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Abstract. In this article we prove a conjecture of Bezdek, Braß, and
Harborth concerning the maximum volume of the convex hull of any
facet-to-facet connected system of n unit hypercubes in Rd [4]. For
d = 2 we enumerate the extremal polyominoes and determine the set of
possible areas of the convex hull for each n.
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1. Introduction

In the legend [1] of the founding of Carthage, Queen Dido purchased the right to
get as much land as she could enclose with the skin of an ox. She splitted the
skin into thin stripes and tied them together. Using the natural boundary of the
sea and by constructing a giant semicircle she enclosed more land than the seller
could have ever imagined.

Dido-type problems have been treated by many authors i.e. [2, 4, 5, 6, 9], here
we consider the maximum volume of a union of unit hypercubes. A d-dimensional
polyomino is a facet-to-facet connected system of d-dimensional unit hypercubes.
Examples for 2-dimensional polyominoes are the pieces of the computer game
Tetris.

In 1994 Bezdek, Braß, and Harborth conjectured that the maximum volume
of the convex hull of a d-dimensional polyomino consisting of n hypercubes is
given by ∑

I⊆{1,...,d}

1

|I|!
∏
i∈I

⌊
n− 2 + i

d

⌋
,
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but were only able to prove it for d = 2. In Section 3 we prove this conjecture.
They also asked for the number c2(n) of different polyominoes with n cells and
maximum area n +

⌊
n−1

2

⌋ ⌊
n
2

⌋
. In Section 2 we prove

Theorem 1.

c2(n) =


n3−2n2+4n

16
if n ≡ 0 mod 4,

n3−2n2+13n+20
32

if n ≡ 1 mod 4,
n3−2n2+4n+8

16
if n ≡ 2 mod 4,

n3−2n2+5n+8
32

if n ≡ 3 mod 4.

Besides the maximum area n +
⌊

n−1
2

⌋ ⌊
n
2

⌋
and the minimum area n of the convex

hull of polyominoes with n cells several other values may be attained. For each n
we characterize the corresponding sets.

Theorem 2. A polyomino consisting of n cells with area α = n+ m
2

of the convex
hull exists if and only if m ∈ N0, 0 ≤ m ≤

⌊
n−1

2

⌋ ⌊
n
2

⌋
, and m 6= 1 if n + 1 is a

prime.

2. The planar case

An example which attains the upper bound n +
⌊

n−1
2

⌋ ⌊
n
2

⌋
for the area of the

convex hull of a polyomino with n cells is quite obvious, see Figure 1. Instead of
proving this upper bound by induction over n we specify polyominoes by further
parameters and then apply an induction argument.

. . .
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⌊
n+2
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⌋
⌊

n+1
2

⌋
Figure 1. 2-dimensional polyomino with maximum convex hull

We describe these parameters for the more general d-dimensional case and there-
fore denote the standard coordinate axes of Rd by 1, . . . , d. Every d-dimensional
polyomino has a smallest surrounding box with side lengths l1, . . . , ld, where li is
the length in direction i. If we build up a polyomino cell by cell then after adding a
cell one of the li will increase by 1 or none of the li will increase. In the second case
we increase vi by 1, where the new hypercube has a facet-neighbor in direction of
axis i. If M is the set of axis-directions of facet-neighbors of the new hypercube,
then we will increase vi by 1 for only one i ∈ M . Since at this position there is the
possibility to choose, we must face the fact that there might be different tuples
(l1, . . . , ld, v1, . . . , vd) for the same polyomino. We define v1 = · · · = vd = 0 for the
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polyomino consisting of a single hypercube. This definition of the li and the vi

leads to

n = 1 +
d∑

i=1

(li − 1) +
d∑

i=1

vi. (1)

Example 1. The possible tuples describing a rectangular 2 × 3-polyomino are
(2, 3, 2, 0), (2, 3, 1, 1), and (2, 3, 0, 2).

Definition 1.

f2(l1, l2, v1, v2) = 1 + (l1 − 1) + (l2 − 1) +
(l1 − 1)(l2 − 1)

2

+v1 + v2 +
v1(l2 − 1)

2
+

v2(l1 − 1)

2
+

v1v2

2
.

Lemma 1. The area of the convex hull of a 2-dimensional polyomino with tuple
(l1, l2, v1, v2) is at most f2(l1, l2, v1, v2).

Proof. We prove the statement by induction on n, using equation (1). For n = 1
only l1 = l2 = 1, v1 = v2 = 0 is possible. With f2(1, 1, 0, 0) = 1 the induction
base is done. Now we assume that the statement is true for all possible tuples
(l1, l2, v1, v2) with 1 +

∑d
i=1(li − 1) +

∑d
i=1 vi = n− 1.

Due to symmetry we consider only the growth of l1 or v1, and the area a of the
convex hull by adding the n-th square.

(i) l1 increases by one:
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�� ≤ l2

Figure 2. Increasing l1

We depict (see Figure 2) the new square by 3 diag-
onal lines. Since l1 increases the new square must
have a left or a right neighbor. Without loss of
generality it has a left neighbor. The new square
contributes at most 2 (thick) lines to the convex
hull of the polyomino. By drawing lines from the
neighbor square to the endpoints of the new lines
we see that the growth is at most 1+ l2−1

2
, a growth

of 1 for the new square and the rest for the trian-
gles. Since f2(l1 + 1, l2, v1, v2)− f2(l1, l2, v1, v2) =
1 + l2−1

2
+ v2

2
the induction step follows.
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(ii) v1 increases by one:
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Figure 3. Increasing v1

In Figure 3 we depict the new square by 3
diagonal lines. Without loss of generality
we assume that the new square has a left
neighbor, and contributes at most 2 lines to
the convex hull of the polyomino. As l1 is
not increased there must be a square in the
same column as the new square. Similar to
(i) we draw lines from the neighbor square
to the endpoints of the new lines and see
that the growth of the area of the convex
hull is less than l2−1

2
. �

Theorem 3. The area of the convex hull of a 2-dimensional polyomino with n
unit squares is at most n +

⌊
n−1

2

⌋ ⌊
n
2

⌋
.

Proof. For given n we determine the maximum of f2(l1, l2, v1, v2). Since f2(l1 +
1, l2, v1− 1, v2)− f2(l1, l2, v1, v2) = 0 and due to symmetry we assume v1 = v2 = 0
and l1 ≤ l2. With

f2(l1 + 1, l2 − 1, 0, 0)− f2(l1, l2, 0, 0) =
l2 − l1 − 1

2
> 0

we conclude 0 ≤ l2 − l1 ≤ 1. Using equation (1) gives l1 =
⌊

n+1
2

⌋
, l2 =

⌊
n+2

2

⌋
.

Thus by inserting in Lemma 1 we receive f2(l1, l2, v1, v2) ≤ n + 1
2

⌊
n−1

2

⌋ ⌊
n
2

⌋
. This

maximum is attained for example by the polyomino in Figure 1. �

In the next lemma we describe the shape of the 2-dimensional polyominoes with
maximum area of the convex hull in order to determine their number c2(n).

� -

?

6

� -

6

? . . .

...

. . .

Figure 4. The two shapes of polyominoes with maximum area of the convex hull
and a forbidden sub-polyomino

Lemma 2. Every 2-dimensional polyomino with parameters l1, l2, v1, v2, and
with the maximum area n+ 1

2

⌊
n−1

2

⌋ ⌊
n
2

⌋
of the convex hull consists of a linear strip

with at most one orthogonal linear strip on each side (see the left two pictures in
Figure 4). Additionally we have v1 = v2 = 0 and the area of the convex hull is
given by f2(l1, l2, v1, v2).
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Proof. From the proof of Lemma 1 we deduce v1 = v2 = 0 and that every sub-
polyomino has also the maximum area of the convex hull. Since the area of the
polyomino on the right hand side of Figure 4 has an area of the convex hull which
is less than f2(l1, l2, 0, 0) it is a forbidden sub-polyomino and only the described
shapes remain. All these polyominoes attain the maximum f2(l1, l2, 0, 0). �

Figure 5. Complete set of extremal polyominoes with n ≤ 6 cells

Theorem 1.

c2(n) =


n3−2n2+4n

16
if n ≡ 0 mod 4,

n3−2n2+13n+20
32

if n ≡ 1 mod 4,
n3−2n2+4n+8

16
if n ≡ 2 mod 4,

n3−2n2+5n+8
32

if n ≡ 3 mod 4.

Proof of Theorem 1. (Formula for c2(n).) We use Lemma 2 and do a short
calculation applying the lemma of Cauchy-Frobenius. �

Corollary 1. The ordinary generating function for c2(n) is given by

1 + x− x2 − x3 + 2x5 + 8x6 + 2x7 + 4x8 + 2x9 − x10 + x12

(1− x2)2(1− x4)2
.

We have depicted the polyominoes with at most 6 cells and maximum area of the
convex hull in Figure 5. For more cells we give only a few concrete numbers:

(c2(n))n=1,... = 1, 1, 1, 3, 5, 11, 9, 26, 22, 53, 36, 93, 64, 151, 94, 228, 143, 329,

195, 455, 271, 611, 351, 798, 460, 1021, 574, 1281, 722, 1583, 876, 1928, 1069,

2321, 1269, 2763, 1513, 3259, 1765, 3810, 2066, 4421, 2376, 5093, 2740, . . .
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This is sequence A122133 in the “Online-Encyclopedia of Integer Sequences” [10].

Besides the maximum area n +
⌊

n−1
2

⌋ ⌊
n
2

⌋
and the minimum area n of the convex

hull of polyominoes with n cells several other values may be attained. In The-
orem 2 we have completely characterized the set of areas of the convex hull of
polyominoes with n cells.

Proof of Theorem 2. Since the vertex points of the convex hull of a polyomino are
lattice points on an integer grid the area of the convex hull is an integral multiple
of 1

2
. with Theorem 3 we conclude that the desired set is a subset of

S =

{
n +

m

2
| m ≤

⌊
n− 1

2

⌋ ⌊n

2

⌋
, m ∈ N0

}
.

A polyomino P consisting of n cells with area n + 1
2

of the convex hull must
contain a triangle of area 1

2
. If we extend the triangle to a square we get a convex

polyomino P ′ consisting of n + 1 cells. Thus P ′ is a rectangular s× t-polyomino
with s · t = n+1 and s, t ∈ N. If n+1 is a prime there exists only the 1× (n+1)-
polyomino where deleting a square yields an area of n for the convex hull. So we
have to exclude this case in the above set S and receive the proposed set.

a

↔

b 1

l

Figure 6. Construction 1: 2 ≤ m ≤ 2n− 8

For the other direction we give some constructions. For m = 0 we have the
rectangular 1×n-polyomino as an example. The above consideration m = 1 yields
a construction if n + 1 is a composite number. Now we consider Construction
1 depicted in Figure 6. We choose n = a + b + 1,

⌈
n
2

⌉
≤ a ≤ n − 2, and

0 ≤ l ≤ a− b− 1 = 2a− n. Thus a ≥ b + 1 and Construction 1 is possible. If we
run through the possible values of a and l we obtain examples for

m ∈ {0}, {2, 3, 4}, . . . , {2a− n, . . . , 4a− 2n}, . . . , {n− 4, . . . , 2n− 8}
= {0, 2, 3, . . . , 2n− 8}

if n ≡ 0 mod 2 and for

m ∈ {1, 2}, {3, 4, 5, 6}, . . . , {2a− n, . . . , 4a− 2n}, . . . , {n− 4, . . . , 2n− 8}
= {1, 2, . . . , 2n− 8}

if n ≡ 1 mod 2.
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. . .

Figure 7. Construction 2: m = 2n− 7

In Figure 7 we give a construction for m = 2n − 7 and in Figure 8 we give on

the left hand side a construction for 2n − 6 ≤ m ≤
⌈

n2−4n
4

⌉
with parameters k1,

k2, and b. The conditions for these parameters are 0 ≤ k1, k2 ≤ n − 2b − 2 and
n− 2b− 2 ≥ b. With given k1, k2, b, n we have m = bn− 2b2− 2b + k1 + k2(b− 1).

k2
k1

l
l

b + 1

1

l

⌊
n−1

2

⌋

⌊
n
2

⌋

Figure 8. Construction 3 and Construction 4

Since we can vary k1 at least between 0 and b − 1 we can produce for a fix b all
values between b(n − 2b − 2) and 2b(n − 2b − 2) by varying k1 and k2. Now we
want to combine those intervals for successive values for b. The assumption that
the intervals leave a gap is equivalent to 2(b− 1)(n− 2(b− 1)− 2) < b(n− 2b− 2),
that is, n < 2b b−3

b−2
. We choose 2 ≤ b ≤

⌊
n
4

⌋
and receive constructions for

m ∈
{

2n− 6, 2n− 5, . . . ,

⌈
n2 − 4n

4

⌉}
.

On the right hand side of Figure 8 we give a construction for n ≥ 5 and

m ∈
{⌊

n2 − 4n

4

⌋
, . . . ,

⌊
n2 − 2n− 8

4

⌋}
.
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. . .

...

. . .

...

. . .

...

Figure 9. Construction 5:
⌊

n2−2n−6
4

⌋
≤ m ≤

⌊
n2−2n+2

4

⌋
Constructions for the remaining values

m ∈
{⌊

n2 − 2n− 6

4

⌋
,

⌊
n2 − 2n− 2

4

⌋
,

⌊
n2 − 2n + 2

4

⌋
=

⌊
n− 1

2

⌋ ⌊n

2

⌋}
are given in Figure 9. �

3. Dimensions d ≥ 3

To prove the conjecture of Bezdek, Braß, and Harborth for dimensions d ≥ 3 we
proceed similar as in Section 2.

Definition 2.

fd(l1, . . . , ld, v1, . . . , vd) =
∑

I⊆{1,...,d}

1

|I|!2d−|I|

2d−1∑
b=0

∏
i∈I

qb,i

with d ≥ 1 and b =
d∑

j=1

bj2
j−1, bj ∈ {0, 1}, qb,i =

{
li − 1 for bi = 0 ,

vi for bi = 1 .

Example 2.

f3(l1, l2, l3, v1, v2, v3) = 1 + (l1 − 1) + (l2 − 1) + (l3 − 1) +
(l1 − 1)(l2 − 1)

2
+

(l1 − 1)(l3 − 1)

2
+

(l2 − 1)(l3 − 1)

2
+

(l1 − 1)(l2 − 1)(l3 − 1)

6
+

v1(l2 − 1)

2
+

v1(l3 − 1)

2
+

v2(l1 − 1)

2
+

v2(l3 − 1)

2
+

v3(l1 − 1)

2
+

v3(l2 − 1)

2
+

v1(l2 − 1)(l3 − 1)

6
+

v2(l1 − 1)(l3 − 1)

6
+

v3(l1 − 1)(l2 − 1)

6
+

v1v2(l3 − 1)

6
+

v1v3(l2 − 1)

6
+

v2v3(l1 − 1)

6
+ v1 + v2 + v3 +

v1v2

2
+

v1v3

2
+

v2v3

2
+

v1v2v3

6
.

Lemma 3. The d-dimensional volume of the convex hull of a polyomino with n
unit hypercubes is at most fd(l1, . . . , ld, v1, . . . , vd).

Proof. We prove the statement by double induction on d and n, using equation
(1). Since the case d = 2 is already done in Theorem 3 we assume that the lemma
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is proven for the d < d. Since for n = 1 only li = 1, vi = 0, i ∈ {1, . . . , d} is
possible and fd(1, . . . , 1, 0, . . . , 0) = 1 the induction base for n is done. Now we
assume that the lemma is proven for all possible tuples (l1, . . . , ld, v1, . . . , vd) with
1+

∑d
i=1(li−1)+

∑d
i=1 vi = n−1. Due to symmetry we consider only the growth

of l1 or v1, and the volume of the convex hull by adding the n-th hypercube.
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Figure 10. Increasing l1 in the 3-dimensional case 2

(i) l1 increases by one:
As in the proof of Lemma 1 draw lines of the convex hull of the n-th cube
and its neighbor cube N , see Figure 10 for a 3-dimensional example. To
be more precisely each line of the new convex hull has a corner point X of
the upper face of the n-th cube as an endpoint. We will denote the second
endpoint of this line by Y . In direction of axis 1 there is a corner point X
of the bottom face of the n-th cube. Since X is also a corner point of N the
line XY is part of the old convex hull if Y is part of the old convex hull. In
this case we draw the line XY . In the other case Y is also a corner point of
the upper face of the new cube and we draw the line XY where Y is similar
defined as X. Additionally we draw all lines XY and XX.
Doing this we have constructed a geometrical body which contains the in-
crease of the convex hull and is subdivided into nice geometrical objects Oi

with volume base× height
ki

, for some ki ∈ {1, . . . , d} each. For dimension d = 3
the cases ki = 1, ki = 2, or ki = 3 correspond to a box, a prism, or a
tetrahedron.
We project the convex hull of the whole polyomino into the hyperplane or-
thogonal to axis direction 1 and receive a hypervolume A. This is the convex
hull of a (d−1)-dimensional polyomino with parameters l2, . . . , ld, v2, . . . , vd

where li ≤ li and vi ≤ vi. From the induction hypothesis we know A ≤
fd−1(l2, . . . , ld, v2, . . . , vd). We apply the same projection to the Oi and ob-
jects Ai. Due to the construction the Ai are non overlapping and we have∑

Ai ≤ A. Using Cavalieri’s theorem we determine the volume of Oi to be
Ai×1

ki
. More precisely, we choose lines of the form XX as height and lift the

old base up until it is orthogonal to axis direction 1. Thus we may assign a
factor 1

k
to each piece of A to bound the growth of the volume of the convex

hull. We estimate the parts in a way that the parts with the higher factors
are as big as theoretical possible.
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For every 0 ≤ r ≤ d− 1 we consider the sets {i1, i2, . . . , ir} with 1 6= ia 6= ib
for a 6= b. Let Z be such a set. Define Z = {j1, . . . , jd−r−1} by Z ∩ Z = {}
and Z ∪ Z = {2, . . . , d}. So the vector space spanned by the axis directions
of Z and the vector space spanned by the axis directions of Z are orthogonal.
If we project the convex hull in the vector space spanned by Z the resulting
volume is at mostfd−r−1(lj1 , . . . , ljd−r−1

, vj1 , . . . , vjd−r−1
) since it is the convex

hull of a (d−r−1)-dimensional polyomino. Since Z has cardinality d−r−1
the set Z yields a contribution of 1

d−r
fd−r−1(lj1 , . . . , ljd−r−1

, vj1 , . . . , vjd−r−1
)

to the volume of the convex hull. With the notations from Definition 2 this
is

1

d− r

∑
I⊆{j1,...,jr−d−1}

1

|I|!2d−r−1−|I|

2d−r−1−1∑
b=0

∏
i∈I

qb,i .

Our aim is to assign the maximum possible factor to each part of A. For
that reason we count for Z a maximum contribution of

1

d− r

1

|d− r − 1|!

2d−r−1−1∑
b=0

∏
i∈Y

qb,i

to the volume of the convex hull.
If we do so for all possible sets Z we have assigned a factor between 1
and 1

d
to every summand of fd−1(l2, . . . , ld, v2, . . . , vd). To get the induc-

tion step now we have to remark that the above described sum with its
factors is exactly the difference between fd(l1 + 1, . . . , ld, v1, . . . , vd) and
fd(l1, . . . , ld, v1, . . . , vd).

(ii) v1 increases by one:
Due to symmetry of the li and vi in Definition 2 this is similar to case (i).
Additionally we remark that the maximum cannot be achieved in this case
since we double count a part of the contribution of the new cube to the
volume of the convex hull in our estimations. �

Theorem 4. The d-dimensional volume of the convex hull of any facet-to-facet
connected system of n unit hypercubes is∑

I⊆{1,...,d}

1

|I|!
∏
i∈I

⌊
n− 2 + i

d

⌋
.

Proof. For given n we determine the maximum of fd(l1, . . . , fd, v1, . . . , vd). Due to

fd(l1 + 1, l2, . . . , ld, v1 − 1, v2, . . . , vd)− fd(l1, l2, . . . , ld, v1, v2, . . . , vd) = 0

and due to symmetry we assume v1 = · · · = vd = 0 and l1 ≤ l2 ≤ · · · ≤ ld. Since

fd(l1 + 1, l2, . . . , ld−1, ld − 1, 0, 0, . . . , 0)− fd(l1, l2, . . . , ld, 0, 0, . . . , 0) > 0 (2)

we have 0 ≤ ld − l1 ≤ 1. Inequality (2) due to the following consideration. If a
summand of fd(. . . ) contains the term l1 and does not contain ld then there will
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be a corresponding summand with l1 replaced by ld, so those terms equalize each
other in the above difference. Clearly the summands containing none of the terms
l1 or ld equalize each other in the difference. So there are left only the summands
with both terms l1 and ld. Since (l1+1−1)(ld−1−1)−(l1−1)(ld−1) = ld−l1−1 > 0
inequality (2) is valid.

Combining equation (1) with 0 ≤ ld − l1 ≤ 1 and l1 ≤ l2 ≤ · · · ≤ ld gives
li =

⌊
n−2+i+d

d

⌋
. Thus by inserting in Lemma 3 we receive the upper bound.

The maximum is attained for example by a polyomino consisting of d pairwise
orthogonal linear arms with

⌊
n−2+i

d

⌋
cubes (i = 1 . . . d) joined to a central cube. �

Conjecture 1. Every d-dimensional polyomino P with parameters l1, . . . , ld,
v1, . . . , vd and maximum volume of the convex hull fulfills v1 = · · · = vd = 0
and contains a sub-polyomino P ′ fulfilling:

(i) P ′ has height 1 in direction of axis i,

(ii) the projection of P ′ along i has also maximal volume of the convex hull and
parameters l1, . . . , li−1, li+1, . . . , ld,

(iii) P can be decomposed into P ′ and up to two orthogonal linear arms.

We remark that v1 = · · · = vd = 0 and the maximality of the volume of the convex
hull of sub-polyominoes and projections of P can be concluded from the proof of
Theorem 4.

Lemma 4. If there exists a d-dimensional polyomino with n cells and volume v
of the convex hull, then v ∈ Vd,n with

Vd,n =

n +
m

d!

∣∣∣m ≤
∑

I⊆{1,...,d}

d!

|I|!
∏
i∈I

⌊
n− 2 + i

d

⌋
m ∈ N0

 .

Proof. For the determination of the volume of the convex hull of a d-dimensional
polyomino we only have to consider the set of S corner points of its hypercubes
which lie on an integer grid. We can decompose the convex hull into d-dimensional
simplices with the volume

1

d!

∣∣∣∣∣∣∣
x1,1 . . . x1,d 1
...

. . .
...

...
xd+1,1 . . . xd+1,d 1

∣∣∣∣∣∣∣
where the coordinates of the d + 1 points are given by (xi,1, . . . , xi,d) ∈ Zd. Thus
the volume of the convex hull is an integer multiple of 1

d
. The lower bound n ≤ v

is obvious and the upper bound is given by Theorem 4. �

4. Remarks

We leave the description and the enumeration of the polyominoes with maximum
convex hull for dimension d ≥ 3 as a task for the interested reader. It would also
be nice to see a version of Theorem 2 for higher dimensions.
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The authors of [4] mention another class of problems which are related to the
problems in [3] and [11]: What is the maximum area of the convex hull of all
connected edge-to-edge packings of n congruent regular k-gons (also denoted as
k-polyominoes, see [7]) in the plane. The methods of Section 2 might be applicable
for these problems.

Conjecture 2. The area of the convex hull of any edge-to-edge connected system
of regular unit hexagons is at most 1

6

⌊
n2 + 14

3
n + 1

⌋
.
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