if every ?-congruence of B is simple.

(iii) A is said to be hereditarily ?-simple if every substructure of A is ?-simple.

It is proved in [6] that if the discriminator function d is termal on classes, then A

is ?-simple and Con?(A) is arithmetical.

Definition 3.4. Let B1 and B2 be substructures of A, θi ∈ Con(Bi) for 1 ≤ i ≤
2, and α : B1/θ1 → B2/θ2 be an isomorphism.
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(i) The set E := {〈b1, b2〉 ∈ B1 × B2: α(b1/θ1) = b2/θ2} is called the lifting of
α, and denoted by lift(α).

(ii) If E ⊆ 1A then E is called a 1A lifting, and α is called a 1A isomorphism.

If moreover θ1 and θ2 are simple then E is called a simple 1A lifting.

When A has a Malcev function which is termal on classes, we see from Lemma
3.1 and Lemma 3.2 that any subuniverse E of 1A is rectangular, thus is the lifting
of some 1A isomorphism α : B1/θ1 → B2/θ2, where Bi = πi(E) is a subuniverse
of A and θi ∈ Con?(Bi) for 1 ≤ i ≤ 2. If moreover A is hereditarily ?-simple then
E is a simple 1A lifting.

Theorem 3.3. Let A be a structure with 1A hereditarily maximal. Then the fol-
lowing properties are equivalent:

(i) The discriminator function d is termal on classes.

(ii) A is hereditarily ?-simple and has a Pixley function which is termal on
classes.

(iii) Every function h : An → A, n ≥ 1, which preserves simple 1A liftings is
termal on classes.

Proof. (i)⇒ (ii): First note that the discriminator function d is a Pixley function.
For hereditary ?-simplicity, let B be a substructure of A, b ∈ B and θ ∈

Con?(B) such that [b]θ 6= {b}. Then there is some c ∈ B such that 〈b, c〉 ∈ θ
and b 6= c. Now, for each u ∈ [b]1B , 〈c, u〉 = 〈d(c, b, u),d(b, b, u)〉 ∈ θ. Thus
[b]1B = [b]θ, showing that θ is a simple ?-congruence.

(ii) ⇒ (iii): A Pixley function is also a Malcev function, thus subuniverses of 1A
are 1A liftings, which are simple. From the given Pixley function, we can obtain
a majority function which is termal on classes. So by Lemma 2.1 (ii), h is weakly
termal, hence termal on classes.

(iii) ⇒ (i): Consider the function q : A3 → A defined by

q(a, b, c) =


c if a = b and b = c;

a if a 6= b and a = b;

b elsewhere.

Let E be the lifting of a simple 1A isomorphism α : B1/θ1 → B2/θ2, and u, v, w
be elements of E.

• Suppose that u(1) = v(1) = w(1), then [u(1)]θ1 = [v(1)]θ1 iff [u(2)]θ2 = [v(2)]θ2 .
[(u(1) = v(1) iff (u(2) = v(2))] implies qA2

(u, v, w) ∈ {u,w}.
[(u(1) = v(1)) iff (u(2) 6= v(2))] implies [u(1)]θ1 = [v(1)]θ1 = [w(1)]θ1 =

[u(1)]1A∩B2
1
, then qA2

(u, v, w) ∈ {〈u(1), w(2)〉, 〈w(1), u(2)〉}, and the later is a
subset of E.

• Suppose that u(1) = v(1) 6= w(1).
If [(u(1) = v(1)) iff (u(2) = v(2))], then qA2

(u, v, w) ∈ {u, v}.
If [(u(1) = v(1)) iff (u(2) 6= v(2))], then qA2

(u, v, w) = u.
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• Suppose that u(1) 6= v(1); then qA2
(u, v, w) = v.

So q preserves E, and is termal on classes. Since q coincides with d on classes,
d is also termal on classes. �

Definition 1.2 and the above theorem motivate the following definition.

Definition 3.5. (i) A is called weak ?-quasiprimal if every function on A
which preserves simple 1A liftings is termal on classes.

(ii) A is called ?-quasiprimal if every function on A which preserves simple 1A
liftings is term representable on classes.

So, Theorem 3.3 characterizes weak ?-quasiprimality. Below we use the property
CSP (see Definition 2.3) in the characterization of ?-quasiprimality.

Theorem 3.4. Suppose that 1A is hereditarily maximal. Then A is ?-quasiprimal
if and only if the following conditions are satisfied:

(i) The discriminator function d is term representable on classes.

(ii) For any nonzero natural number n and a, b ∈
⋃

u∈A

un, H(a, b) ⊆ 1A or

H(a, b) = Sg(a(1), . . . , a(n))× Sg(b(1), . . . , b(n)).

(iii) A satisfies the CSP.

Proof. (⇒): From the proof of Theorem 3.3, d is term representable on classes.
Since d is a Pixley function, we can obtain a majority function which is termal

on classes, and subuniverses of 1A are simple 1A liftings, thus the result follows
from Corollary 2.4.

⇐): Since d is term representable on classes and 1A is hereditarily maximal, the
subuniverses of 1A are simple 1A liftings, so the result follows from Theorem 2.3. �

Note that in A = (A;FA;RA), if for each m-ary r ∈ R, rA is empty or rA = Am,
the above results correspond to the standard notion of quasiprimality on algebras.

In particular, condition (i) in the above theorem may be replaced by “A is
hereditarily ?-simple and has a Pixley function which is term representable on
classes”.

We end the section by examining the case of minimal structures.

Lemma 3.5. Let A be weak ?-quasiprimal and minimal. Then:

(i) Any subuniverse of 1A is an automorphism or a simple ?-congruence of A.

(ii) If a subuniverse of 1A is a nontrivial automorphism of A, then 4A and 1A
are the only ?-congruences of A.

Proof. (i): Let E be a subuniverse of 1A; then E is the lifting of some isomor-
phism α : A/θ1 → A/θ2, where θ1 and θ2 are simple ?-congruences of A.

If θ1 = 4A then θ2 = 4A; and α is an isomorphism of A.
If θ1 6= 4A then θ2 6= 4A; and there is some a ∈ A such that [a]θ1 = a 6= {a}.

Since E = lift(α) is a simple 1A lifting, we must have α(a) = a. Let b be any
element of A; by minimality b = tA(a) for some unary term t. Then α(b/θ1) =
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α(tA/θ1(a/θ1)) = tA/θ2(α(a/θ1)) = tA/θ2(a/θ2) = tA(a)/θ2 = b/θ2; so, α = IdA/θ1

and θ1 = θ2 = E.

(ii): Let α be a nontrivial automorphism with α ⊆ 1A. If ϕ ∈ Con?(A) such that
ϕ 6= 4A, then [a]ϕ = a 6= {a}, for some a. Also b = α(a) 6= a, for otherwise the
fix points of α would form a proper subuniverse of A. Moreover b ∈ a = [a]ϕ.

Let c be any element of A; then c = tA(a) for some term t; now, d = tA(b) =
tA(α(a)) = α(tA(a)) = α(c), and α(c) 6= c. Since 〈c, d〉 = 〈tA(a), tA(b)〉 =
tA

2
(〈a, b〉) ∈ ϕ, we have d ∈ [c]ϕ and [c]ϕ = c. This shows that ϕ = 1A 6= 4A. �

Definition 3.6. The structure A is called ?-demiprimal (resp. weak ?-demipri-
mal) if it is minimal and every n-ary function h on A, n ≥ 1, which preserves 1A
automorphisms and simple ?-congruences is term representable (resp. termal) on
classes.

By Lemma 3.5, A is weak ?-demiprimal if and only if A is weak ?-quasiprimal and
minimal.

Theorem 3.6. The structure A is ?-demiprimal if and only if the following con-
ditions are satisfied:

(i) A is ?-quasiprimal.

(ii) The only subuniverses of A2 are A2, the simple ?-congruences and 1A auto-
morphisms of A.

Proof. (⇒): If A is ?-demiprimal, then the function q defined in the proof of
Theorem 3.3 is term representable, hence d is also term representable. Since A is
minimal, by Lemma 3.5 the subuniverses of 1A are simple ?-congruences and 1A
automorphisms of A; these are the only simple 1A liftings of A. Therefore, A is
?-quasiprimal. From Theorem 2.3 it is clear that A2 is the only subuniverse of A2

which may not be contained in 1A .

(⇐): By (ii), A is minimal. From (i), dis term representable; and (ii) implies that
simple ?-congruences and 1A automorphisms are the only (simple) 1A liftings.
Since A is ?-quasiprimal, every function which preserves these liftings is term
representable on classes; so A is ?-demiprimal. �

In fact using Lemma 3.5 and the observation after Theorem 2.3, condition (ii) in
Theorem 3.6 may be stated as follows:

“ The only subuniverses of A2 other than A2 are either 1A, idA and the 1A auto-
morphisms, or the ?-congruences”.

4. An example

We illustrate some of the notions and results of the preceding sections through a
finite ring.
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4.1. The basic universe

Let p and q be prime natural numbers such that 2 < p < q; consider the ring A =
(Zp3q; +, ·, 0), its ideal I = p3A = p3Zp3q, and the congruence θ = {〈a, b〉 ∈ A2;
a− b ∈ I}.

Define the relations rA := [0]θ× [p]θ× [p2]θ and sA :=
∏

(1≤a≤p3−1)
a6∈{0,p,p2}

[a]θ. We obtain

a structure A = (A; rA, sA) = (Zp3q; +, ·, 0; rA, sA).
Let 〈a, b〉, 〈c, d〉 ∈ θ such that 〈a, c〉 ∈ rA; then a ∈ [0]θ and c ∈ [p]θ; so b ∈ [0]θ

and d ∈ [p]θ; i.e., 〈b, d〉 ∈ rA, showing that θ is compatible with rA. Similarly we
verify that θ is compatible with sA; so θ is a ?-congruence of A.

Now if ϕ is a congruence of A such that ϕ 6⊆ θ, then ϕ is not compatible
with rA; so θ = 1A, and since 4A is the only congruence contained in θ we obtain
Con?(A) = {4A, 1A).

We note that the term t(x, y, z) := (x − y)q−1(x − z) + z represents the dis-
criminator function on classes.

The subuniverses of A are of the form pαqβA, where 0 ≤ α ≤ 3 and 0 ≤ β ≤ 1.
For C = p2A = p2Zp3q, we have the substructure C = (p2Zp3q; +, ·, 0; rC, sC), where

rC = rA ∩ C3 = ∅ and sC = sA ∩ Cp3−3 = ∅.
So 1C = C2 = ∇C 6⊆ 1A, and 1A is not hereditarily maximal.

4.2. The structure (A; p)

We consider the structure (A; p) := (Zp3q; +, ·, 0, p; rA, sA) where p is a constant.
Then 1(A;p) = θ = 1A.

The only subuniverse of (A; p) is B := pA = pZp3q, and B = (pZp3q; +, ·, 0, p;
rB, sB), where rB = rA ∩B3 = rA since rA ⊆ B3, and sB = sA ∩B(p2−3) = ∅.

I = p3A is an ideal of the underlying ring B of B, and 1B = θ∩B2 = 1A∩B2;
so 1(A;p) is hereditarily maximal. Moreover, I is a minimal ideal of B, so we have
Con?(B) = {4B, 1B}.

Since the discriminator function on A is term representable on classes, (A; p)
is weak ?-quasiprimal.

Let us look for the subuniverses of 1(A;p). Let E be such a subuniverse; since
p is a constant of (A; p), 〈p, p〉 is a constant of (A; p)2; so 4B ⊆ E.

Suppose that 4B ( E ⊆ 1B; there is some 〈u, v〉 ∈ 1B such that 〈u, v〉 ∈ E
and u 6= v. If b ∈ B such that b ∈ u, then 〈b, u〉 = 〈tA(u, u, b), tA(u, v, b) ∈ E; in
particular, 〈u+ p3, u〉 ∈ E, and 〈a+ p3, a〉 ∈ E for each a ∈ B; so 1B ⊆ E.

Suppose that 4B ( E 6⊆ 1B; there is some 〈u, v〉 ∈ E such that u 6∈ B; so
p does not divide u, and there are α, β such that αu + βp = 1. Then α〈u, v〉 +
β〈p, p〉 = 〈1, 1 + α(v − u)〉.

If u = v, we have 〈1, 1〉 = α〈u, v〉+ β〈p, p〉 ∈ E, and 4A ⊆ E.
If u 6= v, then 〈q, q〉 = q〈1, 1 + α(v − u)〉 ∈ E since v − u ∈ I = p3A. But

〈p, p〉 ∈ E, so 〈1, 1〉 ∈ E and 4A ⊆ E. For each a ∈ [1]1A , 〈a, 1〉 = d(〈1, 1〉, 〈1, 1+
α(v−u)〉, 〈a, a〉) ∈ E; in particular 〈1+p3, 1〉 ∈ E, and 〈p3, 0〉 ∈ E; so I×{0} ⊆ E,
and 1A ⊆ E.
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Therefore the only subuniverses of 1(A;p) are 4B, 1B,4A and 1A.
Consider the function h : A2 → A defined by

h(a) =

{
a(1) · a(2) if a ∈ 0 ∪ p ∪ p2;

a(1) + a(2) elsewhere.

That is, the term t1(x, y) = xy represents h on 0 ∪ p ∪ p2 and the term t2(x, y) =
x + y represents h elsewhere. It is clear that h preserves the subuniverses of
1(A;p); but there is no term representing h on classes: for the elements a = 〈1, 1〉
and b = 〈p, p〉 of A2, we have h(a) = tA2 (a) = 1 + 1 = 2 6= 1 = tA1 (a), and
h(b) = tA1 (b) = p2 6= p+ p = 2p = tA2 (b). So (A; p) is not ?-quasiprimal.

4.3. The structure (A; h, p)

Consider the structure D = (A;h, p) = (Zp3q; +, ·, h, 0, p) where h is the function
defined above. Then B = pZp3q is still the only subuniverse of D, and h is com-
patible with θ; so 1D = 1A, and (B;hB) is the only substructure of D. Moreover,
1D and 1(A;p) have the same subuniverses.

We use Corollary 2.2 to show that D is ?-quasiprimal. To this end, we need
the subuniverses of D2.

Since A = (Zp3q; +, ·, 0) is a ring (hence has a Malcev term), any subuniverse
of D2 is the lifting of some isomorphism α : D1/θ1 → D2/θ2, where Di is a
subuniverse of D and θi ∈ Con(Di) for each i; thus Di = B or Di = A = D for
each i. Moreover 4B ⊆ E.

(i) Suppose that 4B ( E ⊆ B2; then D1 = B = D2. Since p is a constant and
p generates B, we have α(p/θ1) = p/θ2, and α(b/θ1) = b/θ2 for each b ∈ B, so
that θ1 = θ2 and α = idB/θ1 ; that is, E = θ1 is a congruence of D1 = (B;h). The
congruences of B are those associated to the ideals B = pA, p2A, p3A, pqA, p2qA
and {0} = p3qA; h preserves te congruences 4B (associated to {0}), 1B (asso-
ciated to p3A) and ∇B = B2 (associated to B = pA). For the congruence ϕ
associated to p2A, let a, b ∈ A2 be the constant vectors with values p and p + p2

respectively; then 〈p, p + p2〉 ∈ ϕ, but 〈(h(a), h(b)〉 = 〈p2, 2(p + p2)〉 6∈ ϕ. So h is
not compatible with ϕ, and ϕ is not a congruence of D1 = (B;h). Similarly, we
see that h is not compatible with the congruences of B associated to the ideals
pqA and p2qA. So 4B, 1B and ∇B are the only congruences of D1 (and hence the
only subuniverses of D contained in B2).

(ii) Suppose that D1 = A and D2 = B. Let b be an element of B such that
α(1/θ1) = b/θ2. Since p is a constant in D, α(p/θ1) = p/θ2; so p/θ2 = pb/θ2,
and p − pb ∈ θ2. But 4B and 1B are the only congruences of D2 which are
different from ∇D2 = B2, and none of them can contain p − pb since b 6= 1; so
θ2 = ∇D2 = B2, and E = A×B.

Similarly, D1 = B and D2 = A implies E = B × A.

(iii) Suppose that D1 = A = D2; then D1 = D = D2.
Let a be an element of A such that α(1/θ1) = a/θ2; since α(p/θ1) = p/θ2, we

have p/θ2 = pa/θ2, and p − pa ∈ θ2. As in (i), we see that the only congruences
of D are 4A, 1D = 1A , and ∇D = ∇A = A2.
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If θ2 = 4A, then θ1 = 4A, and p − pa ∈ θ2 iff a = 1; so α is the identity on
A and E = 4A.

If θ2 = ∇A, then θ1 = ∇A and E = ∇A.
If θ2 = 1D = 1A, then θ2 = 1A, and pa − p ∈ θ2 iff pa − p = kp3 for some k.

So a = 1 + kp2; but α(1/θ1)
2 = α(1/θ1) implies a2 − a ∈ θ2; i.e., p3 must divide

kp2 + k2p4 = kp2(1 + kp2). So p divides k and a/θ2 = 1/θ2. Thus α(x/θ1) = x/θ2

for each x ∈ D, and α is the identity; this shows that E = 1D = 1A.
Thus the subuniverses of D2 are 4B, 1B, B

2, B × A, A × B, 4A, 1A, and
A2.

Now let g : An → A be a function preserving (simple) 1D liftings; then g preserves
B, and hence all subuniverses of D2. For any elements a, b ∈

⋃
u∈D

un, we have the

following possibilities:

• a, b ∈ Bn and ((a(1) = b(1)) or (a(1) 6= b(1))),

• (a ∈ Bn and b 6∈ Bn) or (a 6∈ Bn and b ∈ Bn),

• a, b 6∈ Bn and ((a(1) = b(1)) or a(1) 6= b(1)).

By checking for theses cases, we see that 〈g(a), g(b)〉 = gD
2
(〈a(1), b(1)〉, . . . , 〈a(n),

b(n)〉) is an element of Sg(〈a(1), b(1)〉, . . . , 〈a(n), b(n)〉) = H(a, b). By Corollary
2.2, g is term representable on classes; thus D is ?-quasiprimal.

Acknowledgement. We thank the referee for pointing out several mistakes in
the first version of the work.
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