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Abstract. A subgroup H of a group G is permutable subgroup of G
if for all subgroups S of G the following condition holds SH = HS =
< S,H >. A subgroup H is S-quasinormal in G if it permutes with
every Sylow subgroup of G. In this article we study the influence of
S-quasinormality of subgroups of some subgroups of G on the super-
solvability of G.

1. Introduction

When H and K are two subgroups of a group G, then HK is also a subgroup of
G if and only if HK = KH. In such a case we say that H and K permute. Fur-
thermore, H is a permutable subgroup of G, or H permutable in G, if H permutes
with every subgroup of G. Permutable subgroups where first studied by Ore [7]
in 1939, who called them quasinormal. While it is clear that a normal subgroup
is permutable, Ore proved that a permutable subgroup of a finite group is sub-
normal. We say, following Kegel [6], that a subgroup of G is S-quasinormal in G
if it permutes with every Sylow subgroup of G. Several authors have investigated
the structure of a finite group when some subgroups of prime power order of the
group are well-situated in the group. Buckley [2] proved that if all minimal sub-
groups of an odd order group are normal, then the group is supersolvable. It turns
out that the group which has many S-quasinormal subgroups have well-described
structure.

In this article we study the influence of the S-quasinormal subgroups on the
structure of finite group and prove the results generalizing mentioned above:
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1. Let π (G) = {p1, p2, . . . , pn}, where p1 > p2 > · · · > pn and Pi be a Sylow
pi-subgroup of G, where i = 1, 2, . . . , n. If all maximal subgroups of Pi are
S-quasinormal in G for each i = 1, 2, . . . n. Then G is supersolvable.

2. Let π (G) = {p1, p2, . . . , pn}, where p1 > p2 > · · · > pn and Pi be a Sylow
pi-subgroup of G, where i = 1, 2, . . . , n. If all maximal subgroups of Ω(Pi)
are S-quasinormal in G for each i = 1, 2, . . . , n. Then G is supersolvable.

Throughout this article the term group always means a group of finite order.

2. Notation

Let π be a set of primes. A π-group is a group whose order is a π-number, i.e. a
positive integer whose prime divisors lie in π. Set π́ = {primes p with p /∈ π}. A
Hall subgroup of a finite group G is a subgroup H of G such that |H| and |G : H|
are coprime. A Hall π-subgroup of G is a subgroup H of G such that |H| is a
π-number and |G : H| is a π́-number. We write Hallπ(G) to mean the set of all
Hall π-subgroups of G. We say that the group G is p-decomposable if G = P ×K
for some Sylow p-subgroup P of G and a Hall p′-subgroup K of G.

The characteristic subgroup Oπ (G) is the smallest normal subgroup of G with the
property that its quotient group is a π-group. For a finite p-group P , we write

Ω (P ) =

{
Ω1 (P ) if p > 2
Ω2 (P ) if p = 2

where
Ωi (P ) =< x ∈ P |xpi

= 1 > .

Observe that the subgroup Ω(P ) is cyclic if and only if the p-group P is cyclic.

3. Basic results

The following results are applied in this article. Any of the results 3.1–3.3 can be
found in [8] on page 202.

3.1. If Hi is a permutable subgroup of G for all i ∈ I , then < Hi : i ∈ I > is a
permutable subgroup of G .

3.2. Let H and K be subgroups of G such that K ≤ H and K � G. Then H is a
permutable subgroup of G if and only if H/K is a permutable subgroup of G/K.

3.3. If H is a permutable subgroup of G and S is a subgroup of G, then H ∩ S is
a permutable subgroup of S.

3.4. Let H be a p-subgroup of G for some prime p. Then H ∈ Syl(G)⊥ if and
only if NG(H) = Op(G).

Proof. See [9, Lemma A].
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Theorem 3.5. Let p be the smallest prime dividing |G|. If P is a Sylow p-subgroup
of G such that every maximal subgroup of P is S-quasinormal in G, then G has
a normal p-complement.

Proof. Let H be a maximal subgroup of P . It follows from 3.4 that NG(H)
contains Op(G). Since P ≤ NG(H) we have that H is normal in G.

Suppose that P has at least two distinct maximal subgroups H1 and H2. Then
H1H2 = P . Hence P is normal in G. Let r be a prime different from p and R
be a Sylow r-subgroup of G. By the above and 3.4 R normalizes each maximal
subgroup of P . Since p is a smallest prime dividing |G|, we have that R induces
a trivial automorphism group on P/Φ(P ) (Φ(P ) is a Frattini subgroup of P ). By
Theorem 5.1.4 in [4] R centralizes P . This implies G = P ×T by Schur Theorem.

Now we may assume that P has only one maximal subgroup H. Then P is
cyclic and the assertion follows from Burnside’s transfer theorem.

Remark. It follows from 3.4 that if a maximal subgroup of a Sylow p-subgroup
of a group G is S-quasinormal, then it is also normal in G. Moreover G is even
p-decomposable, if its Sylow p-subgroup for smallest prime p is non-cyclic and
every maximal subgroup of its Sylow p-subgroup is S-quasinormal.

Corollary 3.6. Put π (G) = {p1, p2, . . . , pn} . Let Pi be a Sylow pi-subgroup of
G, where i = 1, 2, . . . , n. If every maximal subgroup of Pi is S-quasinormal in G
for all i ∈ {1, 2, . . . , n}, then G is supersolvable.

Proof. Let p1 > p2 > · · · > pn. By Theorem 3.5 G has a normal pn-complement
K. If a Sylow pn-subgroup Pn is non-cyclic, then by Remark we have G = K×Pn.
By induction, K is supersolvable. Therefore, G is supersolvable too. Suppose that
Pn is cyclic. Then G = K oPn, a semidirect product of a normal subgroup K and
Pn. By induction K is supersolvable. Moreover all non-cyclic Sylow subgroups of
K are normal in G.

Denote by H the direct product of all non-cyclic Sylow subgroups of G.
Clearly, H is a nilpotent normal Hall subgroup of G. The Frattini subgroup
Φ(H) is normal in G and the group G/Φ(H) by 3.2 satisfies the condition of the
corollary. By induction we may assume that G/Φ(H) is a supersolvable group
provided Φ(H) 6= 1. Since the formation U of all supersolvable groups is satu-
rated, this implies that G is supersolvable. Hence we may assume that Φ(H) = 1.
By Theorem 5.1.4 in [4] we have that H is a direct product of elementary abelian
pi-subgroups for all pi ∈ π(H).

By Schur-Zassenhaus theorem on existence of complements (see [4], p. 221) we
have G = H o L where L is a Hall subgroup of G with cyclic Sylow p-subgroups
for all p ∈ π(L). Now it is enough to show that P o L is a supersolvable group
for each Sylow p-subgroup of H. But every maximal subgroup of P is normal in
G (see Remark) and the result follows.

Theorem 3.7. If a group G has a normal p-subgroup P such that G/P is su-
persolvable and every maximal subgroup of P is S-quasinormal in G, then G is
supersolvable.
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Proof. We prove the theorem by induction on |G|. Let P1 be a Sylow p-subgroup
of G.

If P = P1, then by Remark after Theorem 3.5 we have G = P1 o R where
R is a Hall p′-subgroup of G, isomorphic to G/P . It is easy to see that the
Frattini subgroup Φ(P ) is in the Frattini subgroup of G. If Φ(G) is non-trivial,
then G/Φ(G) is supersolvable by 3.2 and induction. Since the formation U of all
supersolvable groups is saturated this implies the supersolvability of G. Hence we
may assume that Φ(P ) = 1. By Theorem 5.1.4 in [4] P is an elementary abelian
group. Now the result follows from Remark after Theorem 3.5. If P = P1 is cyclic,
then G is clearly supersolvable.

Suppose that P < P1. We may assume that P is non-cyclic. Since G is solvable,
it has a Hall p′-subgroup H. By Remark after Theorem 3.5 it follows that the
subgroup K = HP = H × P. Clearly P is normal in P1. Hence Z(P1) ∩ P is
non-trivial. Let Z be a cyclic subgroup of order p in P ∩ Z(P1). Since G = P1H,
we have Z is normal in G. By induction and 3.2 we get G/Z is supersolvable.
Now we obtain the required assertion from the definition of supersolvable group.

Corollary 3.8. Let N be a normal subgroup of G such that G�N is supersolvable
and π(N) = {p1, p2, . . . , ps}. Let Pi be a Sylow pi-subgroup of N, where i =
1, 2, . . . , s. Suppose that all maximal subgroups of each Pi are S-quasinormal in
G. Then G is supersolvable.

Proof. We prove the theorem by induction on |G|. From Corollary 3.6 we have
N has an ordered Sylow tower. Hence if p1 is the largest prime in π(N), then P1

is normal in N . Clearly, P1 is normal in G. Observe that (G�P1) � (N�P1) ∼=
G�N is supersolvable. Therefore we conclude that G�P1 is supersolvable by
induction on |G|. Now it follows from Theorem 3.7 that G is supersolvable.

4. A characterization of supersolvable groups

Theorem 4.1. Let P be a Sylow p-subgroup of G where p is the smallest prime
dividing |G|. Suppose that all maximal subgroups of Ω(P ) are S-quasinormal in
G. Then G has a normal p-complement.

Proof. Let H be a maximal subgroup of Ω(P ). Our hypothesis implies that H is
S-quasinormal in G and so Op (G) ≤ NG (H) ≤ G by 3.4. Clearly, HOp (G) ≤
NG (H) ≤ G . If HOp (G) ≤ NG (H) < G, then HOp (G) has a normal p-
complement K by induction. Thus K is a normal Hall p

′
-subgroup of G and so

G has a normal p-complement.

Now we may assume that NG (H) = G, i.e. H is normal in G. If G has no normal
p-complement, then by Frobenius theorem, there exists a nontrivial p-subgroup
L of G such that NG (L) /CG (L) is not a p-group. Clearly we can assume that
L ≤ P . Let r be any prime dividing |NG (L)| with r 6= p and let R be a Sylow r-
subgroup of NG (L). Then R normalizes L and so Ω (L) R is a subgroup of NG (L).
Since H is normal in G, we have HΩ(L)R is a subgroup of G. Now Theorem 3.5
implies that (HΩ (L)) R has a normal p-complement and so also does Ω (L) R.
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Since Ω (L) R has a normal p-complement, R, and Ω (L) is normalized by R, then
Ω (L) R = Ω (L) × R and so by [5, Satz 5.12, p. 437], R centralized L. Thus for
each prime r dividing |NG (L)| with r 6= p, each Sylow r-subgroup R of NG (L)
centralized L and hence NG (L) /CG (L) is a p-group; a contradiction. Therefore
G has a normal p-complement.

As an immediate consequence of Theorem 4.1 we have:

Corollary 4.2. Put π (G) = {p1, p2, . . . , pn} where p1 > p2 > · · · > pn. Let Pi be
a Sylow pi-subgroup of G where i = 1,2,. . .,n. Suppose that all maximal subgroups
of Ω (Pi) are S-quasinormal in G. Then G possesses an ordered Sylow tower.

Lemma 4.3. Suppose that P be a normal Sylow p-subgroup of G and that Ω (P ) K
is supersolvable, where K is a Hall p

′
-subgroup of G. Then G is supersolvable.

Proof. See [3, Lemma 3.3.1].

Lemma 4.4. Suppose that P is a normal p-subgroup of G such that G�P is
supersolvable. Suppose that all maximal subgroups of Ω (P ) are S-quasinormal in
G. Then G is supersolvable.

Proof. We prove the lemma by induction on |G|. Let P1 be a Sylow p-subgroup
of G. We treat the following two cases:

Case 1. P = P1. Then by Schur-Zassenhous theorem, G possesses a Hall ṕ-
subgroup K which is a complement to P in G. The G�P ∼= K is supersolvable.
Since Ω (P ) char P and P is normal in G, it follows that Ω (P ) is normal in G.
Then Ω (P ) K is a subgroup of G. If Ω (P ) K = G, then G�Ω (P ) is supersolv-
able. Therefore G is supersolvable by Theorem 3.7. Thus we may assume that
Ω (P ) K < G. Since Ω (P ) K�Ω (P ) ∼= K is supersolvable, it follows by The-
orem 3.7 that Ω (P ) K is supersolvable. Applying Lemma 4.3, we conclude the
supersolvability of G.

Case 2. P < P1. Put π (G) = {p1, p2, . . . , pn}, where p1 > p2 > · · · > pn. Since
G�P is supersolvable, it follows by [1] that G�P possesses supersolvable sub-
groups H�P and K�P such that |G�P : H�P | = p1 and |G�P : K�P | = pn.
Since H�P and K�P are supersolvable, it follows that H and K are supersolv-
able by induction on |G|. Since |G : H| = |G�P : H�P | = p1 and |G : K| =
|G�P : K�P | = pn, it follows again by [1] that G is supersolvable.

As an immediate consequence of Corollary 4.2 and Lemma 4.3, we have:

Theorem 4.5. Put π (G) = {p1, p2, . . . , pn} where p1 > p2 > · · · > pn. Let Pi be a
Sylow pi-subgroup of G where i = 1, 2, . . . , n. Suppose that all maximal subgroups
of Ω (Pi) are S-quasinormal in G. Then G is supersolvable.

Proof. We prove the theorem by induction on |G|. By Theorem 4.1 and Lemma
4.3 we have that G possesses an ordered Sylow tower. Then P1 is normal in
G. By Schur-Zassenhaus’ theorem, G possesses a Hall ṕ-subgroup K which is a
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complement to P1 in G. Hence K is supersolvable by induction. Now it follows
from Lemma 4.4 that G is supersolvable.

Corollary 4.6. Let N be a normal subgroup of G such that G�N is supersolvable.
Put π (N) = {p1, p2, . . . , ps}, where p1 > p2 > · · · > ps. Let Pi be a Sylow pi-
subgroup of N . Suppose that all maximal subgroups of Ω (Pi) are S-quasinormal
in N . Then G is supersolvable.

Proof. We prove the corollary by induction |G|. Theorem 4.5 implies that N is
supersolvable and so P1 is normal in N , where P1 is Sylow p1-subgroup of N and
p1 is the largest prime dividing the order of N . Clearly, P1 is normal in G. Since
(G�P1) (N�P1) ∼= G�N is supersolvable, it follows that G�P1 is supersolvable
by induction on|G|. Therefore G is supersolvable by Lemma 4.4. The corollary is
proved.
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