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Abstract. We prove that the Banach-Mazur distance between arbi-
trary two central sections of co-dimension c of any centrally symmetric
convex body in En is at most (2c + 1)2.
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As usual, by a convex body of Euclidean n-space En we mean a compact convex
set with non-empty interior. Denote by Bn the family of all centrally symmetric
convex bodies of En which are centered at the center o of En. Let Ek

1 and Ek
2 be

k-dimensional subspaces of En, let C1 be a convex body of Ek
1 centered at o and

let C2 be a convex body of Ek
2 centered at o. The Banach-Mazur distance between

C1 and C2 is the number

δ(C1, C2) = inf {λ; a(C2) ⊂ C1 ⊂ λ a(C2)},
where a stands for an affine transformation, and λA stands for the image of a set
A under the homothety with center o and a positive ratio λ.

Extensive surveys of results on Banach-Mazur distance are given by Thomp-
son [5] and by Tomczak-Jaegermann [6]. See also the last section of the recent
book by Brass, Moser, and Pach [1]. The classic paper of Dvoretzky [2] stipulated
intensive research on Banach-Mazur distance between central sections of centrally
symmetric convex bodies. In particular, Rudelson [4] considers asymptotic be-
havior of Banach-Mazur distance between k-dimensional sections of bodies of Bn.
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Our aim is to prove the upper bound (2c + 1)2 of the Banach-Mazur distance
between every two (n − c)-dimensional central sections of an arbitrary body of
Bn. Let us point out that this estimate depends only on the co-dimension c of the
sections. So our estimate does not grow when the dimension n tends to infinity.

The proof of our Theorem is based on Lemma whose formulation requires
some notation. Let C ∈ Bn. Let S be a central section of C of co-dimension c,
this is of dimension n − c. By compactness arguments we see that there exist c
segments I1, . . . , Ic centered at o whose end-points are in the boundary of C such
that the convex hull

P = conv(I1 ∪ · · · ∪ Ic ∪ S) (1)

has the maximum volume from amongst all convex hulls of this form, where S is
fixed. Clearly, P ⊂ C.

Since the Banach-Mazur distance is invariant with respect to affine trans-
formations, without loss of generality further we assume that Ii is the segment
of length 2 contained in the i-th coordinate axis of En and centered at o for
i ∈ {1, . . . , c}, and that S is in the (n − c)-dimensional subspace containing the
remaining coordinate axes of En.

Lemma. Let C ∈ Bn and let S be an (n − c)-dimensional central section of C.
For the cylinder K = I1 × · · · × Ic × (c + 1)S, where I1, . . . , Ic are defined above,
we have

δ(C, K) ≤ 2c + 1.

Proof. For every i ∈ {1, . . . , c} we denote by gi and hi the end-points of Ii. We
provide through every gi the hyperplane Gi parallel to the hyperplane containing
S and all the segments from amongst I1, . . . , Ic which are different from Ii. Anal-
ogously, through every hi we provide the hyperplane Hi parallel to Gi. In order
to see that

G1, . . . , Gc, H1, . . . , Hc are supporting hyperplanes of C, (2)

assume the opposite. Then the central symmetry of C and of our construction im-
plies that a j ∈ {1, . . . , c} exists such that Gj, Hj are not supporting hyperplanes
of C. As a consequence, we can find a segment Jj ⊂ C centered at o such that its
end-points are out of the strip between Gj and Hj. Thus conv(J1 ∪ · · · ∪ Jc ∪ S),
where Jm = Im for all m ∈ {1, . . . , c} different from j, has volume greater than P ,
see (1). So our opposite assumption contradicts the choice of I1, . . . , Ic, see (1).
Thus (2) is true.

We intend to show that
C ⊂ K. (3)

Assume that this is not true, i.e. assume that there exists a point u ∈ C such that
u 6∈ K. Since u is out of K, from (2) we conclude that u = (a1, . . . , ac, qac+1, . . . ,
qan), where q > c + 1, such that |a1| ≤ 1, . . . , |ac| ≤ 1 and such that w =
(0, . . . , 0, ac+1, . . . , an) is a point of the relative boundary of S. We provide the
straight line through u and w. Its parametric equation is x1 = ta1, . . . , xc =
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tac, xc+1 = ((q − 1)t + 1)ac+1, . . . , xn = ((q − 1)t + 1)an, where −∞ < t <
∞. For t = − 1

q−1
we get the point z = (− 1

q−1
a1, . . . ,− 1

q−1
ac, 0, . . . , 0). Since

| − 1
q−1

a1| + · · · + | − 1
q−1

ac| = 1
q−1

(|a1| + · · · + |ac|) ≤ c
q−1

< 1, we conclude that
z is an interior point of P . From P ⊂ C we see that z is an interior point of C.
Hence the assumption that u ∈ C and the fact that w is a point of the segment
uz different from u imply that w is an interior point of C. This contradicts the
fact that w is a point of the relative boundary of S. As a consequence, (3) holds
true.

Now we will show that
1

2c + 1
K ⊂ P. (4)

Since every convex body is the convex hull of its extreme points, it is sufficient to
show that all extreme points of 1

2c+1
K are in P . Every extreme point of 1

2c+1
K

has the form e′ = ( 1
2c+1

e1, . . . ,
1

2c+1
en), where e = (e1, . . . , en) is an extreme point

of K. Then |e1| = · · · = |ec| = 1 and (0, . . . , 0, ec+1, . . . en) is in the relative
boundary of (c + 1)S.

The segment oe has the equation x1 = te1, . . . , xn = ten, where 0 ≤ t ≤ 1.
The equation of the boundary bd(P) of P is |x1|+ · · ·+ |xc|+ ||(0, . . . , 0, xc+1, . . . ,
xn)|| = 1, where || || denotes the norm of the normed space whose unit ball is
C. In order to find the point of the intersection of the segment oe with bd(P) we
substitute the above equation of oe into the above equation of bd(P). We obtain
ct + ||(0, . . . , 0, tec+1, . . . , ten)|| = 1. Since (0, . . . , 0, ec+1, . . . , en) belongs to the
relative boundary of (c + 1)S which is a subset of the boundary of (c + 1)C, we
get ct + (c + 1)t = 1. Hence for t′ = 1

2c+1
we obtain a common point of oe and

bd(P). Substituting t′ into the parametric equation of the segment oe, we see that
this point is just e′. We conclude that every extreme point e′ of 1

2c+1
K belongs to

P . So (4) has been shown.
From (3), (4) and from P ⊂ C we obtain that

1

2c + 1
K ⊂ C ⊂ K.

This implies the thesis of Lemma. �

Theorem. Let S1 and S2 be central sections of co-dimension c of a centrally
symmetric convex body in En. Then

δ(S1, S2) ≤ (2c + 1)2.

Proof. Assume that S1 6= S2 and that S0 = S1 ∩ S2 is (n − d)-dimensional. Of
course, d ≤ 2c. Clearly S0 is an (n − d)-dimensional central section of Si, where
i ∈ {1, 2}. We apply Lemma taking Si, where i ∈ {1, 2}, in the part of C.
Since Si is of co-dimension c, the present n− c plays the part of n from Lemma.
Moreover, we take S0 in the part of S. For the section S0 of Si, where i ∈ {1, 2},
we define a cylinder Ki analogically like the cylinder K is defined for S in Lemma.
Since Si is (n − c)-dimensional, Ki is (n − c)-dimensional for i ∈ {1, 2}. From
(n − c) − (n − d) = d − c and by Lemma we get δ(S1, K1) ≤ 2(d − c) + 1 and



246 M. Lassak: Banach-Mazur Distance of Central Sections . . .

δ(S2, K2) ≤ 2(d − c) + 1. These inequalities, the obvious equality δ(K1, K2) = 1
and 0 ≤ d ≤ 2c imply δ(S1, S2) ≤ (2(d− c)+1)2 ·1 = (2d−2c+1)2 ≤ (2c+1)2. �

By John’s [3] theorem, δ(S1, S2) ≤ n − c under the assumptions of Theorem.
Thus the estimate from Theorem is better only when (2c + 1)2 < n − c. So for
n > (2c + 1)2 + c. In particular, for n > 10 when c = 1, and for n > 27 when
c = 2.

From the proof of Theorem we conclude the following more precise corollary.
Theorem is its special case for d = 2c.

Corollary. Let S1 and S2 be central sections of co-dimension c of a centrally
symmetric convex body in En such that S1 ∩ S2 is of co-dimension d. Then

δ(S1, S2) ≤ (2d− 2c + 1)2.

The author expects that the estimates from Theorem and Corollary are not the
best possible and would not be surprised if the bound 2c + 1 or better holds true.
The problem is to improve the estimate obtained in Theorem. Especially for c = 1.
Just for c = 1 our Theorem gives the estimate 9, while the author is not able to
find an n and a C ∈ Bn with two central (n − 1)-dimensional sections whose
Banach-Mazur distance is over 2.
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