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Abstract. An affine hypersurface M is said to admit a pointwise sym-
metry, if there exists a subgroup G of Aut(TpM) for all p ∈ M , which
preserves (pointwise) the affine metric h, the difference tensor K and
the affine shape operator S. Here, we consider 3-dimensional indefinite
affine hyperspheres, i. e. S = HId (and thus S is trivially preserved).
First we solve an algebraic problem. We determine the non-trivial sta-
bilizers G of a traceless cubic form on a Lorentz-Minkowski space R3

1

under the action of the isometry group SO(1, 2) and find a representa-
tive of each SO(1, 2)/G-orbit. Since the affine cubic form is defined by
h and K, this gives us the possible symmetry groups G and for each G
a canonical form of K. In this first part, we show that hyperspheres ad-
mitting a pointwise Z2×Z2 resp. R-symmetry are well-known, they have
constant sectional curvature and Pick invariant J < 0 resp. J = 0. The
classification of affine hyperspheres admitting a pointwise G-symmetry
will be continued elsewhere.
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1. Introduction

Let Mn be a connected, oriented manifold. Consider an immersed hypersurface
with relative normalization, i.e., an immersion ϕ : Mn → Rn+1 together with a
transverse vector field ξ such that Dξ has its image in ϕ∗TxM . Equi-affine geom-
etry studies the properties of such immersions under equi-affine transformations,
i. e. volume-preserving linear transformations (SL(n + 1, R)) and translations.

In the theory of nondegenerate equi-affine hypersurfaces there exists a canon-
ical choice of transverse vector field ξ (unique up to sign), called the affine
(Blaschke) normal, which induces a connection ∇, a nondegenerate symmetric
bilinear form h and a 1-1 tensor field S by

DXY = ∇XY + h(X,Y )ξ, (1)

DXξ = −SX, (2)

for all X, Y ∈ X (M). The connection ∇ is called the induced affine connection,
h is called the affine metric or Blaschke metric and S is called the affine shape
operator. In general ∇ is not the Levi-Civita connection ∇̂ of h. The difference
tensor K is defined as

K(X, Y ) = ∇XY − ∇̂XY, (3)

for all X, Y ∈ X (M). Moreover, the form h(K(X, Y ), Z) is a symmetric cubic
form with the property that for any fixed X ∈ X (M), trace KX vanishes. This
last property is called the apolarity condition. The difference tensor K, together
with the affine metric h and the affine shape operator S are the most fundamen-
tal algebraic invariants for a nondegenerate affine hypersurface (more details in
Section 2). We say that Mn is indefinite, definite, etc. if the affine metric h is
indefinite, definite, etc. For details of the basic theory of nondegenerate affine
hypersurfaces we refer to [10] and [13].

Here we will restrict ourselves to the case of affine hyperspheres, i. e. the shape
operator will be a (constant) multiple of the identity (S = HId). Geometrically
this means that all affine normals pass through a fixed point or they are par-
allel. The abundance of affine hyperspheres dwarfs any attempts at a complete
classification. Even with the restriction to locally strongly convex hyperspheres
(i. e. h is positive definite) and low dimensions the class is simply too large to
classify. In order to obtain detailed information one has therefore to revert to
sub-classes such as the class of complete affine hyperspheres (see [10] and the
references contained therein or i. e. [7] for a very recent result). Various authors
have also imposed curvature conditions. In the case of constant curvature the
classification is nearly finished (see [16] and the references contained therein). In
analogy to Chen’s work, [2], a new curvature invariant for positive definite affine
hyperspheres was introduced in [14]. A lower bound was given and, for n = 3, the
classification of the extremal class was started. This classification was completed
in [15], [8] and [9]. The special (simple) form of the difference tensor K for this
class is remarkable, actually it turns out that the hyperspheres admit a certain
pointwise group symmetry [17].
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A hypersurface is said to admit a pointwise group symmetry if at every point
the affine metric, the affine shape operator and the difference tensor are preserved
under the group action. Necessarily the possible groups must be subgroups of the
isometry group. The study of submanifolds which admit a pointwise group sym-
metry was initiated by Bryant in [1] where he studied 3-dimensional Lagrangian
submanifolds of C3, i. e. the isometry group is SO(3). Because of the similar
basic invariants, Vrancken transferred the problem to 3-dimensional positive def-
inite affine hyperspheres. A classification of 3-dimensional positive definite affine
hyperspheres admitting pointwise symmetries was obtained in [17] and then ex-
tended to positive definite hypersurfaces in [11] (here the affine shape operator is
non-trivial and thus no longer trivially preserved by isometries). Now, for the first
time, we will consider the indefinite case, namely 3-dimensional indefinite affine
hyperspheres.

We can assume that the affine metric has index two, i. e. the corresponding
isometry group is the (special) Lorentz group SO(1, 2). Our question is the fol-
lowing: What can we say about a three-dimensional indefinite affine hypersphere,
for which there exists a non-trivial subgroup G of SO(1, 2) such that for every
p ∈ M and every L ∈ G:

K(LXp, LYp) = L(K(Xp, Yp)) ∀Xp, Yp ∈ TpM.

In Section 2 we will state the basic formulas of (equi-)affine hypersurface-theory
needed in the further classification. We won’t need hypersurface-theory in Section
3 and 4, were we consider the group structure of SO(1, 2) and its action on cubic
forms. In Section 3 we show that there exist six different normalforms of elements
of SO(1, 2), depending on the eigenvalues and eigenspaces. We can always find an
oriented basis of R3

1 such that every L ∈ SO(1, 2) has one (and only one) of the
following matrix representations:(

1 0 0
0 cos t − sin t
0 sin t cos t

)
, t ∈ (0, 2π) \ {π},

(
1 0 0
0 −1 0
0 0 −1

)
, Id,

( −1 0 0
0 1 0
0 0 −1

)
,

all of these with respect to an ONB {t,v,w}, t timelike, v,w spacelike, or(
l 0 0
0 1 0
0 0 1

l

)
, l 6= ±1,

(
1 −1 − 1

2
0 1 1
0 0 1

)
,

with respect to a (LV)basis {e,v, f}, e, f lightlike, v spacelike (Theorem 3).

Since we are interested in pointwise group symmetry, in Section 4 we study
the nontrivial stabilizer of a traceless cubic form K̃ under the SO(1, 2)-action
ρ(L)(K̃) = K̃ ◦ L (cp. [1] for the classification of the SO(3)-action). It turns out
that the SO(1, 2)-stabilizer of a nontrivial traceless cubic form is isomorphic to
either SO(2), SO(1, 1), R, the group S3 of order 6, Z2 × Z2, Z3, Z2 or it is trivial
(Theorem 4).

In the following we classify the indefinite affine hyperspheres which admit a
pointwise Z2 × Z2-symmetry (Section 5) resp. R-symmetry (Section 6). We show
that they are indefinite affine hyperspheres of constant sectional curvature with
negative resp. vanishing Pick invariant J . These are classified in [12] resp. [4].
More precisely we prove the following:
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Theorem 1. An affine hypersphere admits a pointwise Z2 × Z2-symmetry if and
only if it is affine equivalent to an open subset of

(x2
1 + x2

2)(x
2
3 + x2

4) = 1.

Theorem 2. Let M3 be an affine hypersphere admitting a pointwise R-symmetry.
Then M3 has constant sectional curvature κ̂ = H and zero Pick invariant J = 0.

Furthermore, we obtain some examples of pointwise Z2-symmetry. The classifica-
tion of hypersurfaces admitting a pointwise Z3- or SO(2)-symmetry, S3-symmetry
or SO(1, 1)-symmetry will be presented somewhere else. It turns out that these
classes are very rich, most of them are warped products of two-dimensional affine
spheres (Z3) resp. quadrics (SO(2), SO(1, 1)), with a curve. Thus we get many
new examples of 3-dimensional indefinite affine hyperspheres. Furthermore, we
will show how one can construct indefinite affine hyperspheres out of two-dimensio-
nal quadrics or positive definite affine spheres.

2. Basics of affine hypersphere theory

First we recall the definition of the affine normal ξ (cp. [13]). In equi-affine
hypersurface theory on the ambient space Rn+1 a fixed volume form det is given.
A transverse vector field ξ induces a volume form θ on M by θ(X1, . . . , Xn) =
det(ϕ∗X1, . . . , ϕ∗Xn, ξ). Also the affine metric h defines a volume form ωh on M ,
namely ωh = | det h|1/2. Now the affine normal ξ is uniquely determined (up to
sign) by the conditions that Dξ is everywhere tangential (which is equivalent to
∇θ = 0) and that

θ = ωh. (4)

Since we only consider 3-dimensional indefinite hyperspheres, i. e.

S = HId, H = const. (5)

we can fix the orientation of the affine normal ξ such that the affine metric has
signature one. Then the sign of H in the definition of an affine hypersphere is an
invariant.

Next we state some of the fundamental equations, which a nondegenerate
hypersurface has to satisfy, see also [13] or [10]. These equations relate S and K
with amongst others the curvature tensor R of the induced connection ∇ and the
curvature tensor R̂ of the Levi-Civita connection ∇̂ of the affine metric h. There
are the Gauss equation for ∇, which states that:

R(X, Y )Z = h(Y, Z)SX − h(X, Z)SY,

and the Codazzi equation

(∇XS)Y = (∇Y S)X.
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Also we have the total symmetry of the affine cubic form

C(X, Y, Z) = (∇Xh)(Y, Z) = −2h(K(X, Y ), Z). (6)

The fundamental existence and uniqueness theorem, see [3] or [5], states that
given h, ∇ and S such that the difference tensor is symmetric and traceless with
respect to h, on a simply connected manifold M an affine immersion of M exists
if and only if the above Gauss equation and Codazzi equation are satisfied.

From the Gauss equation and Codazzi equation above the Codazzi equation
for K and the Gauss equation for ∇̂ follow:

(∇̂XK)(Y, Z)− (∇̂Y K)(X, Z) =1
2
(h(Y, Z)SX − h(X, Z)SY

− h(SY, Z)X + h(SX, Z)Y ),

and

R̂(X,Y )Z =1
2
(h(Y, Z)SX − h(X, Z)SY

+ h(SY, Z)X − h(SX, Z)Y )− [KX , KY ]Z.

If we define the Ricci tensor of the Levi-Civita connection ∇̂ by:

R̂ic(X, Y ) = trace{Z 7→ R̂(Z,X)Y }. (7)

and the Pick invariant by:

J =
1

n(n− 1)
h(K, K), (8)

then from the Gauss equation we immediately get for the scalar curvature κ̂ =
1

n(n−1)
(
∑

i,j hijR̂icij):

κ̂ = H + J. (9)

For an affine hypersphere the Gauss and Codazzi equations have the form:

R(X, Y )Z = H(h(Y, Z)X − h(X,Z)Y ), (10)

(∇XH)Y = (∇Y H)X, i. e. H = const., (11)

(∇̂XK)(Y, Z) = (∇̂Y K)(X, Z), (12)

R̂(X, Y )Z = H(h(Y, Z)X − h(X,Z)Y )− [KX , KY ]Z. (13)

Since H is constant, we can rescale ϕ such that H ∈ {−1, 0, 1}.

3. Normalforms in SO(1, 2)

We denote1 by R3
1 the pseudo-Euclidean vector space in which a non-degenerate

indefinite bilinear form of index two is given. The bilinear form is called the inner
product and denoted by 〈 , 〉. A basis {t,v,w} is called orthonormal (ONB) if

〈t, t〉 = −1, 〈v,v〉 = 1 = 〈w,w〉 ,
0 = 〈t,v〉 = 〈t,w〉 = 〈v,w〉 .

(14)

1for the notation cp. [6]
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For a chosen ONB the inner product of two vectors is given by

〈x,y〉 = −xtyt + xvyv + xwyw, x,y ∈ R3
1. (15)

A basis {e,v, f} is called a light-vector basis (LVB) if

〈e, e〉 = 0 = 〈f , f〉 , 〈e, f〉 = 1,

〈e,v〉 = 0 = 〈f ,v〉 , 〈v,v〉 = 1.
(16)

For a chosen LVB the inner product of two vectors is given by

〈x,y〉 = xeyf + xfye + xvyv, x,y ∈ R3
1. (17)

We want to consider the special pseudo-Euclidean rotations SO(1, 2), i. e. the
linear transformations L of R3

1 which preserve the inner product and have deter-
minant equal to one:

〈Lx, Ly〉 = 〈x,y〉 , x,y ∈ R3
1, det L = 1.

Depending on the eigenvalues and eigenspaces we get the following normalforms
of the elements of SO(1, 2).

Theorem 3. There exists a choice of an oriented basis of R3
1 such that every

L ∈ SO(1, 2) is of one (and only one) of the following types:

1. (a) At :=
(

1 0 0
0 cos t − sin t
0 sin t cos t

)
, t ∈ [0, 2π), t 6= 0, π,

for an ONB {t,v,w}, t timelike, v,w spacelike,
eigenvalues: λ1 = 1, eigenspaces E(1) = span{t} timelike.

(b) Aπ :=
(

1 0 0
0 −1 0
0 0 −1

)
, for an ONB {t,v,w}, as above,

eigenvalues: λ1 = 1, λ2,3 = −1,
eigenspaces E(1) = span{t} timelike, E(−1) = span{v,w}, spacelike.

2. (a) A0 := Id, for an ONB {t,v,w} as above or an LVB {e,v, f},
eigenvalues: λ1,2,3 = 1, eigenspaces E(1) = R3

1.

(b) B :=
( −1 0 0

0 1 0
0 0 −1

)
, for an ONB {t,v,w}, as above, or an LVB {e,v, f},

eigenvalues: λ1,3 = −1, λ2 = 1,
eigenspaces E(−1) = span{t,w} = span{e, f} timelike,
E(1) = span{v}, spacelike.

3. (a) Cl :=

(
l 0 0
0 1 0
0 0 1

l

)
, l 6= ±1, for an LVB {e,v, f},

eigenvalues: λ1 = l, λ2 = 1, λ3 = 1
l
,

eigenspaces E(l) = span{e} lightlike, E(1) = span{v}, spacelike,
E(1

l
) = span{f} lightlike.

(b) C1 :=
(

1 −1 − 1
2

0 1 1
0 0 1

)
, for an LVB {e,v, f},

eigenvalues: λ1,2,3 = 1, eigenspaces E(1) = span{e} lightlike.
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For the proof we will use the following

Lemma 1. Let L ∈ SO(1, 2) with L(e) = le, l 6= 0, for an LVB {e,v, f}. Since
under L an LVB will be mapped to an LVB, the corresponding matrix must have
the following form :

Cl,m =

 l −lm −lm2

2

0 1 m
0 0 1

l

 .

Proof. We will use the notation: e′ = L(e), v′ = L(v), f ′ = L(f), and compute
(16), using (17):

0 = 〈e′,v′〉 = lv′f ⇒ v′f = 0,

1 = 〈v′,v′〉 = (v′v)
2 ⇒ v′v = ε, ε2 = 1,

1 = 〈e′, f ′〉 = lf ′f ⇒ f ′f =
1

l
,

1 = det L = lε
1

l
⇒ ε = 1,

0 = 〈f ′,v′〉 = v′e
1

l
+ f ′v ⇒ f ′v = −v′e

l
,

0 = 〈f ′, f ′〉 = 2f ′e
1

l
+

(v′e)
2

2
⇒ f ′e = −1

l

(v′e)
2

2
.

With v′e = −lm we obtain Cl,m.

Proof of Theorem 3. Every L ∈ SO(1, 2) must have a real eigenvalue since it is an
automorphism of a three dimensional vector space. A corresponding eigenvector
will be either timelike, spacelike or lightlike.

Let us consider first the case that we have (at least) a timelike eigenvector.
We can choose an ONB {t,v,w}, such that t is the timelike eigenvector with
eigenvalue ε = ±1. Then v,w are spacelike and L restricted to t⊥ = span{v,w}
is an isometry of R2, i. e. an Euclidean rotation.

If ε = 1, then L restricted to t⊥ is in SO(2) (proper Euclidean rotation): In
general we get no more real eigenvalues (case 1.(a)). If the restriction is a rotation
by an angle of π, then we get the second eigenvalue −1 of multiplicity two. The
eigenspace is t⊥ (and thus spacelike) (case 1.(b)). Finally, if the restriction (and
thus L) is the identity map Id, every vector is an eigenvector and we also can
choose an LVB (case 2.(a)).

If ε = −1, then L restricted to t⊥ is an improper Euclidean rotation of R2,
thus it has eigenvalues 1 and −1. We get the eigenvalue 1 with eigenspace span{v}
(spacelike) and the eigenvalue −1 of multiplicity two with eigenspace span{t,w}
(timelike). Since L restricted to span{t,w} is equal to −Id, we also can choose a
basis of two lightlike eigenvectors (case 2.(b)).

Next we will consider the case that we have (at least) a lightlike eigenvector.
We can choose an LVB {e,v, f}, such that e is this lightlike eigenvector with
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eigenvalue l ∈ R, l 6= 0. Since under L an LVB will be mapped to an LVB, the
corresponding matrix must have the following form (cp. Lemma 1):

Cl,m =

 l −lm −lm2

2

0 1 m
0 0 1

l

 .

Cl,m has the eigenvalues λ1 = l, λ2 = 1 and λ3 = 1
l
. If l 6= ±1, we get three

distinct real eigenvalues and the corresponding (1-dim.) eigenspaces are either
lightlike (Eig(l) and Eig(1

l
)) or spacelike (Eig(1)) (case 3.(a)). (Since we take an

eigenvector basis, the LVB is up to the length of the lightlike eigenvectors uniquely
determined.) If l = −1, λ1 = λ3 = −1, thus we have an eigenvalue of multiplicity
two with eigenspace span{e, f} (case 2.(b)). The case l = 1 is left, i. e. only
one eigenvalue of multiplicity three: For m = 0 we obtain the identity map (case
2.(a)). For m 6= 0, the eigenspace Eig(1) = span{e} only is one-dimensional. To
get a normalform of L we compute how C1,m changes if we choose another LVB
{e′,v′, f ′} (with the same orientation) where e′ is an eigenvector of L (e′ = ae).
If we express {e′,v′, f ′} in terms of {e,v, f} and compute (16), we obtain (cp.
Lemma 1):

e′ = ae,

v′ = v′ee + v,

f ′ = −(v′e)
2

2a
e− v′e

a
v +

1

a
f .

The matrix representing L with respect to the new LVB, C ′
1,m, has the form

C ′
1,m =

1 −m
a

−m2

2
1
a2

0 1 m
a

0 0 1

. Thus C ′
1,m = C1, m

a
, and we can choose an LVB such

that m
a

= 1 (case 3.(b)). From the above computations we see that this LVB still
is not completly determined, we can choose v′e arbitrary.

Finally the case is left that we have (at least) a spacelike eigenvector v. The
corresponding eigenvalue must be ε = ±1 and L restricted to v⊥ is an isometry
of R2

1, i. e. a pseudo-Euclidean rotation (boost). Thus it always has two real
eigenvalues with one-dimensional eigenspaces. We can choose an eigenvector basis,
which will be either an ONB or an LVB, and we get one of the following cases:
1.(b), 2.(a), 2.(b) or 3.(a) (cp. [6], p. 273).

Remark. The choice of basis for the above normalforms is unique up to:
1. (a) the ONB is unique up to t → εt,v,w up to a proper (ε = 1) or

improper (ε = −1) Euclidean rotation in R2.

(b) the ONB is unique up to t → εt,v,w up to a proper (ε = 1) or
improper (ε = −1) Euclidean rotation in R2.

2. (a) every ONB or LVB.
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(b) the ONB is unique up to v → εv, t,w up to a proper (ε = 1) or
improper (ε = −1) Pseudo-Euclidean rotation in R2

1,

the LVB is unique up to


v → v,

e → ae,

f → 1
a
f ,

or


v → −v,

e → af ,

f → 1
a
e,

a ∈ R,

3. (a) the LVB is unique up to

{
e → ae,

f → 1
a
f ,

a ∈ R.

Under


v → −v,

e → af ,

f → 1
a
e,

, Cλ goes to C 1
λ
.

(b) the LVB is unique up to


e → e,

v → be + v,

f → − b2

2
e− bv + f ,

b ∈ R.

Under


e → ae,

v → be + v,

f → − b2

2a
e− b

a
v + 1

a
f ,

, C1 goes to C1, 1
a
.

4. Non-trivial SO(1, 2)-stabilizers

Since we are interested in pointwise group symmetry, we study the non-trivial
stabilizer of a traceless cubic form K̃ under the SO(1, 2)-action ρ(L)(K̃) = K̃ ◦L
resp.

ρ(L)(h(K( . , . ), . )) = h(K(L . , L . ), L .))

(cp. [1] for the classification under the SO(3)-action). We will use the following
notation for the coefficients of the difference tensor K with respect to an ONB
{t,v,w}:

Kt =

−a1 −a2 −a3

a2 a4 a5

a3 a5 a1 − a4

 , Kv =

−a2 −a4 −a5

a4 a6 a7

a5 a7 a2 − a6

 ,

Kw =

 −a3 −a5 −(a1 − a4)
a5 a7 a2 − a6

a1 − a4 a2 − a6 a3 − a7

 ,

(18)

resp. with respect to an LVB {e,v, f}:

Ke =

b1 b4 b5

b2 −2b1 b4

b3 b2 b1

 , Kv =

 b4 −2b5 b6

−2b1 −2b4 −2b5

b2 −2b1 b4

 , Kf =

b5 b6 b7

b4 −2b5 b6

b1 b4 b5

 .

(19)
We will prove the following theorem, stating not only the non-trivial stabilizers,
but also give a normal form of K for each stabilizer.
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Theorem 4. Let p ∈ M and assume that there exists a non-trivial element of
SO(1, 2) which preserves K. Then there exists an ONB resp. an LVB of TpM
such that either

1. K = 0, and this form is preserved by every isometry, or

2. a1 = 2a4, a4 > 0, and all other coefficients vanish, this form is preserved by
the subgroup {At, t ∈ R}, isomorphic to SO(2), or

3. a6 > 0, and all other coefficients vanish, this form is preserved by the sub-
group with generators < A 2π

3
, B >, isomorphic to S3, or

4. a1 = 2a4, a4 > 0, a6 > 0, and all other coefficients vanish, this form is
preserved by the subgroup with generator < A 2π

3
>, isomorphic to Z3, or

5. a2, a5 ∈ R, a6 ≥ 0, where (a2, a6) 6= 0, and all other coefficients vanish, this
form is preserved by the subgroup with generator < B >, isomorphic to Z2,
or

6. a5 > 0, and all other coefficients vanish, this form is preserved by the sub-
group with generators < Aπ, B >, isomorphic to Z2 × Z2, or

7. a1 > 0 or a4 > 0, a1 6= 2a4, and all other coefficients vanish, this form is
preserved by the subgroup with generator < Aπ >, isomorphic to Z2, or

8. b4 > 0, and all other coefficients vanish, this form is preserved by the sub-
group {Cl, l ∈ R \ {0}}, isomorphic to SO(1, 1), or

9. b7 > 0, and all other coefficients vanish, this form is preserved by the sub-

group {
(

1 −m −m2

2
0 1 m
0 0 1

)
, m ∈ R}, isomorphic to R.

To get ready for the proof, first we will find out what it means for K to be invariant
under one element of SO(1, 2). Some of the computations were done with the CAS
Mathematica2.

Lemma 2. Let p ∈ M and assume, that K is invariant under the transformation
At ∈ SO(1, 2), t ∈ (0, 2π). Then we get for the coefficients of K with respect to
the corresponding ONB of TpM :

1. if t 6= 2π
3

, π, 4π
3
, then a1 = 2a4, a4 ∈ R, and all other coefficients vanish,

2. if t = 2π
3

or t = 4π
3
, then a1 = 2a4, a4, a6, a7 ∈ R, and all other coefficients

vanish,

3. if t = π, then a1, a4, a5 ∈ R, and all other coefficients vanish.

Proof. The proof is a straight forward computation, evaluating the equations
h(K(X, Y ), Z) = h(K(AtX, AtY ), AtZ) for X, Y, Z ∈ {t,v,w}. The computa-
tions were done with the CAS Mathematica. For all t ∈ (0, 2π) we obtain from
eq2 (X, Y = t, Z = v) and eq3 (X, Y = t, Z = w) that a2 = 0 and a3 = 0. If
t = π, then eq7 (X,Y, Z = v) and eq8 (X,Y = v, Z = w) give a6 = 0 and a7 = 0.
If t 6= π, then eq4 (X = t, Y, Z = v) and eq5 (X = t, Y = v, Z = w) lead to
a5 = 0 and a1 = 2a4. Now, for t = 2π

3
or t = 4π

3
, all equations are true. Otherwise,

only a6 = 0 and a7 = 0 solve eq7 and eq8.

2see Appendix or http://www.math.tu-berlin.de/∼schar/IndefSym Stabilizers.html
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Lemma 3. Let p ∈ M and assume, that K is invariant under the transforma-
tion B ∈ SO(1, 2). Then we get for the coefficients of K with respect to the
corresponding ONB of TpM that a2, a5, a6 ∈ R, and all other coefficients vanish.

Proof. The computations were done with the CAS Mathematica, too. We obtain
from eq1 (X,Y, Z = t), eq3 (X,Y = t, Z = w), eq4 (X = t, Y, Z = v) and eq8
(X, Y = v, Z = w) that a1 = 0, a3 = 0, a4 = 0 and a7 = 0.

Lemma 4. Let p ∈ M and assume, that K is invariant under the transformation
Cl ∈ SO(1, 2), l ∈ R \ {0, 1}. Then we get for the coefficients of K with respect to
the corresponding LVB of TpM :

1. if l 6= −1, then b4 ∈ R, and all other coefficients vanish,

2. if l = −1, then b2, b4, b6 ∈ R, and all other coefficients vanish.

Proof. The computations were done with the CAS Mathematica, too. We obtain
from eq1 (X,Y, Z = e), eq3 (X, Y = e, Z = f), eq6 (X = e, Y, Z = f) and
eq10 (X, Y, Z = f) that b1 = 0, b3 = 0, b5 = 0 and b7 = 0. If l 6= −1, then eq2
(X, Y = e, Z = v) and eq9 (X = v, Y, Z = f) additionally give that b2 = 0 and
b6 = 0.

Lemma 5. Let p ∈ M and assume, that K is invariant under the transformation
C1,m ∈ SO(1, 2), m ∈ R \ {0}. Then we get for the coefficients of K with respect
to the corresponding LVB of TpM that b7 ∈ R, and all other coefficients vanish.

Proof. The computations were done with the CAS Mathematica, too. We obtain
successively from eq2 (X,Y = e, Z = v), eq3 (X, Y = e, Z = f), eq5 (X = e,
Y = v, Z = f), eq6 (X = e, Y, Z = f), eq9 (X = v, Y, Z = f) and eq10
(X, Y, Z = f) that b3 = 0, b2 = 0, b1 = 0, b4 = 0, b5 = 0 and b6 = 0.

In the following U denotes an arbitrary subgroup of SO(1, 2), which leaves K
invariant. We want to find out to which extend K determines the properties of
the elements of U .

Lemma 6. If there exists t ∈ (0, 2π), t 6= π, with At ∈ U , and K 6= 0, then we
get for the timelike eigenvector t of At:

1. for t 6= 2π
3

and t 6= 4π
3
: Mt = t for all M ∈ U ,

2. for t = 2π
3

or t = 4π
3
: Mt = εt for all M ∈ U .

Proof. Let M ∈ U . From Lemma 2 we know that

h(K(Mt, Mt), MY ) = h(K(t, t), Y ) =

{
−2a4, Y = t,

0, Y = v or Y = w.

Thus K(Mt, Mt) = −2a4Mt, furthermore h(Mt, Mt) = h(t, t) = −1. Now
assume that X = xt+yv+zw ∈ TpM has the same properties (K(X, X) = −2a4X
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and h(X,X) = −1). This is equivalent to (cp. Lemma 2):

(−2x2 − y2 − z2)a4 = −2a4x, (20)

2xya4 + (y2 − z2)a6 + 2yza7 = −2a4y, (21)

2xza4 − 2yza6 + (y2 − z2)a7 = −2a4z, (22)

−x2 + y2 + z2 = −1. (23)

If a4 6= 0, then (20) and (23) imply that 3x2 − 2x− 1 = 0 and x2 ≥ 1, this means
x = 1 and y = z = 0. Thus X = t and Mt = t.

If a4 = 0, then (21) and (22) imply that

(y2 − z2)a6 + 2yza7 = 0,

−2yza6 + (y2 − z2)a7 = 0.

The two equations, linear in a6 and a7, only have a non-trivial solution if y = z = 0.
With (23) we obtain that X = εt and thus Mt = εt.

Lemma 7. If there exists l ∈ R, l 6= 0,±1, with Cl ∈ U , and K 6= 0, then we get
for the spacelike eigenvector v of Cl: Mv = v for all M ∈ U .

Proof. Let M ∈ U . From Lemma 4 we know that

h(K(Mv, Mv), MY ) = h(K(v,v), Y ) =

{
−2a4, Y = v,

0, Y = e or Y = f .

Thus K(Mv, Mv) = −2a4Mv, furthermore h(Mv, Mv) = h(v,v) = 1. Now
assume that X = xt+yv+zw ∈ TpM has the same properties (K(X,X) = −2a4X
and h(X, X) = 1). This is equivalent to (cp. Lemma 4):

2xyb4 = −2b4x, (24)

2(−y2 + xz)b4 = −2b4y, (25)

2yzb4 = −2b4z, (26)

2xz + y2 = 1. (27)

Since b4 6= 0, (24) is equivalent to x = 0 or y = −1, and (26) is equivalent to z = 0
or y = −1. Now y = −1 in (25) gives xy = 2, which is a contradiction to (27).
Thus x = 0 and z = 0. With (25) we obtain that X = v and thus Mv = v.

Lemma 8. If there exists m ∈ R, m 6= 0, with C1,m ∈ U , and K 6= 0, then we
get for the lightlike eigenvector e of C1,m: Me = e for all M ∈ U .
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Proof. Let M ∈ U . From Lemma 5 we know that

K(X,X) = b7z
2e for all X = xt + yv + zw ∈ TpM,

i. e. e is determined by K up to length: e = 1
h(K(f ,f),f)

K(f , f). From the invari-

ance of K under M it follows that Me = 1
h(K(f ,f),f)

K(M f , M f) = (h(M f , e))2e.

Since 1 = h(M f , Me), we get now: 1 = h(M f , h(M f , e)2e) = h(M f , e)3, thus
h(M f , e) = 1.

Now we are ready for the proof of Theorem 4.

Proof of Theorem 4. For the proof we will consider several cases which are sup-
posed to be exclusive. Let U be a maximal subgroup of SO(1, 2) which leaves K
invariant.

1. Case We assume that there exists t ∈ (0, 2π), t 6= 2π
3

, π, 4π
3

, with At ∈ U . Thus
there exists an ONB {t,v,w} such that K has the form (Lemma 2): a1 = 2a4,
a4 ∈ R and all other coefficients vanish. If a4 = 0, then K = 0 and U = SO(1, 2).
If a4 6= 0, then we know that Mt = t for all M ∈ U (Lemma 6). We have
seen in Section 3 that M ∈ U must be of type 1.(a), 1.(b) or 2.(a). Now let
N ∈ SO(1, 2) be of type 1.(a), 1.(b) or 2.(a) with eigenvector t. We can normalize
simultaneously (i. e. find an ONB such that both At and N have normalform)
and we see that N leaves K invariant (Lemma 2). Thus U = {At, t ∈ R}. Finally,
if a4 < 0, we can change the ONB {t,v,w} and take instead{−t,w,v}.

2. Case We assume that A 2π
3
∈ U or A 4π

3
∈ U . Thus there exists an ONB

{t,v,w} such that K has the form (Lemma 2): a1 = 2a4, a4, a6, a7 ∈ R and
all other coefficients vanish. Without loss of generality a6 and a7 will not vanish
both. Furthermore we know that Mt = εt for all M ∈ U (Lemma 6). We have
seen in Section 3 that M ∈ U must be of type 1.(a), 1.(b), 2.(a) or 2.(b). Now
let N ∈ SO(1, 2) be of type 1.(a), 1.(b), 2.(a) or 2.(b) with eigenvector t. We can
normalize simultaneously.

If N = A 2π
3
, N = A 4π

3
or N = Id (type 1.(a) or 2.(a)), then it leaves K

invariant (Lemma 2). If N = Aπ (type 1.(b)), then by Lemma 2 a6 = 0 = a7,
which gives a contradiction. If N = B (type 2.(b)), then by Lemma 3 a4 = 0 = a7

and a6 is the only non-vanishing coefficient of K.
We get two possibilities for K and the corresponding maximal subgroup U .

Either a6 ∈ R \ {0} and all other coefficients of K vanish, and U =< A 2π
3
, B >,

if necessary by a change of basis ({−t,−v,w}) we can make sure that a6 > 0.
Or a1 = 2a4, a4, a6, a7 ∈ R and all other coefficients vanish, and U =< A 2π

3
>.

As before we can choose t such that a4 ≥ 0. A computation gives that under a
change of ONB {t∗,v∗,w∗} = {t, cos sv+sin sw,− sin sv+cos sw} we obtain for
K (cp. (18)): a∗6 = a6 cos(3s) + a7 sin(3s), a∗7 = a7 cos(3s)− a6 sin(3s), i. e. there
exists s ∈ R such that a∗7 = 0. We can change the sign of a6 by switching from
{t,v,w} to {t,−v,−w}. Finally we see that a4 6= 0.
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3. Case We assume that there exists l 6= 0,±1, with Cl ∈ U . There exists an LVB
{e,v, f} such that K has the form (Lemma 4): b4 ∈ R and all other coefficients
vanish. If b4 = 0, then K = 0 and U = SO(1, 2).

If b4 6= 0, then we know that Mv = v for all M ∈ U (Lemma 7). We have
seen in Theorem 3 that M ∈ U must be of type 2.(a), 2.(b) or 3.(a). Now let
N ∈ SO(1, 2) be of type 2.(a), 2.(b) or 3.(a) with eigenvector v. We can normalize
simultaneously and we see that N leaves K invariant (Lemma 4, B = C−1). Thus
U = {Cl, l ∈ R \ {0}}. Finally, if b4 < 0, we can change the LVB {e,v, f} to
{f ,−v, e} (cp. Remark 3).

4. Case We assume that C1 ∈ U . There exists an LVB {e,v, f} such that K has
the form (Lemma 5): b7 ∈ R and all other coefficients vanish. If b7 = 0, then
K = 0 and U = SO(1, 2).

If b7 6= 0, then we know that Me = e for all M ∈ U (Lemma 8). We have
seen in Theorem 3 that M ∈ U must be of type 3.(b). Now let N ∈ SO(1, 2) be
of type 3.(b) with eigenvector e, i. e. N has the form C1,m, m ∈ R. We see that
N leaves K invariant (Lemma 5). Thus U = 〈C1〉 (C1,mC1,n = C1,m+n). Finally,
if b7 < 0, we can change the LVB {e,v, f} to {−e,v,−f} (cp. Remark 3).

4. Case We assume that Aπ ∈ U . There exists an ONB {t,v,w} such that K
has the form (Lemma 2): a1, a4, a5 ∈ R and all other coefficients vanish. Every
M ∈ U must be of type 1.(b) or 2.(b), otherwise we are in one of the foregoing
cases.

a) Let N ∈ SO(1, 2) be of type 1.(b). There exists a spacelike eigenvector w such
that Aπw = −w and Nw = −w, and we can choose an ONB {t,v,w} such that

Aπ has normalform and N =
(

cosh s − sinh s 0
sinh s − cosh s 0

0 0 −1

)
. If we assume that K is invariant

under N then we obtain for s 6= 0 that K = 0. The computations were done with
the CAS Mathematica, too. We obtain from eq3 (X, Y = t, Z = w) and eq9
(X = v, Y, Z = w) that a5 = 0 and a1 = a4, and from eq1 (X,Y, Z = t) that
a4 = 0.

b) Let N ∈ SO(1, 2) be of type 2.(b). There exists a spacelike eigenvector w such
that Aπw = −w and Nw = −w, and we can choose an ONB {t,v,w} such that

Aπ has normalform and N =
( − cosh s − sinh s 0

sinh s cosh s 0
0 0 −1

)
. If we assume that K is invariant

under N then we obtain that a1 = 0 = a4. If s 6= 0, also a5 = 0, i. e. K = 0. The
computations were done with the CAS Mathematica, too. If s 6= 0, we get from
eq3 (X, Y = t, Z = w) and eq9 (X = v, Y, Z = w) that a5 = 0 and a1 = a4, and
from eq1 (X, Y, Z = t) that a4 = 0. If s = 0, we get from eq1 (X, Y, Z = t) and
eq4 (X = t, Y, Z = v) that a1 = 0 = a4.

Summarized we got two different forms of K with corresponding maximal
subgroups U : a) Either there exists an ONB such that a1, a4, a5 ∈ R, where
a1 6= 2a4 or a5 6= 0, and all other coefficients vanish, this form is preserved by
U =< Aπ >. Since Kt is a symmetric operator on the positive definite space t⊥,
we can diagonalize, then a5 = 0. If necessary, we still can take {−t,−v,w} to
get a1 > 0 or a4 > 0. b) In the other case there exists an ONB such that a5 ∈ R,
a5 6= 0, and all other coefficients vanish, this form is preserved by U =< Aπ, B >.
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If a5 < 0, we switch to the ONB {−t,w,v}.

6. Case We assume that B ∈ U . There exists an ONB {t,v,w} such that K
has the form (Lemma 3): a2, a5, a6 ∈ R and all other coefficients vanish. Every
M ∈ U must be of type 2.(b), otherwise we are in one of the foregoing cases.
Now let N ∈ SO(1, 2) be of type 2.(b). We canot normalize simultaneously. We
only know that B and N both have two-dimensional timelike eigenspaces, which
intersect in a line. This line g can be space-, time- or lightlike.

a) If g is spacelike, we can choose an ONB {t,v,w} such that B has normalform

and N =
( − cosh s − sinh s 0

sinh s cosh s 0
0 0 −1

)
(cp. case 5). If we assume that K is invariant under

N then we obtain for s 6= 0 that K = 0. The computations were done with the
CAS Mathematica, too. If s 6= 0, we get from eq3 (X,Y = t, Z = w) and eq9
(X = v, Y, Z = w) that a5 = 0 and a2 = a6, and from eq1 (X,Y, Z = t) that
a6 = 0.

b) If g is timelike, we can choose an ONB {t,v,w} such that B has normalform

and N =
( −1 0 0

0 cos s sin s
0 sin s − cos s

)
. If we assume that K is invariant under N then we

obtain for s 6= 0, 2π
3

, π, 4π
3

that K = 0. For s = 2π
3

, π, 4π
3

we are in one of the
foregoing cases. The computations were done with the CAS Mathematica, too.
If s 6= 0, π, we get from eq2 (X,Y = t, Z = v) and eq4 (X = t, Y, Z = v) that
a2 = 0 and a5 = 0. If also s 6= 2π

3
, 4π

3
, then we get from eq10 (X, Y, Z = w) that

a6 = 0.

c) If g is lightlike, we can choose an LVB {e,v, f} such that B has normalform

and N =
(
−1 −2m 2m2

0 1 −2m
0 0 −1

)
(use Lemma 1). If we assume that K is invariant under

N then we obtain for m 6= 0 that K = 0. The computations were done with the
CAS Mathematica, too. If m 6= 0, we get from eq5 (X = t, Y = v, Z = w) and
eq2 (X, Y = t, Z = v) that b6 = 0 and b4 = 0, and from eq1 (X, Y, Z = t) that
b2 = 0.

Therefore we have that U = 〈B〉. If a6 < 0, we can switch to {−t,−v,w}.
Since Kv is a symmetric operator on an indefinite space we cannot always diago-
nalize. Thus we cannot simplify K in general.

Remark. In the proof we only have used multilinear algebra. Thus the theo-
rem stays true for an arbitrary (1, 2)-tensor K on R3

1 with 〈K(X, Y ), Z〉 totally
symmetric and vanishing trace KX .

5. Pointwise Z2 × Z2-symmetry

Let M3 be a hypersphere admitting a pointwise Z2×Z2-symmetry. According to
Theorem 4, there exists for every p ∈ M3 an ONB {t,v,w} of TpM

3 such that

K(t, t) = 0, K(t,v) = a5w, K(t,w) = a5v, (28)

K(v,v) = 0, K(v,w) = −a5t, K(w,w) = 0. (29)
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Substituting this in equation (13), we obtain

R̂(X, Y )Z = (H − a2
5)(h(Y, Z)X − h(X, Z)Y ). (30)

Schur’s Lemma implies that M3 has constant sectional curvature, by the affine
theorema egregium (9) we obtain that κ̂ = H − a2

5 and J = −a2
5 < 0. Affine

hyperspheres with constant affine sectional curvature and nonzero Pick invariant
were classified by Magid and Ryan [12]. They show in their main theorem that
an affine hypersphere with Lorentz metric of constant curvature and nonzero Pick
invariant is equivalent to an open subset of either (x2

1 + x2
2)(x

2
3 + x2

4) = 1 or
(x2

1 + x2
2)(x

2
3 − x2

4) = 1. In both cases κ̂ = 0, i. e. H = −J . In the proof of the
main theorem they explicitly show that only (x2

1 + x2
2)(x

2
3 + x2

4) = 1 has negative
Pick invariant and that K has normalform. This proves:

Theorem 1. An affine hypersphere admits a pointwise Z2 × Z2-symmetry if and
only if it is affine equivalent to an open subset of

(x2
1 + x2

2)(x
2
3 + x2

4) = 1.

For (x2
1 + x2

2)(x
2
3 − x2

4) = 1 they compute that the only non-vanishing coefficient
of K is a2. Thus it follows (Theorem 4):

Remark. The affine hypersphere (x2
1 + x2

2)(x
2
3 − x2

4) = 1 admits a pointwise Z2-
symmetry.

6. Pointwise R-symmetry

Let M3 be a hypersphere admitting a pointwise R-symmetry. According to The-
orem 4, there exists for every p ∈ M3 a LVB {e,v, f} of TpM

3 such that

K(e, e) = 0, K(e,v) = 0, K(e, f) = 0, (31)

K(v,v) = 0, K(v, f) = 0, K(f , f) = b7e. (32)

Substituting this in equation (13), we obtain

R̂(X,Y )Z = H(h(Y, Z)X − h(X, Z)Y ). (33)

Schur’s Lemma implies that M3 has constant sectional curvature, by the affine
theorema egregium (9) we obtain that κ̂ = H and J = 0. Affine hyperspheres
with constant affine sectional curvature and zero Pick invariant were classified in
[4] (see Theorem 6.2 (H = 0), Theorem 7.2 (H = 1) and Theorem 8.2 (H = −1)).
They are determined by a null curve in resp. R3

1, S3
1 , H3

1 , and a function along
this curve (note that in the notion of [4] (2) holds).

Theorem 2. Let M3 be an affine hypersphere admitting a pointwise R-symmetry.
Then M3 has constant sectional curvature κ̂ = H and zero Pick invariant J = 0.

Remark. A study of [4] shows that an affine hypersphere admits a pointwise
R-symmetry if and only if (2) holds (in their notations).

If (3) holds for an affine hypersphere with constant sectional curvature and
zero Pick invariant, then it admits a pointwise Z2-symmetry (cp. Theorem 4).
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Appendix: Non-trivial SO(1, 2)-stabilizers

In[1]:= e[1] := {1, 0, 0}; e[2] := {0, 1, 0}; e[3] := {0, 0, 1};

ONB of SO(1,2), e[1]=t, e[2]=v, e[3]=w

Affine metric h

In[2]:= honb[y , z ] := −(y[[1]] ∗ z[[1]]) + y[[2]] ∗ z[[2]] + y[[3]] ∗ z[[3]];

Difference tensor K

In[3]:= Konb[y , z ] := Sum[y[[i]] ∗ z[[j]] ∗ konb[i, j], {i, 1, 3}, {j, 1, 3}];
konb[1, 1] := {−a1, a2, a3}; konb[1, 2] := {−a2, a4, a5}; konb[1, 3] := {−a3, a5, a1− a4};
konb[2, 1] := {−a2, a4, a5}; konb[2, 2] := {−a4, a6, a7}; konb[2, 3] := {−a5, a7, a2− a6};
konb[3, 1] := {−a3, a5, a1− a4}; konb[3, 2] := {−a5, a7, a2− a6};
konb[3, 3] := {−(a1− a4), a2− a6, a3− a7};

K invariant under a transformation f[t]?

In[4]:= eq1[t ] := honb[konb[1, 1], e[1]]− honb[Konb[f [1][t], f [1][t]], f [1][t]];

eq2[t ] := honb[konb[1, 1], e[2]]− honb[Konb[f [1][t], f [1][t]], f [2][t]];

eq3[t ] := honb[konb[1, 1], e[3]]− honb[Konb[f [1][t], f [1][t]], f [3][t]];

eq4[t ] := honb[konb[1, 2], e[2]]− honb[Konb[f [1][t], f [2][t]], f [2][t]];

eq5[t ] := honb[konb[1, 2], e[3]]− honb[Konb[f [1][t], f [2][t]], f [3][t]];

eq6[t ] := honb[konb[1, 3], e[3]]− honb[Konb[f [1][t], f [3][t]], f [3][t]];

eq7[t ] := honb[konb[2, 2], e[2]]− honb[Konb[f [2][t], f [2][t]], f [2][t]];

eq8[t ] := honb[konb[2, 2], e[3]]− honb[Konb[f [2][t], f [2][t]], f [3][t]];

eq9[t ] := honb[konb[2, 3], e[3]]− honb[Konb[f [2][t], f [3][t]], f [3][t]];

eq10[t ] := honb[konb[3, 3], e[3]]− honb[Konb[f [3][t], f [3][t]], f [3][t]];

In[5]:= eq[t ] :=

FullSimplify[{eq1[t] == 0, eq2[t] == 0, eq3[t] == 0, eq4[t] == 0, eq5[t] == 0,

eq6[t] == 0, eq7[t] == 0, eq8[t] == 0, eq9[t] == 0, eq10[t] == 0}];

Lemma 2

Transformations A t

In[6]:= f [1][t ] := {1, 0, 0}; f [2][t ] := {0, cos[t], sin[t]}; f [3][t ] := {0,− sin[t], cos[t]};

In[7]:= eq[t]

eq2 and eq3 give

In[8]:= a2 = 0; a3 = 0; eq[t]

t=π, thus sin[t]=0

In[9]:= eq[π]

eq7 and eq8 give that a6 = 0 and a7 = 0
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t 6=π: eq4 and eq5 give

In[10]:= a5 = 0; a1 := 2a4; eq[t]

t=2π/3 or 4π/3, thus cos[3t]=1

In[11]:= eq[2π/3]

In[12]:= eq[4π/3]

In[13]:= {a1, a2, a3, a4, a5, a6, a7}

t 6=2π/3 or 4π/3, thus cos[3t]6=1: eq7 and eq8 give

In[14]:= a6 = 0; a7 = 0;

In[15]:= {a1, a2, a3, a4, a5, a6, a7}

Result: {a1, a2, a3, a4, a5, a6, a7} = {2 a4, 0, 0, a4, 0, 0, 0}

In[16]:= Clear[a1, a2, a3, a4, a5, a6, a7]

Lemma 3

Transformations B

In[17]:= f [1][t ] := {−1, 0, 0}; f [2][t ] := {0, 1, 0}; f [3][t ] := {0, 0,−1};

In[18]:= eq[t]

eq1, eq3, eq4 and eq8 give
In[19]:= a1 = 0; a3 = 0; a4 = 0; a7 = 0; eq[t]

In[20]:= {a1, a2, a3, a4, a5, a6, a7}

Result: {a1, a2, a3, a4, a5, a6, a7} = {0, a2, 0, 0, a5, a6, 0}

In[21]:= Clear[a1, a2, a3, a4, a5, a6, a7]

LVB of SO(1,2), e[1]=e, e[2]=v, e[3]=f

Affine metric h

In[22]:= hl[y , z ] := y[[1]]z[[3]] + y[[3]]z[[1]] + y[[2]]z[[2]];

Difference tensor K

In[23]:= Kl[y , z ] := Sum[y[[i]] ∗ z[[j]] ∗ kl[i, j], {i, 1, 3}, {j, 1, 3}];
kl[1, 1] := {b1, b2, b3}; kl[1, 2] := {b4,−2b1, b2}; kl[1, 3] := {b5, b4, b1};
kl[2, 1] := {b4,−2 b1, b2}; kl[2, 2] := {−2 b5,−2 b4,−2 b1}; kl[2, 3] := {b6,−2 b5, b4};
kl[3, 1] := {b5, b4, b1}; kl[3, 2] := {b6,−2 b5, b4}; kl[3, 3] := {b7, b6, b5};
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K invariant under a transformation f[l,m]?

In[2]:= eq1[l , m ] := hl[kl[1, 1], e[1]]− hl[Kl[f [1][l, m], f [1][l, m]], f [1][l, m]];

eq2[l , m ] := hl[kl[1, 1], e[2]]− hl[Kl[f [1][l, m], f [1][l, m]], f [2][l, m]];

eq3[l , m ] := hl[kl[1, 1], e[3]]− hl[Kl[f [1][l, m], f [1][l, m]], f [3][l, m]];

eq4[l , m ] := hl[kl[1, 2], e[2]]− hl[Kl[f [1][l, m], f [2][l, m]], f [2][l, m]];

eq5[l , m ] := hl[kl[1, 2], e[3]]− hl[Kl[f [1][l, m], f [2][l, m]], f [3][l, m]];

eq6[l , m ] := hl[kl[1, 3], e[3]]− hl[Kl[f [1][l, m], f [3][l, m]], f [3][l, m]];

eq7[l , m ] := hl[kl[2, 2], e[2]]− hl[Kl[f [2][l, m], f [2][l, m]], f [2][l, m]];

eq8[l , m ] := hl[kl[2, 2], e[3]]− hl[Kl[f [2][l, m], f [2][l, m]], f [3][l, m]];

eq9[l , m ] := hl[kl[2, 3], e[3]]− hl[Kl[f [2][l, m], f [3][l, m]], f [3][l, m]];

eq10[l , m ] := hl[kl[3, 3], e[3]]− hl[Kl[f [3][l, m], f [3][l, m]], f [3][l, m]];

Transformations C l and C 1,m

In[25]:= f [1][l , m ] := {l, 0, 0}; f [2][l , m ] := {−l m , 1, 0}; f [3][l , m ] := {−l m 2̂/2, m, 1/l};

In[26]:= eq[l , m ] :=

FullSimplify[{eq1[l, m] == 0, eq2[l, m] == 0, eq3[l, m] == 0, eq4[l, m] == 0,

eq5[l, m] == 0, eq6[l, m] == 0, eq7[l, m] == 0, eq8[l, m] == 0, eq9[l, m] == 0,

eq10[l, m] == 0}];
eq[l, m]

Lemma 4

C l, i.e. m=0

In[27]:= eq[l, 0]

eq1, eq3, eq6 and eq10 give (l6= 1)

In[28]:= b3 = 0; b1 = 0; b5 = 0; b7 = 0;

l=-1 (C (-1)=B)
In[29]:= eq[−1, 0]

In[30]:= {b1, b2, b3, b4, b5, b6, b7}

Result: {b1, b2, b3, b4, b5, b6, b7} = {0, b2, 0, b4, 0, b6, 0}
l 6=-1

eq2 and eq9 give (l 6=-1)
In[31]:= b2 = 0; b6 = 0; {b1, b2, b3, b4, b5, b6, b7}

Result: {b1, b2, b3, b4, b5, b6, b7} = {0, 0, 0, b4, 0, 0, 0}

In[32]:= Clear[b1, b2, b3, b4, b5, b6, b7]

Lemma 5

C 1, i.e. l=1 (m 6=0)

In[33]:= eq[1, m]

eq2 gives

In[34]:= b3 = 0; eq[1, m]
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eq3 gives

In[35]:= b2 = 0; eq[1, m]

eq5 gives

In[36]:= b1 = 0; eq[1, m]

eq6 gives

In[37]:= b4 = 0; eq[1, m]

eq9 gives

In[38]:= b5 = 0; eq[1, m]

eq10 gives

In[39]:= b6 = 0; eq[1, m]

In[40]:= {b1, b2, b3, b4, b5, b6, b7}

Result: {b1, b2, b3, b4, b5, b6, b7} = {0, 0, 0, 0, 0, 0, b7}

In[41]:= Clear[b1, b2, b3, b4, b5, b6, b7]

Proof of Theorem 2

5. Case

In[42]:= a2 = 0; a3 = 0; a6 = 0; a7 = 0;

a) transformations N

In[43]:= f [1][t ] := {cosh[t],− sinh[t], 0}; f [2][t ] := {sinh[t],− cosh[t], 0}; f [3][t ] := {0, 0,−1};

In[44]:= eq[t]

eq5 and eq9 give

In[45]:= a5 = 0; a1 = a4; eq[t]

In[46]:= a4 = 0; {a1, a2, a3, a4, a5, a6, a7}

Result: K= 0

In[47]:= Clear[a1, a4, a5]

b) transformations N

In[48]:= f [1][t ] := {− cosh[t],− sinh[t], 0}; f [2][t ] := {sinh[t], cosh[t], 0}; f [3][t ] := {0, 0,−1};

In[49]:= eq[t]

s 6=0: eq3 and eq9 give

In[50]:= a5 = 0; a1 = a4; eq[t]

In[51]:= a4 = 0; {a1, a2, a3, a4, a5, a6, a7}

Result: s 6=0: K= 0

In[52]:= Clear[a1, a4, a5]

s=0

In[53]:= eq[0]
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In[54]:= a1 = 0; a4 = 0; {a1, a2, a3, a4, a5, a6, a7}

Result: s=0: {a1, a2, a3, a4, a5, a6, a7} = {0, 0, 0, 0, a5, 0, 0}

In[55]:= Clear[a1, a2, a3, a4, a5, a6, a7]

6. Case, ONB

In[56]:= a1 = 0; a3 = 0; a4 = 0; a7 = 0;

a) transformations N

In[57]:= f [1][t ] := {− cosh[t],− sinh[t], 0}; f [2][t ] := {sinh[t], cosh[t], 0}; f [3][t ] := {0, 0,−1};

In[58]:= eq[t]

s 6=0: eq3 and eq9 give

In[59]:= a5 = 0; a2 = a6; eq[t]

In[60]:= a6 = 0; {a1, a2, a3, a4, a5, a6, a7}

Result: s 6=0: K= 0

In[61]:= Clear[a2, a5, a6]

b) transformations N

In[62]:= f [1][t ] := {−1, 0, 0}; f [2][t ] := {0, cos[t], sin[t]}; f [3][t ] := {0, sin[t],− cos[t]};

In[63]:= eq[t]

s 6=0,π (s=0 or π, then f=B): eq2 and eq4 give

In[64]:= a2 = 0; a5 = 0;

in addition s6=2π/3,4π/3 (s=2π/3 or 4π/3, then f=A {2π/3}. B)

In[65]:= {a1, a2, a3, a4, a5, a6, a7}

eq10 gives

In[66]:= a6 = 0; {a1, a2, a3, a4, a5, a6, a7}

In[67]:= Clear[a1, a2, a3, a4, a5, a6, a7]

6. Case, LVB

In[68]:= b1 = 0; b3 = 0; b5 = 0; b7 = 0;

c) transformations N

In[69]:= f [1][l , m ] := {−1, 2 m, 2 m 2̂}; f [2][l , m ] := {0, 1, 2 m}; f [3][l , m ] := {0, 0,−1};

In[70]:= eq[l, m]

m6=0: eq5 and eq2 give

In[71]:= b6 = 0; b4 = 0; eq[l, m]

In[72]:= b2 = 0; {b1, b2, b3, b4, b5, b6, b7}

Result: K= 0

In[73]:= Clear[b1, b2, b3, b4, b5, b6, b7]
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