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Abstract. We study the twistor bundle Z over De Sitter space S?.
Viewing Z as an SO(1,1)-principal bundle over the Grassmannian
G (IL*Y) of oriented space-like planes in Lorentz-Minkowski 4-space, the
orthogonal complement of the fibers of 7/ : Z — Gc(L®) defines a
4-dimensional horizontal neutral (of signature (+ + ——)) distribution
H C TZ. Two SO(3,1)-invariant almost Cauchy-Riemann structures
J* and J** on ‘H are introduced. According to which structure is con-
sidered two classes of horizontal holomorphic maps arise. These maps
are projected to S? onto space-like surfaces with different properties. We
characterize both classes of horizontal maps in terms of the geometry
of their projections to S3.
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1. Introduction

In this paper we consider the geometry of the twistor bundle Z of De Sitter 3-
space S? and study the Gauf3 or twistor lifts of conformal immersions of Riemann
surfaces in S3. In particular the goal of the paper is to show that certain well
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known examples of space-like surfaces in S? arise as projections of (almost) com-
plex curves in Z with respect to distinct SO(3, 1)-invariant CR-structures, where
SO(3,1) is the group of pseudo-isometries of S3. Since SO(3,1) is a simple Lie
group, some aspects of the twistor theory of S} have no analogue in the Rieman-
nian case. Recall that the Gau8 map for surfaces in R* splits up in two S?-valued
maps according to the decomposition SO(4) = SO(3) x SO(3). For instance in [2]
it is shown that there is no orthogonal complex structure or even a natural ana-
logue in Lorentz-Minkowski space L.* playing the role of the canonical complex
structure on R*.

The twistor space Z of S? is defined here as a fiber bundle whose fiber at p € S?
is the manifold of all oriented space-like 2-planes in 7,S}. Viewing Z as the total
space of a principal SO(1,1)-bundle over the Grasmann manifold Gy(IL*) of ori-
ented 2-planes of the Lorentz-Minkowski 4-space LL*, the orthogonal complement
to the fibres of the projection 7’ : Z — G (IL?) defines a 4-dimensional SO(3,1)-
invariant horizontal neutral (with signature (++4——)) distribution H C 7 Z which
supports two different invariant CR-structures. The first one J7, is 7'-related to
the invariant complex structure of the Grasmannian Go(L*) = SO(3,1)/S0(2) x
SO(1,1). The second one J*%, is obtained from JZ by reversing the complex
structure of the fibers of 7 : Z — S3_, a characteristic feature of twistor theory.
Twistor theory was created by Roger Penrose almost thirty years ago to solve fun-
damental problems in Mathematical Physics. In differential geometry the methods
of twistor theory contributed to the understanding and parameterization of har-
monic maps of Riemann surfaces into various Riemannian symmetric spaces. For
a detailed account of the theory in the Riemannian case we refer the reader to [1]
and [3] and the bibliography therein.

The paper is organized as follows. In Section 2 we state the main results. Sec-
tion 3 deals with the structure equations of space-like surfaces in S3. Some basic
properties of the normal Gaufl map are discussed and some partial independent
results are obtained. In Section 4 we study the geometry of the twistor bundle Z
over S} and define the horizontal distribution H C 7 Z. Finally in Sections 5 and
6 we prove the main results.

With the exception of null J%-holomorphic curves which are considered in sub-
section 5.1, the construction of explicit examples of J7Z, JZ%-holomorphic curves
and their projections to S? is not given here and will be considered elsewhere. We
refer the reader to the interesting article by A. Fukioka and J. Inoguchi [4] where
some of the surfaces considered here are constructed using ideas from the theory
of integrable systems.

Acknowledgement. The author is grateful to Professor Marcos Salvai for stim-
ulating discussions during the preparation of the paper.

2. Main results

Let Z be the twistor bundle over S3. A smooth map ¢ : M — Z from a Riemann
surface is horizontal if dp(T'M) C H, where H is the orthogonal complement of
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the fibres of 7’ : Z — G<(L?). Let J be one of the almost complex structures
defined before. We say that an horizontal map ¢ is J-holomorphic if it satisfies a
Cauchy-Riemann-type equation

Jol¢=[doT™

where JM is the complex structure on the Riemann surface M. For technical
reasons we consider only horizontal map ¢ : M — Z which are substantial i.e. ¢
is non-totally geodesic and non m-vertical. Our main result on JZ-holomorphic
maps is the following:

Theorem A. Let ¢ : M — Z be a horizontal, J*-holomorphic and substantial
map. Then its projection f =mwo¢: M — S is a (weakly) conformal space-like
totally umbilic map with constant non-zero mean curvature. Moreover, the twistor
lift of f coincides with ¢ i.e. f = ¢.

Conversely, let f: M — S3 be a conformal totally umbilic immersion with non-
zero constant mean curvature H, then

i) dts twistor lift f: M — Z is horizontal, conformal, J*-holomorphic and
substantial. Moreover f is space-like iif H? < 1, time-like iif H*> > 1 and
null iif H? = 1.

ii) the Gauff map v : M — Ga(L*) is conformal and holomorphic (hence
harmonic), and is space-like iif H* < 1, time-like iif H?> > 1 and null iif
H?=1.

Theorem A essentially says that every space-like totally umbilic map surface with
constant non-zero mean curvature f : M — S? can be obtained as the projection of
a J*-holomorphic substantial curve in Z. In particular flat totally umbilic space-
like surfaces in S? are obtained by projection of substantial null JZ-holomorphic
curves in Z, a fact with no analogue in the Riemannian case.

The nature of J%*%-holomorphic curves is quite different. In fact the next result
shows that 7 : (Z, %) — SZ, is a twistor fibration in the sense of [1] and [3]).

Theorem B. Let ¢ : M — Z be a horizontal, J**-holomorphic substantial
map. Then its projection f = wo¢: M — S} is a (weakly) conformal space-like
harmonic map with isolated umbilic points and satisfies f: 0.

Conversely, let f : M — S} be a conformal ;\space—like harmonic immersion

with isolated umbilic points, then its twistor lift f : M — Z is horizontal, J**-
holomorphic and substantial. Moreover, the Gauf map v; : M — Go(L*) is
harmonic and non-holomorphic.

3. Conformally immersed surfaces in S?

Let L* denote the 4-dimensional Lorentz-Minkowski space that is, the real vector
space R* equipped with the Lorentz metric

(,) =dz}+ dxs + da3 — dx;
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where (z1, 9,73, 74) are the canonical coordinates of R*. With respect to the
canonical basis {e;} of L* the matrix of (, ) is [3; = diag(1,1,1,—1) and the
group of all Lorenz isometries of IL* is O(3,1). With respect to the standard basis
it follows that SO(3,1) = {A € GL(4,R) : A'I;1A = I34, asq > 0}.

The 3-dimensional unitary De Sitter space is defined as the hyperquadric
St ={z el (z,r)=1}

Then S? inherits from L* a Lorentzian metric denoted also by (, ) which has
constant sectional curvature one. The Lie group SO(3,1) acts transitively on S?
and fixing for convenience the base point ¢; € S? we see that S? is diffeomorphic to
the symmetric quotient SO(3,1)/S0(2,1), where the isotropy subgroup SO(2,1)
of e; is imbedded in SO(3, 1) according to

10
50(2,1)9AH<0 A)

We fix a time orientation on L* by declaring a time-like vector X € L* to be
positively oriented or future-pointing if (X, e;) < 0. This time orientation induces
a time orientation on S? as follows: a time-like tangent vector X,, € T,,S? is future-
pointing if (X7, es) < 0 where X is the parallel translated of X, to the origin of
IL%. Tt is easily seen that the Lie group SO(3,1) preserves the time orientation of
L* and S3.

A smooth immersion f : M — S? of a Riemann surface is conformal if df is
isotropic: (0f,0f)C = 0, for every local complex coordinate z = x + iy on M,
1

where 9 = 1(2 — ia%) and (, )® denotes the complex bilinear extension of ()

to TCS3. Equivalently f is conformal if and only if for every local coordinate
z=x+1y
(far i) = 0. N fall* = (11117 (1)

An immersion f: M — S? is said to be space-like if f*(, ) is positive definite. A
consequence of (1) is that every conformal immersion f : M — S? is a space-like
map.

The time orientation of S? allows to choose a time-like unit field n along f globally
defined on M such that n is tangent to S} along f, and n(p)Ldf,(T,M) for every
p € M. Thus we may assume that the immersed space-like surface M is oriented
by n. Fix on M the induced Riemannian metric g = f*(, ) which is conformal
and let u be a conformal parameter defined by g = 2¢*“(dx? + dy?) or equivalently
(0f,0f)C = €. Being f conformal it satisfies the following equations

2(00f,0f)¢ = 0(0f,0f)¢ =0
2(00f,0f)¢ = 0(0f,0f)¢ = 0.

Thus 00 is normal to the immersed surface since it has no tangential component.
On the other hand the second fundamental form of the conformal immersion is
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given by Il = —(df,dn) so that the mean curvature of f is given by H :=
—e72(90f,n). The first structural equation reads

00f = —e*f + e*“H.n. (2)

If H = 0 then the conformal immersion f is harmonic (hence minimal) if and only
if

90f = —(0f,0f)°f (3)
Introducing the complex function & := —(9%f, n)*, we obtain the second structural
equation

0?f =20u.0f +&.n, (4)

from which we see that the complex Hopf quadratic differential Q = (92 f, 9 f)“dz?
of f is given by Q = —£2dz%. Note that away from the umbilic points the unit
normal vector is recovered from (4)

n— %.(25’%8 f—o2f) (5)

From (2) and (4) above we obtain the third structural equation
on=HOf +e *0f. (6)

The compatibility conditions of the above structure equations are given by the
GauB-Codazzi equations:

GauB:  200u = (H? — 1)e* — [¢]?e™, 7)
Codazzi: 0¢ = e*0H, 0¢ = e*0H

In particular H is constant if and only if ¢ is a holomorphic function.

A Lax-pair for the equations of GauB-Codazzi arise from a local adapted frame
of a conformal immersion f. Solet F': U — SO(3,1) be a local frame defined on
an open subset U C M and set F; = Fl.e;. Then F' is adapted if for every p € U

f(p) = F(p).er, span{F(p).es, F(p).es} = df,(TM), F(p).e4 =n(p),

A straightforward calculation using equations (2), (4) and (6) shows that the
evolution of the frame F' is given by

af - % <F2 - iFg),

0F, = iOuFy + (S5t

v - 72

. U . e UE el 8
8F3 = 27§.f—i—28uF’2 —i—z(%)n ( )

On = (S8 By (=4 By
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Compactly written these equations yield the system
OF =FA, OF=FDB 9)

in which the complex matrices A and B are given by

% 0 i0u = f;%e H
A= i 0 i( ety (10)
\/5 “ug et H e UE—e" H \/5
O e \/ie 7/(6 \/56 ) O
0o -< —i% 0
0 gy e
2 7ug+ u iy —u¢E_ u iy \/§
0 [ \/56 _Z(e \/56 ) 0

The integrability condition of the system (9) is given by
0A— 0B = [A, B],
and is equivalent to GauB-Codazzi’s equations (7).

Let H? be the upper hyperboloid formed by all z € L* such that ||z]|* = —1 and
x4 > 0. The translated to the origin of I.* of the time-like normal unit vector field
n along f defines the normal Gaufi map n: M — H3. Using (6) we see that

|On||?> = H?e*" + [£]*e™2, (On, 8n>(c = HE¢.

Hence n is conformal when H = 0 or £ = 0. Assuming that H is constant then
¢ is holomorphic by Codazzi’s equation. Using the structure equations of f we
obtain the following partial differential equation for n which was considered in [6]:

oon = (e H* + e 2"|¢)m — ™ H. f (12)

If H = 0 and the umbilic points of f are isolated, we see that n is conformal and
satisfies the PDE )
Oon = [£]Pe*.n (13)

Now from formula (6) we obtain (In, dn) = e~4*|£|2(0f, 0f) = e~2*|¢|?. Thus (13)
becomes

d0n = (On, On).n
which is just the harmonic map equation for n. Hence we obtain
Proposition 3.1. Let f: M — S} be a minimal space-like (conformal harmonic)

immersion. Then its normal Gauf map n : M — H3 is a minimal branched
immersion whose branched points are the umbilic points of f.
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Remark 3.1. Note that the metric on M induced by n is given by g = 2e~2*|¢|?
(dr? + dy?). Hence g is a branched metric whose singularities coincide with the
zeros of the Hopf differential of f.

Since there are no non-constant harmonic maps from a compact manifold M into
real hyperbolic spaces we obtain

Corollary 3.2. Let f: M — S} be a minimal space-like immersion of a compact
connected Riemann surface M. Then f(M) coincides with the space-like totally
geodesic 2-sphere S? N n*t.

Proof. By hypothesis f is a conformal harmonic immersion, hence the normal
GauB map n : M — H? is harmonic. Since M is compact, n must be constant
and so f(M) =S} Nnt (in particular f is totaly umbilic). O

On the other hand if H # 0 and f is totally umbilical then the normal Gaufl map
n is conformal and the immersed surface n : M — H? is totally umbilic since
by (2), (4) and (6), (0*n, f) = 0. Also it is easy to see that the mean curvature

of n is given by H' = —ﬁg}:ﬁ. Then using ||0n||? = H%e** and (12), we see that

o (00m, f) _ He?v 1
o H2e2u - H2€2u_ H’

hence the immersed surface n has constant mean curvature —%. We have then
proved

Corollary 3.3. Let f: M — S} be a conformal totally umbilic immersion with
constant curvature H # 0. Then the normal Gauff map n : M — H3 is a
conformal totally umbilic tmmersion with constant mean curvature —%.

4. The twistor bundle of S?

Let TS? = {(v,w) € S}xL*: (v,w) = 0} be the tangent bundle of S? and consider
the submanifold Z C 7SZ2, formed by those (v, w) such that |w||?> = —1, and w is
future pointing. Hence Z is nothing but the —I1-unitary sphere bundle of S, i.e.
the fiber of Z at a point v € S} is the set of vectors in T,S} having square norm
—1. Thus Z is isomorphic to the following Stiefel manifold

{(v,w) € S§ x HS : (v,w) =0} C L* x L*, (14)

where H? is the real 3-hyperbolic space with curvature —1 consisting of vectors
r € L* satisfying (z,xz) = —1 and x4 > 0. Define the projection 7 : Z — S2_ by
7(v,w) = v, then the fibre 77! (v) over the point v € S} equals {v} x (vt NH3)
which is a copy of the real 2-dimensional hyperbolic space H? immersed into H?.
Thus each fiber of 7 is naturally a complex manifold.

Given (v,w) € Z the orthogonal complement V = [v A w]* of w in T,S? is an
oriented space-like 2-plane thus a point in the Grassmann manifold of oriented
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space-like 2-planes of T, S3. Therefore Z may be viewed as the Gaufl bundle over
S? and so it is isomorphic to the associated bundle

SO(S}) xs0(2,1) HZ, (15)

where SO(S?) = SO(3, 1) is the principal SO(3, 1)-bundle of oriented orthonormal
frames of S3.

Let G5 (IL*) be the Grassmann manifold of oriented space-like 2-planes in LY. A
projection map 7' : Z — GX(IL?) is defined by assigning to a point (v,w) € Z
the translated to the origin of I* of the space-like 2-plane V := w' N T,S? =
[v Aw]t C L%

7 (v, w) = [v A w]*. (16)
To determine the fibre of 7’ over V' € G (LL*), note that V* is an oriented 2-plane
of signature (+, —). Fix an oriented basis {v,w} of V* such that ||v||* = —||w|* =

1, (v,w) = 0. Then
T V) = {(B(8), F(#) : t € R},
where (3(t) = cosh(t)v + sinh(t)w. Hence the fibres of 7’ are diffeomorphic to R.

Another natural projection is 7" : Z — HZ defined by 7" (v, w) = w. It is easily
seen that if f: M — S? is a space-like surface oriented by n, then 7”7 o f = n is
the so-called normal Gaul map of f.

On the other hand the usual Gaul map 7 of a conformal immersion f : M — S3
is defined by R
vp = o f i M — Go(LLY). (17)

In a local coordinate z = z + 4y it is given by v = [f An]t = [f. A f,]. If
f: M — S} is harmonic, then f viewed as a conformal immersion into L*, has
parallel mean curvature vector —f and consequently 7 is a harmonic map as a
consequence of Theorem 2.1 in [2]. We shall see in Section 6 that there is another
class of space-like surfaces in S? with harmonic Gaufl maps.

There is a right action of SO(1,1) on the total space Z given by
cosh(t) sinh(¢)) : .
(v, w). (Sinh(t) cosh(t) ) = (cosh(t)v + sinh(¢)w, sinh(t)v + cosh(t)w), (18)

This allows one to think of Z as an SO(1, 1)-principal bundle over G5 (L*). Note
that the fibre of 7’ through (v, w) € Z coincides with the orbit {(v, w). exp(tX) :

1’?6 R}? Wh(}I‘(
X| — 6 50(17 1).
]. O

Let us now consider a left action of SO(3,1) on Z given by

g.(v,w) = (g.v, g.w).
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It not difficult to see that this action is transitive so that fixing for convenience
the point o0 := (e, e4) € Z we obtain the homogeneous quotient representation

SO(3, )
z_S2\ D7)
}C b
where
1 0 0
K={|l0 A 0],Ae€S0(2)}. (19)
0 0 1

is the isotropy subgroup of the element o. The Lie algebra of SO(3, 1) decomposes
into s0(3,1) = €@ p, where

00 0 0

00 —a 0
t={lp o o o *€Rb

00 0 0

is the Lie algebra of K ~ SO(2), and an Ad(K)-invariant complement p is the set
of matrices of the form

0 =z y c
A: :z 8 8 /Ii 7x7y7c7ZJwER'
c z w O
The expression
1
(A,B) = —3 Trace(A.B), A,B € p, (20)
defines an Ad(K)-invariant inner product on p of signature (+ + — — —). Note

that the square norm of an element A € p is given by [|A[]? = 22 +y*—* — 22 —w?.

This determines an SO(3, 1)-invariant pseudo-metric on Z, the so-called normal
metric.
We define the horizontal distribution H C 7 Z as the complementary subbun-
dle of the fibres of 7'
Mo = K1V [ricg)lt (21)

It is not difficult to see that the distribution H defines a connection on the principal
bundle SO(1,1) — Z — G (L*). At the point 0 = (ey, e4), H, consists of matrices
of the form

0 =z y O
-z 0 0 =z
500 wl| x,y,z,w € R. (22)
0 2z w O

Thus H, is Ad(K)-invariant and so H is an SO(3, 1)-invariant distribution. There-
fore

Hyx = A[(DH,, V} € SO(3, ).
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In particular the induced metric on H is neutral i.e. has signature (+ + ——).
For any (v,w) € Z it is not difficult to see that Kerdm(,.) and Kerdm,,,,
are orthogonal subspaces thus Ker dm(, ) C H(c g). So we can decompose

1
Hio) =KV [reco @ Lo,

where L, ., coincides with the horizontal lift via drm of the orthogonal complement
of win T, S?. Note that the metric (20) restricted to H has signature (++) on L
and (——) on Kerdr.

The complex structure «7&,;) on L, is obtained by lifting via dm the complex
structure on the orthogonal complement of w in T,S?, which is just the positively
oriented rotation of angle Z on the space-like plane [v A w]*. On the other hand
since the fibers of 7 are hyperbolic 2-spaces there is another complex structure
JY on Ker dm(yw). Both complex structures together yield two different almost

(vw)
complex structures J7%, 7** on H given by
7T — JE, onL 7T _ JE, onlL
1 JY, onKerdn 1 =JY, onKerdr

At the point 0 = (e, 4) it is possible to write down explicitly both almost complex
structures. In fact since

0 =z y O 000 0
—x 0 0 0 00 0 =z

Lo_{ _y O O 0 }7 Kerdﬂo_{ 0 O O w }7
0O 0 0O 0 2z w O

the complex structure on L, is obtained lifting via dr|, the oriented rotation on
[e1 A eyt C T.,S? given by ey +— e3, e3 — —es. On the other hand the complex
structure on T, (7 (1)) = T,,50(2,1)/SO(2) is given by

0 0 =z 0 0 —w
0 0 w| 0 0 =z
z w 0 —w z 0

By putting both structures together we get

0 =z y O 0 —y x O
z7l—2 0 0 z| | vy 0 0 —w
Ji -y 0 0 w|] |-z 0 0 =z |’ (23)
0 2z w O 0 —w 2z 0

which shows that J7Z is Ad(K)-invariant and orthogonal with respect to the
normal metric defined by (20). Moreover it is not difficult to see that J7 =
A[(Poo)|n,, where

0

-1 cK. (24)

o O O
O = O O
o O

— o O O
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Consequently J7 is an SO(3,1)-invariant almost complex structure on H. It is
clearly seen that dr’ projects J% onto the SO(3, 1)-invariant complex structure
J on G5 (L*) determined by the Ad-action of P; on TpGo(IL*) through formula

Jo = AT(Pa) (25)

where the base point O € G(IL*) is the subspace Rey@®Res and HY, is the subspace
of matrices of s0(3,1) of the form (22) which identifies with ToGo(IL?). Note that
the isotropy subsgroup of the point O is isomorphic to SO(2) x SO(1,1).

It is possible to show that (JZ,H) is an integrable CR-structure on Z by
adapting ideas from [5]. However we shall not give here the details.

The second almost complex structure is obtained by reversing the complex
structure on the fibers. At o € Z we have

0 =z y O 0 —y = O
|- 0 0 2z |v 0 0 w

Ji -y 0 0 w| |-z 0 0 —z|° (26)
0 2z w O 0O w —z 0

Thus like in the case of J we observe that J** is SO(3,1)-invariant too. By
inspection we see that J** = A[(Pe)|x,, where

0 0
-1 0

o O O
O = O O
o O

—1

Hence the almost complex structure JZ% on H is not related to the complex
structure of the Grasmannian G(IL*). The question of the integrability of the CR
structure (H, J*%) will be considered in a future paper. However we shall see in
the proof of Theorem B that 7 : (2, %) — S2_ is a twistor fibration in the sense
of [1] and [3].

5. Proof of Theorem A

Let ¢ : M — Z be a smooth horizontal map of a Riemann surface M i.e.
d¢(TM) C H and let J € {J*,J*}. We say that ¢ is J-holomorphic if it
satisfies the Cauchy-Riemann-type equation

Jofo=T[doT™,

where JM is the complex structure on the Riemann surface M.

In this section we study the class of JZ-holomorphic maps. Define the holomorphic
horizontal distribution determined by J7 by

HEN = (X e HE: JPX = )X},
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It is easily seen that ¢ : M — Z is J*-holomorphic if and only if d¢(T M) C
HN . Also H" is SO(3,1)-invariant since J7 is SO(3, 1)-invariant. From (23)
it follows that HZ(OO’/) consists of matrices of the form

0 a —ia 0
—a 0 0 b
ia 0 0 —ip| »b€C
0 b —ib 0

hence

HEY = A[(F)H,

for every F € SO(3,1). Moreover H(>®") is an isotropic subbundle of TCZ as
is clear from the invariance of H(>") and the fact that (X,X) = 0 for every
X e H>,

Now recall the reductive decomposition so(3,1) = € @ p considered before.
Then since p is Ad(K)-invariant, we have an SO(3, 1)-invariant vector bundle

[p] = SO(3,1) Xk p C Z x s0(3,00),

whose fiber at Fl.o € Z is [p|p, = {F.0} x Ad(F)(p), for any F' € SO(3,1).

Since Z is naturally reductive there is a bundle isomorphism 7'Z LA [p] which
is the inverse of the application s0(3,1) — T, Z defined by X +— £|,_ exp(tX)..
Thus  may be viewed as a one form on Z with values in s0(3,1). Given a map
¢ M — Z, there is a useful formula to compute the differential of ¢ in terms of
( and the Maurer-Cartan form of SO(3,1), namely

¢*B = Ad(F)ay, (28)

where ¢ = Flo, i.e. F is a frame of ¢, and a, = [F~'dF], is the p-component of
the pull-back of the Maurer-Cartan one form of SO(3,1) by the frame F'. More
details on this construction are provided in [1].

Let ¢ : M — Z be an horizontal map. By the preceding discussion ¢ is
J*-holomorphic if and only if

* a o0,
(0°8)(5;) € M,
for every frame F of ¢ and every local complex coordinate z. Hence ¢ is J?Z-

holomorphic if and only if for every frame F' of ¢ and every complex coordinate
z there there are smooth complex functions a, b, c: U — C such that

0 a —ta O
J, |-a 0 —c b B 0 0
a(@)—F OF = i e 0 —ib —Oé{g(&)—i-ap(@)’ (29)
0 b —ib O
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whence
0 a —ta O
0 0 — b
(69 (-) = Ad(Pay(5)] = Ad(F) | 70 0 0 Ol 60)
0 b —ib

It is useful to assume that ¢ is substantial which means that the complex functions
a,b have isolated zeros. Since H(*®") is isotropic we see from the above equation
that ¢ is conformal. Using 3 we have (qb*ﬁ)(%) = dqﬁ(%) = 0¢, and so by (30)

we have 5
||d¢>($)||2 = 2(Jaf* — [b]). (31)

On the other hand from (29) we obtain the O-derivative of the columns of the
frame F:

1) 6F1 = —CL(FQ - ZFg)

11) 8F2:aF1+cF3—|—bF4

111) 8F3 = —?:CLFl — CF2 — ZbF4

iV) 8F4 == bF2 — ’Lng

Since F' a frame of ¢ we have ¢ = (F}, Fy) and that F' is also a frame of the
projection f = Fy = mo¢: U — S}, in particular n = F is H3 -valued and ]?: o.
We can read off the structure equations of f = F; from equations i),ii), iii) and
iv) above. From the first one we see that df is isotropic: (9f,0f)¢ = 0, and
10f]1? = 2|al?* > 0, thus f is a conformal space-like immersion. There is no loss
of generality in assuming that a is real and negative (otherwise one can perform
a gauge transformation on F' consisting on a rotation on the plane generated by
F,, F3). Also we compute

O*f = (—a)(Fy — iFy) — a(0F, — i0Fy) = —0a(Fy — iF3) — a(cFs + icFy),

hence (9°f, F4,)© = 0, which shows that the Hopf differential vanishes, thus f
is totally umbilic. Since f conformal 0d0f has no tangential component and is
normal to f(M). Hence from 1), ii), iii) it follows that

Oda = iac,

00f = —2|a|*f — 2abFy.

From the second equation above we obtain that the mean curvature of f is given
by H = —55(00f, F;)® = 2. Hence H must be a constant as a consequence of
Codazzi equation for f, and so b = Ha. In particular ¢ and b have the same zeros.
Thus f = F} : M — S? is a (weakly) conformal totally umbilic map with constant

non-zero mean curvature H = g.

Conversely, let f : M — S} be a given conformal totally umbilic immersion
then by Codazzi’s equation the mean curvature H of f is constant. Introduce a
conformal parameter u by (0f,0f) = €?* and let n be a tangent vector field on
S? such that ||n||> = —1 and which is normal to df (T'M) along f. The structure
equations of f are given by (2), (4) and (6) in which & = 0. Taking the frame
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F = (f, Iy, F3,n) of f we may assume that F' € SO(3,1) (changing n — —n
if necessary) and 9f = \%(FZ —iF3). Let A = F7'0F and B = F~'OF then
from (10) we see that the matrix A decomposes into A = Ay + A, € €€ @ HZ(OO’/).
Then (fA*ﬁ)(%) = Ad(F)(A;) and so f is J%-holomorphic. Note that respect to
the normal metric ||f]|2 = ¢2*(1 — H2). Thus [ is space-like iif H2 < 1, time-like
iif H? > 1 and null iif H = 41.

On the other hand the differential of the projection map 7’ : Z — Ge(IL?) re-
stricted to the distribution H satisfies

dT['/OjZ: jO ’(7]',’

where 7 is the SO(3, 1)-invariant complex structure of G5(IL*) defined by (25). In

particular the Gaufl map vy = 7’0 f: M — G5(IL*) is conformal and holomorphic
(hence harmonic) since

Toly=Jo[ro[{=[rod%o[{=[ro[{oI™=[yoIM

Also using that f is horizontal and satisfies [|0f]|> = e2(1 — H?), it is easy to
conclude that [|07¢|*> = e**(1 — H?). Hence 7y is space-like iif H* < 1, time-like
iif H2 > 1 and null iif H = +1.

5.1. Flat surfaces

The Gaufl equation (7) of a conformal totally umbilic immersion f : M — S3
reduces to the Liouville-type equation

200u = (H* — 1)e*". (32)

Since the GauBian curvature of the induced metric g = f*(, ) is given by K =
—2e290u, the GauB equation becomes K = 1 — H?. Thus K is constant if
and only if H is constant. Non-trivial examples of totally umbilic flat space-like
surfaces in S? with constant mean curvature +1 may be constructed from a non-
constant harmonic function v :  C R? — R by projecting the substantial null

J*-holomorphic curve
o2 =exp( [ A+ [ Blo

to S? where A, B are given by

oo D v oy !
Lm0 e mE | g 00 —idu SH
N —’j—% —i0u 0 —ij—;H ’ N % iou 0 %H ’

0 \e/—EH —%H 0 0 \6/—§H %H 0
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with H? = 1. Then the simplest examples of flat totally umbilic space-like surfaces
in S occur by taking u = const. The immersion in this case is obtained by
projecting the null curve

&(z,2) = exp(zA + zZB).o,

where the (constant) matrices A, B are given by (33) in which du = du = 0.

6. Proof of Theorem B

The setup for J%Z-holomorphic maps ¢ : M — Z is analogous to that of JZ%-
holomorphic maps. The holomorphic subbundle H(>*") c HC determined by J**
consists of those X € HC such that JHZX = )X, which is fixed throughout this

section. From (26) we see that HZ(OO") consists of complex matrices of the form

0 a —a O

—a 0 0 b

ia 0 0 | ®PEC
0O b b 0

Thus an horizontal map ¢ : M — Z is J*%-holomorphic if and only if for every
frame I of ¢ and every local complex coordinate z there exist complex functions
a,b,c: M — C with such that

0 a —ta O
O, . iapm_ |—-a 0 —c b| 0 0
O‘(@>_F oF = ia ¢ 0 b —%(@)Jr%(a)a (34)
0O b b 0
and consequently
0 a —a O
e O . —a 0 0 b
(@ O)50) = AdF) (o)) = Ad(F) | 000
0O b b 0

We assume that the complex functions a and b have isolated zeros i.e. that
¢ is substantial. Since H(>") is isotropic ¢ is conformal and satisfies ||0¢|? =
2(|a]* — |b]?). Using (34) we extract the d-derivative of the columns of the frame
F:

i’ 8F1 = —CL(FQ - ZF3)

lll) 8F2:aF1+cF3+bF4

111/) 8F5 = —’iCLFl — CF2 + ZbF4

iv') OF,; = bFy + ibF3,

from which we read off the structure equations of f = Fj. The first equation
implies that f is a (weakly)conformal space-like map since Jf is isotropic and
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|0f]I* = 2|al* > 0. Like in the proof of Theorem A we can arrange that a be real
and negative. Also from i’), ii’) and iii’) we compute

O*f = (—0a)(Fy — iFy) — a(0F, — i0F3) = —0a(Fy — iF3) — a(cF3 + 2bF, +ickFy),

thus § = (9°f, F4)© = 2ab defines the Hopf differential of f: @ = £*dz*. On the
other hand since f is conformal 00f must be normal to the immersed surface.

Thus
da = tac

00f = —2a’f.

The second equation implies that f has zero mean curvature so that f: M — S}
results harmonic. Thus f is a (branched) minimal space-like surface in S} with
isolated umbilic points.

On the other hand let f : M — S} be a conformal minimal immersion with
isolated umbilic points. Define a conformal parameter u by (9f,df) = e** and
let n be a tangent vector field on S? which is normal to df (T'M) along f and
satisfies |n||? = —1. Let F' = (f, F, F3,n) be an adapted frame of f such that
of = f/—ui(FQ — iF3). One may choose n so that F' € SO(3,1). Note that F' is

also a frame of ]? Consider the evolution matrices A = F~'0F and B = F~10F.
Then A and B have the form (10) (11) with H = 0. Hence we see in particular
that A decomposes into A = Ay + A;, with 4, € €€ and A; € HZ(OO") so that
(f*ﬁ)(%) = Ad(F)(A;), which shows that f is JZ%-holomorphic. Note here
that even when ]? is conformal its O-derivative is not necessarily definite since

[0} = e — =i

The GauB map 7 : M — G5(LL*) results harmonic as consequence of Theorem
2.1 in [2], since f viewed as an immersion in L* has parallel second fundamental
form. However in this case it is clear that 7, is not holomorphic.
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