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1. Introduction

Let V be an n-dimensional vector space over a division ring. We write Gk(V ) for
the Grassmannian consisting of all k-dimensional subspaces of V . Two elements
of Gk(V ) are called adjacent if their intersection is (k − 1)-dimensional (this is
equivalent to the fact that the sum of the subspaces is (k + 1)-dimensional). It is
trivial that any two distinct elements of Gk(V ) are adjacent if k = 1, n − 1. The
Grassmann graph Γk(V ) is the graph whose vertex set is Gk(V ) and whose edges
are pairs of adjacent k-dimensional subspaces. By duality, the graphs Γk(V )
and Γn−k(V

∗) are canonically isomorphic (V ∗ is the dual vector space). The
Grassmann graph is connected and the distance d(S, U) between S, U ∈ Gk(V ) is
defined as the minimal number i such that there is an i-path (path of length i)
connecting S and U . We have the following distance formula:

d(S, U) = dim(S + U)− k = k − dim(S ∩ U);

in particular, the diameter of the graph Γk(V ) is equal to k if 2k ≤ n, and n− k
otherwise.
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Now let V ′ be an n′-dimensional vector space over a division ring and

1 < k < min{n, n′} − 1.

Let also f : Gk(V ) → Gk(V
′) be adjacency preserving mapping (two elements of

Gk(V ) are adjacent if and only if their f -images are adjacent). If f is surjective
then it is an isomorphism of Γk(V ) to Γk(V

′) and Chow’s theorem [2] (see also
[3, 13]) guarantees that f is induced by a semilinear isomorphism of V to V ′ or
V ′∗ (the second possibility can be realized only in the case when n = 2k); some
results closely related with Chow’s theorem can be found in [1, 9, 7, 8, 11, 12]. In
the general case, f induces a mapping

fk−1 : Gk−1(V ) → Gi(V
′), i = k ± 1

(Section 3); thus there are precisely two types of adjacency preserving mappings
(associated with mappings of Gk−1(V ) to Gk−1(V

′) or Gk+1(V
′), respectively). If

f is not surjective then fk−1 need not to be adjacency preserving. However, if f
is distance preserving (a non-surjective adjacency preserving mapping of Gk(V )
to Gk(V

′) need not to be distance preserving, in general) then the same holds
for fk−1; this is related with the fact that every minimal path of Γk(V ) induces
minimal paths in Γk−1(V ) and Γk+1(V ) (Section 4). Using this observation we
determine distance preserving mappings of each of two types given above in the
case when 2k ≤ min{n, n′} (Sections 5 and 6).

2. Semilinear embeddings

Throughout the paper we suppose that V and V ′ are left vector spaces over
division rings R and R′, respectively. An additive mapping l : V → V ′ is called
semilinear if there exists a homomorphism σ : R → R′ such that

l(ax) = σ(a)l(x)

for all x ∈ V and all a ∈ R. If l is non-zero then there is only one homomorphism
satisfying this condition. Note also that non-zero homomorphisms of division rings
are injective.

Let k ≤ min{n, n′}. A semilinear injection l : V → V ′ is said to be a k-
embedding if it sends any k linearly independent vectors to linearly independent
vectors. This condition implies that for any subspace S ⊂ V whose dimension is
not greater than k we have

dim〈l(S)〉 = dim S

(we write 〈X〉 for the subspace spanned by a set X). We get a mapping of Gk(V )
to Gk(V

′) which transfers S ∈ Gk(V ) to the subspace spanned by l(S), in what
follows this mapping will be denoted by (l)k. In general, the mapping (l)k need
not to be injective.
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Proposition 2.1. If l : V → V ′ is a semilinear (k +1)-embedding then (l)k is an
injection sending adjacent subspaces to adjacent subspaces.

Proof. If there exist two distinct subspaces S, U ∈ Gk(V ) such that 〈l(S)〉 and
〈l(U)〉 are coincident then the l-image of the (k+1)-dimensional subspace spanned
by S and a vector x ∈ U \ S is contained in the k-dimensional subspace

〈l(S + U)〉 = 〈l(S)〉 = 〈l(U)〉

which contradicts the fact that l is a (k + 1)-embedding. Thus (l)k is injective.
Similarly, we show that it maps adjacent subspaces to adjacent subspaces.

It must be pointed out that the mapping from Proposition 2.1 need not to be
distance preserving.

Proposition 2.2. If 2k ≤ min{n, n′} and l : V → V ′ is a semilinear (2k)-
embedding then (l)k is distance preserving.

Proof. Let S and U be k-dimensional subspaces of V . The dimension of S + U is
not greater than 2k. Since l is a (2k)-embedding,

dim(S + U) = dim〈l(S) + l(U)〉

and the distance formula (cf. Introduction) shows that the distance between S
and U is equal to the distance between 〈l(S)〉 and 〈l(U)〉.

Examples of semilinear k-embeddings which are not (k + 1)-embeddings can be
found in [10].

3. Two types of adjacency preserving mappings

First we give some trivial facts concerning cliques of Grassmann graphs. Let S
be a subspace of V . We write [S]k for the set of all k-dimensional subspaces of
V incident with S. This set is called a star or a top if 1 < k < n − 1 and the
dimension of S is equal to k − 1 or k + 1, respectively.

Proposition 3.1. [2] In the case when 1 < k < n−1, stars and tops are maximal
cliques of the graph Γk(V ), and every maximal clique of Γk(V ) is a star or a top.
Moreover, each clique is contained in a maximal clique.

The canonical isomorphism of Γk(V ) to Γn−k(V
∗) maps stars to tops and tops to

stars.

Proposition 3.2. Let
1 < k < min{n, n′} − 1.

If a mapping f : Gk(V ) → Gk(V
′) is adjacency preserving then one of the following

possibilities is realized:

(A) stars go to subsets of stars and tops go to subsets of tops,
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(B) stars go to subsets of tops and tops go to subsets of stars.

Moreover, every maximal clique of Γk(V
′) contains at most one of the f -images

of maximal cliques of Γk(V ) and the f -image of every maximal clique of Γk(V ) is
contained in precisely one maximal clique of Γk(V

′).

To prove Proposition 3.2 we use the following trivial observation.

Lemma 3.1. If 1 < k < n− 1 then the following assertions are satisfied:

(1) The intersection of two maximal cliques of Γk(V ) contains more than one
element if and only if these cliques are of different types (one of them is
a star and the other is a top) and the associated (k + 1)-dimensional and
(k − 1)-dimensional subspaces are incident.

(2) The intersection of two distinct maximal cliques of the same type is empty
or one-element, and the second possibility is realized only in the case when
the associated (k ± 1)-dimensional subspaces are adjacent.

Proof of Proposition 3.2. It is clear that f transfers cliques to cliques. First we
show that every maximal clique of Γk(V

′) contains at most one of the f -images
of maximal cliques of Γk(V ).

Suppose that X and Y are distinct maximal cliques of Γk(V ) whose f -images
are contained in a certain maximal clique of Γk(V

′). Since f is adjacency preserv-
ing and its restriction to every clique is injective, an element S ∈ X is adjacent
with all U ∈ Y which satisfy f(S) 6= f(U) and there is at most one U ∈ Y satisfy-
ing f(S) = f(U). In other words, every element of X is adjacent with all elements
of Y or with all except one. An easy verification shows that this is impossible for
subspaces belonging to X \ Y .

Now we establish that the f -image of every maximal clique of Γk(V ) is contained
only in one maximal clique of Γk(V

′).
Suppose that X ⊂ Gk(V ) is a maximal clique whose f -image is contained in

two distinct maximal cliques X ′ and Y ′ of Γk(V
′). By Lemma 3.1, one of these

cliques is a star and the other is a top. We choose a maximal clique Y ⊂ Gk(V )
such that Y 6= X and the intersection X ∩ Y has more than one element. Since
the restriction of f to every clique of Γk(V ) is injective, f(Y) intersects X ′ and Y ′

by subsets containing more than one element. Lemma 3.1 shows that a maximal
clique containing f(Y) coincides with X ′ or Y ′. Thus one of these cliques contains
the f -images of two distinct maximal cliques which is impossible.

Finally, we prove that one of the given above cases is realized.

Let S be a (k − 1)-dimensional subspace of V such that the f -image of the star
[S]k is contained in a star. Consider a (k − 1)-dimensional subspace U ⊂ V
adjacent with S and choose a (k + 1)-dimensional subspace N containing S and
U . The stars [S]k and [U ]k intersect the top [N ]k by sets containing more than one
element. The f -image of [S]k is contained in a star (by assumption), and Lemma
3.1 implies that f transfers [N ]k to a subset of a top; hence [U ]k goes to a subset
of a star. The same holds for every U ∈ Gk−1(V ), since it can be connected with
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S by a path in the graph Γk−1(V ). The same arguments show that the images of
tops are contained in tops.

Similarly, we establish that the case (B) is realized if the f -image of the star [S]k
is a subset of a top.

Let f be as in Proposition 3.2. We say that f is of type (A) or (B) if the cor-
responding case is realized. By Proposition 3.2, in the first case there exists an
injection

fk−1 : Gk−1(V ) → Gk−1(V
′)

such that
f([S]k) ⊂ [fk−1(S)]k (3.1)

for every S ∈ Gk−1(V ). Then

fk−1([U ]k−1) ⊂ [f(U)]k−1

for every U ∈ Gk(V ); in other words, fk−1 sends tops to subsets of tops. The
latter means that fk−1 transfers adjacent subspaces to adjacent subspaces (since
two distinct elements of a Grassmannian are adjacent if and only if there is a top
containing them). However, if M and N are adjacent elements of fk−1(Gk−1(V ))
then M +N need not to be an element of f(Gk(V )) and we cannot assert that fk−1

is adjacency preserving. It will be established in Section 5 that fk−1 is distance
preserving if f is distance preserving; under this assumption we show that f is
induced by a semilinear (2k)-embedding of V to V ′.

If f is of type (B) then we get an injection of Gk−1(V ) to Gk+1(V
′). This more

complicated case will be considered in Section 6.

4. Path lemmas

In this section we prove some simple lemmas concerning minimal paths in Grass-
mann graphs. A path connecting S, U ∈ Gk(V ) in Γk(V ) is said to be minimal if
it consists of precisely d(S, U) edges.

Lemma 4.1. If S0, S1, . . . , Si is a minimal path in Γk(V ) then

S0 + Si = S0 + S1 + · · ·+ Si and S0 ∩ Si = S0 ∩ S1 ∩ · · · ∩ Si.

Proof. Since

dim(S0 + S1) = k + 1 and dim(S0 + · · ·+ Sj+1) ≤ dim(S0 + · · ·+ Sj) + 1,

we have

dim(S0 + · · ·+ Si) ≤ k + i = k + d(S0, Si) = dim(S0 + Si)

which implies the first equality. Similarly,

dim(S0 ∩ S1) = k − 1 and dim(S0 ∩ · · · ∩ Sj+1) ≥ dim(S0 ∩ · · · ∩ Sj)− 1



238 J. Kosiorek et al.: Distance Preserving Mappings of Grassmann Graphs

show that

dim(S0 ∩ · · · ∩ Si) ≥ k − i = k − d(S0, Si) = dim(S0 ∩ Si)

and we get the second equality.

Lemma 4.2. Let 1 < k < n − 1. If S0, S1, . . . , Si is a minimal path in Γk(V )
then

(S0 ∩ S1), . . . , (Si−1 ∩ Si) and (S0 + S1), . . . , (Si−1 + Si) (4.1)

are minimal paths in Γk−1(V ) and Γk+1(V ), respectively.

Proof. By Lemma 4.1,

S0 ∩ Si = (S0 ∩ S1) ∩ (Si−1 ∩ Si).

The dimension of this subspace is equal to k − i and the distance formula shows
that

d((S0 ∩ S1), (Si−1 ∩ Si)) = k − 1− dim((S0 ∩ S1) ∩ (Si−1 ∩ Si)) = i− 1.

Similarly,
S0 + Si = (S0 + S1) + (Si−1 + Si)

is a (k + i)-dimensional subspace and

d((S0 + S1), (Si−1 + Si)) = dim((S0 + S1) + (Si−1 + Si))− k − 1 = i− 1

(by the distance formula). Since (4.1) are paths of length i − 1, we get the
claim.

Lemma 4.3. If 2k ≤ n then for any minimal path S0, S1, . . . , Si in Γk−1(V ) there
is a minimal path U0, U1, . . . , Ui+1 in Γk(V ) such that

Sj = Uj ∩ Uj+1

for each j ∈ {0, . . . , i}.

Proof. First we define
Uj+1 := Sj + Sj+1

for j ∈ {0, . . . , i− 1}. Since S0, S1, . . . , Si is a minimal path, the dimension of

U0 + U1 + · · ·+ Ui = S0 + S1 + · · ·+ Si = S0 + Si

is not greater than 2k − 2 < n and we choose two vectors

x ∈ V \ (S0 + Si) and y ∈ V \ 〈S0 + Si, x〉.

The path
〈S0, x〉, U1, . . . , Ui, 〈Si, y〉

is as required.
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5. Distance preserving mappings of type (A)

Theorem 5.1. Let
2 < 2k ≤ min{n, n′}

and f : Gk(V ) → Gk(V
′) be a distance preserving mapping of type (A). Then f is

induced by a (2k)-embedding of V to V ′.

Proof. Let
fk−1 : Gk−1(V ) → Gk−1(V

′)

be as in the end of Section 3. The equation (3.1) shows that

fk−1(M ∩N) = f(M) ∩ f(N)

for every adjacent M, N ∈ Gk(V ).
Let S0, S1, . . . , Si be a minimal path in Γk−1(V ). By Lemma 4.3, there exists

a minimal path U0, U1, . . . , Ui+1 in Γk(V ) such that

Sj = Uj ∩ Uj+1

for each j ∈ {0, . . . , i}. Then

f(U0), f(U1), . . . , f(Ui+1)

is a minimal path of Γk(V
′) (since f is distance preserving) and Lemma 4.2 guar-

antees that

f(U0) ∩ f(U1) = fk−1(S0), . . . , f(Ui) ∩ f(Ui+1) = fk−1(Si)

is a minimal path in Γk−1(V
′). Thus fk−1 is distance preserving.

The mapping fk−1 maps tops to subsets of tops, hence it is of type (A). Step
by step we get a sequence of distance preserving mappings

fi : Gi(V ) → Gi(V
′) i = k, . . . , 1,

where fk = f and for any (i− 1)-dimensional subspace S ⊂ V

fi([S]i) ⊂ [fi−1(S)]i

if 1 < i ≤ k. The latter implies that

fi−1([U ]i−1) ⊂ [fi(U)]i−1

for any i-dimensional subspace U ⊂ V . It follows from Faure-Frölicher-Havlicek’s
version of the Fundamental Theorem of Projective Geometry [4, 5, 6] that f1 is
induced by a certain semilinear mapping l : V → V ′. It is clear that

f(S) = 〈l(S)〉

for every S ∈ Gk(V ). Since f is distance preserving, the l-image of every (2k)-
dimensional subspace of V spans a (2k)-dimensional subspace of V ′. This means
that l is a semilinear (2k)-embedding.



240 J. Kosiorek et al.: Distance Preserving Mappings of Grassmann Graphs

Remark 5.1. Suppose that n = n′ ≤ 2k (as above we require that 1 < k < n−1)
and f : Gk(V ) → Gk(V

′) is a distance preserving mapping of type (A). By duality,
f can be considered as a distance preserving mapping of Gn−k(V

∗) to Gn−k(V
′∗).

The latter mapping is also of type (A) and 2(n− k) ≤ n, Theorem 5.1 guarantees
that it is induced by a semilinear (2n−2k)-embedding of V ∗ to V ′∗. In particular,
if n = 2k then we get the mapping induced by a semilinear n-embedding of V ∗ to
V ′∗

Theorem 5.2. Let n ≥ n′ = 2k and f : Gk(V ) → Gk(V
′) be a distance preserving

mapping. Then f is induced by a semilinear (2k)-embedding of V to V ′ or V ′∗.

Proof. If f is of type (A) then it is induced by a semilinear (2k)-embedding of
V to V ′ (Theorem 5.1). Suppose that f is of type (B). Since n′ = 2k, we can
consider f as a distance preserving mapping of Gk(V ) to Gk(V

′∗) (by duality).
This mapping is of type (A), hence it is induced by a semilinear (2k)-embedding
of V to V ′∗.

6. Distance preserving mappings of type (B)

As in the previous section we suppose that

2k ≤ min{n, n′}.

Let W be a (2k)-dimensional subspace of V ′. Consider W as a left vector space
over R′ and denote by W ∗ the dual vector space. Now let l : V → W ∗ be a
semilinear (2k)-embedding. By duality,

(l)k : Gk(V ) → Gk(W
∗)

can be considered as a distance preserving mapping of Gk(V ) to Gk(W ) (recall
that dim W = 2k). The latter mapping is of type (B). Since Gk(W ) is contained
in Gk(V

′), we get a distance preserving mapping of Gk(V ) to Gk(V
′), it is of type

(B).

Theorem 6.1. Let
2 < 2k ≤ min{n, n′}

and f : Gk(V ) → Gk(V
′) be a distance preserving mapping of type (B). Then

there exists a (2k)-dimensional subspace W ⊂ V ′ such that f is induced by a
(2k)-embedding of V to W ∗.

Proof. In this case, we have a mapping

fk−1 : Gk−1(V ) → Gk+1(V
′)

such that
f([S]k) ⊂ [fk−1(S)]k
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for every S ∈ Gk−1(V ). Then

fk−1([U ]k−1) ⊂ [f(U)]k+1

for every U ∈ Gk(V ). This implies that

fk−1(M ∩N) = f(M) + f(N)

for every adjacent M, N ∈ Gk(V ).
First, we show that fk−1 preserves the distance between subspaces. Consider

a minimal path S0, S1, . . . , Si in Γk−1(V ). As in the proof of Theorem 5.1, we
choose a minimal path U0, U1, . . . , Ui+1 in Γk(V ) such that

Sj = Uj ∩ Uj+1

for each j ∈ {0, . . . , i}. Since

f(U0), . . . , f(Ui+1)

is a minimal path in Γk(V
′), Lemma 4.2 implies that

f(U0) + f(U1) = fk−1(S0), . . . , f(Ui) + f(Ui+1) = fk−1(Si)

is a minimal path.
The mapping fk−1 transfers tops to subsets of stars; as in the proof of Propo-

sition 3.2, we establish that fk−1 sends stars to subsets of tops. Step by step we
get a sequence of distance preserving mappings

fi : Gi(V ) → G2k−i(V
′) i = k, . . . , 1,

where fk = f and for any (i− 1)-dimensional subspace S ⊂ V

fi([S]i) ⊂ [fi−1(S)]2k−i

if 1 < i ≤ k. Then
fi−1([U ]i−1) ⊂ [fi(U)]2k−i−1

for any i-dimensional subspace U ⊂ V .
The mapping f1 is distance preserving and the image of G1(V ) is a clique of

Γ2k−1(V
′). This clique is not contained in a star (indeed, if it is a subset of the

star associated with a (2k − 2)-dimensional subspace M ⊂ V ′ then f1(N) = M
for any 2-dimensional subspace N ⊂ V which is is impossible, since f1 is distance
preserving). Thus there exists a (2k)-dimensional subspace W ⊂ V ′ such that
the associated top contains the f1-image of G1(V ). By Faure-Frölicher-Havlicek’s
result [4, 5, 6], f1 is induces by a semilinear mapping l : V → W ∗. An easy
verification shows that l is a 2k-embedding inducing f .
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