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Abstract. We give a new short proof of the fact that the Castelnuovo-
Mumford regularity of a strongly stable ideal is the highest degree of
a minimal monomial generator. Our proof depends on results due to
D. Maclagan and G. Smith on multigraded regularity. More precisely,
we construct a Stanley filtration for strongly stable ideals which provides
a bound for the Castelnuovo-Mumford regularity.

1. Introduction

Throughout the paper, let k be a field, let

S = k[x0, . . . , xn]

be the polynomial ring, and let I ⊂ S be a monomial ideal. Recall that I is
strongly stable if for every monomial a ∈ I one has xia/xj ∈ I if a is divisible by
xj and i < j. For a graded S-module M , the Castelnuovo-Mumford regularity is
defined by

reg(M) := max{u− i : Tori(M, k)u 6= 0}.

We give a new proof of the fact that the Castelnuovo-Mumford regularity of a
strongly stable ideal is the highest degree of a minimal monomial generator. This
result was proved in [6] where a minimal free resolution of a strongly stable ideal
is given, see also [3]. Our proof depends on results due to D. Maclagan and G.
Smith on multigraded regularity ([8], [9]). More precisely, we construct a Stanley
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filtration as defined in [9] for strongly stable ideals which provides a bound for
the Castelnuovo-Mumford regularity.

Strongly stable ideals are important since generic initial ideals are strongly
stable if k has characteristic zero, provided that the variables are ordered in the
standard way (see e.g. [7] for an introduction to the theory of Hilbert functions
and generic initial ideals).

Some arguments in this article are closely related to observations in [4] and
[5], see also [2]. However, for the reader’s convenience we give complete proofs.

It should be remarked that there are different definitions of Stanley decom-
position in the literature, although the concepts are related. For an algorithmic
approach to Stanley decompositions, see e.g. [1] and [10].

Acknowledgements. The author was partially supported by The Royal Swedish
Academy of Sciences.

2. Preliminaries

In addition to the notation introduced in the introduction, we use the following
notation and definitions.

Let ≺ be the pure lexicographic order on S with

x0 � · · · � xn.

Let M denote the monomials in S and let Mu be the monomials in S of degree u.
For a ∈ M ,

mx(a) = max{i : xi|a}, minx(a) = min{i : xi|a}.

For a monomial a ∈ Mu, the set

L(a) = {b ∈ Mu : b � a}

is called a lexsegment.

Recall the following notation and definitions from [9]. For a monomial a ∈ S and
σ ⊆ {0, . . . , n}, the pair (a, σ) denotes the set of all monomials of the form axv

where supp(v) := {i : vi 6= 0} ⊆ σ.

A Stanley decomposition for S/I is a set G of pairs (a, σ) such that G constitutes
a partition of the monomials of S not in I.

A Stanley filtration is a Stanley decomposition with an ordering of the pairs
{(ai, σi) : 1 ≤ i ≤ m} such that for all 1 ≤ j ≤ m the set {(ai, σi) : 1 ≤ i ≤ j} is
a Stanley decomposition for S/(I + 〈aj+1, . . . , am〉).

For the sake of brevity, we use the following notation

(a, {≥ l}) := (a, {l, l + 1, . . . , n}).

Example 2.1. Let I = 〈x2
0, x0x1, x

3
1〉 ⊂ k[x0, x1, x2, x3]. The set of pairs below,

ordered as listed, constitutes a Stanley filtration for S/I.
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(1, ∅), (x3, ∅), (x2, ∅), (x1, ∅), (x0, ∅),
(x2

3, {3}), (x2x3, {3}), (x2
2, {2, 3}), (x1x3, {3}), (x1x2, {2, 3}),

(x2
1, {2, 3}), (x0x3, {3}), (x0x2, {2, 3}).

The Stanley filtration is constructed as follows. Let Ic denote the complement of
the ideal in S. For each monomial a ∈ Ic such that deg(a) < 2, the pair (a, ∅) ∈ G.
For each monomial a ∈ Ic such that deg(a) = 2, the pair (a, {i, i+1, . . . , 3}) ∈ G,
where i is the least integer such that i ≥ mx(a) and axi ∈ Ic. In particular,
(x2

1, {2, 3}) ∈ G since x3
1 ∈ I, x2

1x2 /∈ I.
Consider the pairs in G consisting of infinitely many monomials. The last

pair (x0x2, {2, 3}) consists of the greatest monomials with respect to ≺. The
pair (x0x3, {3}) consists of the greatest monomials with respect to ≺ not in
(x0x2, {2, 3}), and so forth.

3. Proof of the main result

Throughout the section, let I be a strongly stable ideal and let u be the highest
degree of a minimal monomial generator for I. In order to prove reg(I) = u we
need some preliminary results. The case u = 1 being trivial, we assume u ≥ 2.

Lemma 3.1. Let a ∈ Mv, where v ≥ u. Consider the unique decomposition

a = aa, mx(a) ≤ minx(a), a ∈ Mu.

Then a ∈ I if and only if a ∈ I.

Proof. Let a ∈ I. It is sufficient to show that a ∈ I. Let a = cd where

c ∈ I ∩Mu, d ∈ Mv−u.

If mx(c) > minx(d), put

c′ = cxminx(d)/xmx(c), d′ = dxmx(c)/xminx(d).

Then
cd = c′d′, c′ ∈ I ∩Mu

since I is strongly stable. Moreover,

mx(c
′) ≤ mx(c), minx(d

′) ≥ minx(d).

If mx(c
′) = mx(c), then the xmx(c)-power is less for c′ than for c.

By repeating the procedure, one eventually finds the monomials a and a as in
the lemma, and it is clear that a ∈ I. �

Lemma 3.2. Let a, a′ be two monomials of the same degree where a � a′. Then
the monomials in the set (a, {≥ mx(a)}) are all greater with respect to ≺ than the
monomials in (a′, {≥ mx(a

′)}).
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Proof. Let j be the least index such that the xj-powers for a and a′ differ. Then
mx(a

′) > j, since a and a′ have the same degree. Consider the sets

(a, {≥ mx(a)}), (a′, {≥ mx(a
′)}).

The xi-powers are the same for the monomials in these sets whenever i < j, but
the xj-power for a monomial in the former set is greater than the xj-power for
any monomial in the latter set. The result follows by definition of ≺. �

Definition 3.3. For a monomial a ∈ Ic of degree at most u − 1, the set g(a) is
defined as follows.

If deg(a) = u− 1 then g(a) = (a, {≥ i}) where i is the least integer such that
i ≥ mx(a) and axi ∈ Ic, provided that such an integer exists. If axn ∈ I (or
equivalently, axi ∈ I for all i) then g(a) = (a, ∅).

If deg(a) < u− 1 then g(a) = (a, ∅).
Let

Gu−1 = {g(a) : a ∈ M ∩ Ic, deg(a) ≤ u− 1}.

Lemma 3.4. The set Gu−1 is a Stanley decomposition for S/I.

Proof. We first show that the intersection of any set in Gu−1 and I is empty.
Using the same notation as in the definition, if g(a) = (a, ∅) clearly g(a) ∩ I = ∅.
Otherwise, let b 6= a ∈ g(a). It is sufficient to show b ∈ Ic. By definition,
b ∈ (a, {≥ i}) where i is the least integer such that i ≥ mx(a) and axi ∈ Ic. The
fact that axi ∈ Ic implies that axj ∈ Ic for all j ≥ i, since I is strongly stable.

Obviously, b ∈ (axl, {≥ l}) for some l ≥ i ≥ mx(a). It follows that

b ∈ (axl, {≥ l}) = (axl, {≥ mx(axl)}).

Consider the decomposition of b as in Lemma 3.1

b = bb, b ∈ Mu, mx(b) ≤ minx(b).

Obviously b = axl ∈ Ic. Hence b ∈ Ic by Lemma 3.1.
Next we show that any monomial in the complement of I is contained in some

set in Gu−1. Let b be a monomial such that b ∈ Ic and deg(b) ≥ u. Let b = bb
where b ∈ Mu be the decomposition of b as in Lemma 3.1. It follows that

b ∈ g(b/xmx(b)) ∈ Gu−1.

If b ∈ Ic where deg(b) < u, then g(b) ∈ Gu−1 by construction.
It remains to show that the pairs in Gu−1 are pairwise disjoint. Let b, c ∈

Mu−1 ∩ Ic where b � c. It is sufficient to show that g(b) ∩ g(c) = ∅. By definition

g(b) ⊆ (b, {≥ mx(b)}), g(c) ⊆ (c, {≥ mx(c)}).

Consequently, if b′ ∈ g(b), c′ ∈ g(c) then b′ � c′ by Lemma 3.2, so that g(b)∩ g(c)
= ∅. �

We will use the following easy observations.
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Remark 3.5. For w > u the result obtained by replacing u by w in Lemma 3.1
holds as well. For v ≥ u− 1 let Gv denote the set obtained by replacing u− 1 by
v in Definition 3.3. For v ≥ u− 1, the set Gv is a Stanley decomposition for S/I.

Remark 3.6. A monomial ideal J is strongly stable if for every minimal mono-
mial generator a ∈ J one has xia/xj ∈ J if a is divisible by xj and i < j.

Theorem 3.7. Consider the order where g(a) precedes g(b) if deg(a) < deg(b) or
if deg(a) = deg(b) and a ≺ b. The Stanley decomposition Gu−1 with this order is
a Stanley filtration for S/I.

Proof. Let a1, . . . , am be the monomials of degree at most u − 1 in Ic. Put
Gu−1 = {g(ai) | i = 1, . . . ,m}, where g(ai) precedes g(ai+1). We need to show
that {g(ai) | i = 1, . . . , j}, is a Stanley decomposition for S/(I + 〈aj+1, . . . , am〉)
for all 1 ≤ j ≤ m.

First we show that I + 〈am〉 is strongly stable. By Remark 3.6, it is sufficient
to check the condition of strong stability on minimal generators. In this case it
is sufficient to consider am since I is strongly stable. By construction, L(am) ⊆ I
and thus xram/xs ∈ I if am is divisible by xs and r < s. Hence I +〈am〉 is strongly
stable. By induction, I + 〈aj+1, . . . , am〉 is strongly stable for all 1 ≤ j ≤ m.

Obviously the monomials of degree at most u − 1 in the complement of
I + 〈aj+1, . . . , am〉 are a1, . . . , aj. By Lemma 3.4 and Remark 3.5, there exists
a Stanley decomposition

G̃u−1 = {g̃(ai) | i = 1, . . . , j}

of S/(I + 〈aj+1, . . . , am〉) as described in Lemma 3.4. It is thus sufficient to show
that g̃(a1) = g(a1), . . . , g̃(aj) = g(aj).

If deg(ai) < u− 1 for some 1 ≤ i ≤ j, then g̃(ai) = g(ai) = (ai, ∅).
If deg(ai) = u − 1 for some 1 ≤ i ≤ j, then ai+1, . . . , am ∈ Mu−1. It is easily

seen that g̃(ai) = g(ai) provided that the following condition is satisfied: If aixl ∈
I +〈aj+1, . . . , am〉 for some l ≥ mx(ai), then aixl ∈ I. Let aixl ∈ I +〈aj+1, . . . , am〉
for some l ≥ mx(ai). Since aixl ∈ (ai, {≥ mx(ai)}) and ai ≺ aj+1 it follows from
Lemma 3.2 that aixl ≺ aj+1 ≺ · · · ≺ am. Hence aixl /∈ 〈aj+1, . . . , am〉, so that
aixl ∈ I. Consequently g̃(ai) = g(ai) for all 1 ≤ i ≤ j, which completes the
proof. �

We can now give a new proof of the fact that reg(I)=u.

Corollary 3.8. (Eliahou-Kervaire) The Castelnuovo-Mumford regularity of a
strongly stable ideal I is the highest degree of a minimal monomial generator.

Proof. The Stanley decomposition Gu−1 in Theorem 3.7 consists of pairs (a, σa)
such that deg(a) ≤ u − 1. It follows from [9, Theorem 4.1] that reg(I) ≤ u.
Since I has a minimal monomial generator of degree u, one concludes that reg(I)
= u. �
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