Banach-Mazur Distance of Central Sections of a Centrally Symmetric Convex Body

Marek Lassak
Institute of Mathematics and Physics, University of Technology
Kaliskiego 7, 85-796 Bydgoszcz, Poland
e-mail: lassak@utp.edu.pl

Abstract

We prove that the Banach-Mazur distance between arbitrary two central sections of co-dimension c of any centrally symmetric convex body in E^{n} is at most $(2 c+1)^{2}$.

MSC 2000: 52A21, 46B20
Keywords: convex body, section, Banach-Mazur distance

As usual, by a convex body of Euclidean n-space E^{n} we mean a compact convex set with non-empty interior. Denote by \mathcal{B}^{n} the family of all centrally symmetric convex bodies of E^{n} which are centered at the center o of E^{n}. Let E_{1}^{k} and E_{2}^{k} be k-dimensional subspaces of E^{n}, let C_{1} be a convex body of E_{1}^{k} centered at o and let C_{2} be a convex body of E_{2}^{k} centered at o. The Banach-Mazur distance between C_{1} and C_{2} is the number

$$
\delta\left(C_{1}, C_{2}\right)=\inf \left\{\lambda ; a\left(C_{2}\right) \subset C_{1} \subset \lambda a\left(C_{2}\right)\right\},
$$

where a stands for an affine transformation, and λA stands for the image of a set A under the homothety with center o and a positive ratio λ.

Extensive surveys of results on Banach-Mazur distance are given by Thompson [5] and by Tomczak-Jaegermann [6]. See also the last section of the recent book by Brass, Moser, and Pach [1]. The classic paper of Dvoretzky [2] stipulated intensive research on Banach-Mazur distance between central sections of centrally symmetric convex bodies. In particular, Rudelson [4] considers asymptotic behavior of Banach-Mazur distance between k-dimensional sections of bodies of \mathcal{B}^{n}.

0138-4821/93 \$ 2.50 © 2008 Heldermann Verlag

Our aim is to prove the upper bound $(2 c+1)^{2}$ of the Banach-Mazur distance between every two $(n-c)$-dimensional central sections of an arbitrary body of \mathcal{B}^{n}. Let us point out that this estimate depends only on the co-dimension c of the sections. So our estimate does not grow when the dimension n tends to infinity.

The proof of our Theorem is based on Lemma whose formulation requires some notation. Let $C \in \mathcal{B}^{n}$. Let S be a central section of C of co-dimension c, this is of dimension $n-c$. By compactness arguments we see that there exist c segments I_{1}, \ldots, I_{c} centered at o whose end-points are in the boundary of C such that the convex hull

$$
\begin{equation*}
P=\operatorname{conv}\left(I_{1} \cup \cdots \cup I_{c} \cup S\right) \tag{1}
\end{equation*}
$$

has the maximum volume from amongst all convex hulls of this form, where S is fixed. Clearly, $P \subset C$.

Since the Banach-Mazur distance is invariant with respect to affine transformations, without loss of generality further we assume that I_{i} is the segment of length 2 contained in the i-th coordinate axis of E^{n} and centered at o for $i \in\{1, \ldots, c\}$, and that S is in the $(n-c)$-dimensional subspace containing the remaining coordinate axes of E^{n}.

Lemma. Let $C \in \mathcal{B}^{n}$ and let S be an $(n-c)$-dimensional central section of C. For the cylinder $K=I_{1} \times \cdots \times I_{c} \times(c+1) S$, where I_{1}, \ldots, I_{c} are defined above, we have

$$
\delta(C, K) \leq 2 c+1
$$

Proof. For every $i \in\{1, \ldots, c\}$ we denote by g_{i} and h_{i} the end-points of I_{i}. We provide through every g_{i} the hyperplane G_{i} parallel to the hyperplane containing S and all the segments from amongst I_{1}, \ldots, I_{c} which are different from I_{i}. Analogously, through every h_{i} we provide the hyperplane H_{i} parallel to G_{i}. In order to see that

$$
\begin{equation*}
G_{1}, \ldots, G_{c}, H_{1}, \ldots, H_{c} \text { are supporting hyperplanes of } C, \tag{2}
\end{equation*}
$$

assume the opposite. Then the central symmetry of C and of our construction implies that a $j \in\{1, \ldots, c\}$ exists such that G_{j}, H_{j} are not supporting hyperplanes of C. As a consequence, we can find a segment $J_{j} \subset C$ centered at o such that its end-points are out of the strip between G_{j} and H_{j}. Thus $\operatorname{conv}\left(J_{1} \cup \cdots \cup J_{c} \cup S\right)$, where $J_{m}=I_{m}$ for all $m \in\{1, \ldots, c\}$ different from j, has volume greater than P, see (1). So our opposite assumption contradicts the choice of I_{1}, \ldots, I_{c}, see (1). Thus (2) is true.

We intend to show that

$$
\begin{equation*}
C \subset K \tag{3}
\end{equation*}
$$

Assume that this is not true, i.e. assume that there exists a point $u \in C$ such that $u \notin K$. Since u is out of K, from (2) we conclude that $u=\left(a_{1}, \ldots, a_{c}, q a_{c+1}, \ldots\right.$, $\left.q a_{n}\right)$, where $q>c+1$, such that $\left|a_{1}\right| \leq 1, \ldots,\left|a_{c}\right| \leq 1$ and such that $w=$ $\left(0, \ldots, 0, a_{c+1}, \ldots, a_{n}\right)$ is a point of the relative boundary of S. We provide the straight line through u and w. Its parametric equation is $x_{1}=t a_{1}, \ldots, x_{c}=$
$t a_{c}, x_{c+1}=((q-1) t+1) a_{c+1}, \ldots, x_{n}=((q-1) t+1) a_{n}$, where $-\infty<t<$ ∞. For $t=-\frac{1}{q-1}$ we get the point $z=\left(-\frac{1}{q-1} a_{1}, \ldots,-\frac{1}{q-1} a_{c}, 0, \ldots, 0\right)$. Since $\left|-\frac{1}{q-1} a_{1}\right|+\cdots+\left|-\frac{1}{q-1} a_{c}\right|=\frac{1}{q-1}\left(\left|a_{1}\right|+\cdots+\left|a_{c}\right|\right) \leq \frac{c}{q-1}<1$, we conclude that z is an interior point of P. From $P \subset C$ we see that z is an interior point of C. Hence the assumption that $u \in C$ and the fact that w is a point of the segment $u z$ different from u imply that w is an interior point of C. This contradicts the fact that w is a point of the relative boundary of S. As a consequence, (3) holds true.

Now we will show that

$$
\begin{equation*}
\frac{1}{2 c+1} K \subset P \tag{4}
\end{equation*}
$$

Since every convex body is the convex hull of its extreme points, it is sufficient to show that all extreme points of $\frac{1}{2 c+1} K$ are in P. Every extreme point of $\frac{1}{2 c+1} K$ has the form $e^{\prime}=\left(\frac{1}{2 c+1} e_{1}, \ldots, \frac{1}{2 c+1} e_{n}\right)$, where $e=\left(e_{1}, \ldots, e_{n}\right)$ is an extreme point of K. Then $\left|e_{1}\right|=\cdots=\left|e_{c}\right|=1$ and $\left(0, \ldots, 0, e_{c+1}, \ldots e_{n}\right)$ is in the relative boundary of $(c+1) S$.

The segment oe has the equation $x_{1}=t e_{1}, \ldots, x_{n}=t e_{n}$, where $0 \leq t \leq 1$. The equation of the boundary $\operatorname{bd}(\mathrm{P})$ of P is $\left|x_{1}\right|+\cdots+\left|x_{c}\right|+| |\left(0, \ldots, 0, x_{c+1}, \ldots\right.$, $\left.x_{n}\right) \|=1$, where $\|\|$ denotes the norm of the normed space whose unit ball is C. In order to find the point of the intersection of the segment oe with $\mathrm{bd}(\mathrm{P})$ we substitute the above equation of oe into the above equation of $\mathrm{bd}(\mathrm{P})$. We obtain $c t+\left\|\left(0, \ldots, 0, t e_{c+1}, \ldots, t e_{n}\right)\right\|=1$. Since $\left(0, \ldots, 0, e_{c+1}, \ldots, e_{n}\right)$ belongs to the relative boundary of $(c+1) S$ which is a subset of the boundary of $(c+1) C$, we get $c t+(c+1) t=1$. Hence for $t^{\prime}=\frac{1}{2 c+1}$ we obtain a common point of oe and $\mathrm{bd}(\mathrm{P})$. Substituting t^{\prime} into the parametric equation of the segment oe, we see that this point is just e^{\prime}. We conclude that every extreme point e^{\prime} of $\frac{1}{2 c+1} K$ belongs to P. So (4) has been shown.

From (3), (4) and from $P \subset C$ we obtain that

$$
\frac{1}{2 c+1} K \subset C \subset K
$$

This implies the thesis of Lemma.
Theorem. Let S_{1} and S_{2} be central sections of co-dimension c of a centrally symmetric convex body in E^{n}. Then

$$
\delta\left(S_{1}, S_{2}\right) \leq(2 c+1)^{2}
$$

Proof. Assume that $S_{1} \neq S_{2}$ and that $S_{0}=S_{1} \cap S_{2}$ is $(n-d)$-dimensional. Of course, $d \leq 2 c$. Clearly S_{0} is an $(n-d)$-dimensional central section of S_{i}, where $i \in\{1,2\}$. We apply Lemma taking S_{i}, where $i \in\{1,2\}$, in the part of C. Since S_{i} is of co-dimension c, the present $n-c$ plays the part of n from Lemma. Moreover, we take S_{0} in the part of S. For the section S_{0} of S_{i}, where $i \in\{1,2\}$, we define a cylinder K_{i} analogically like the cylinder K is defined for S in Lemma. Since S_{i} is $(n-c)$-dimensional, K_{i} is $(n-c)$-dimensional for $i \in\{1,2\}$. From $(n-c)-(n-d)=d-c$ and by Lemma we get $\delta\left(S_{1}, K_{1}\right) \leq 2(d-c)+1$ and
$\delta\left(S_{2}, K_{2}\right) \leq 2(d-c)+1$. These inequalities, the obvious equality $\delta\left(K_{1}, K_{2}\right)=1$ and $0 \leq d \leq 2 c$ imply $\delta\left(S_{1}, S_{2}\right) \leq(2(d-c)+1)^{2} \cdot 1=(2 d-2 c+1)^{2} \leq(2 c+1)^{2}$.

By John's [3] theorem, $\delta\left(S_{1}, S_{2}\right) \leq n-c$ under the assumptions of Theorem. Thus the estimate from Theorem is better only when $(2 c+1)^{2}<n-c$. So for $n>(2 c+1)^{2}+c$. In particular, for $n>10$ when $c=1$, and for $n>27$ when $c=2$.

From the proof of Theorem we conclude the following more precise corollary. Theorem is its special case for $d=2 c$.

Corollary. Let S_{1} and S_{2} be central sections of co-dimension c of a centrally symmetric convex body in E^{n} such that $S_{1} \cap S_{2}$ is of co-dimension d. Then

$$
\delta\left(S_{1}, S_{2}\right) \leq(2 d-2 c+1)^{2} .
$$

The author expects that the estimates from Theorem and Corollary are not the best possible and would not be surprised if the bound $2 c+1$ or better holds true. The problem is to improve the estimate obtained in Theorem. Especially for $c=1$. Just for $c=1$ our Theorem gives the estimate 9 , while the author is not able to find an n and a $C \in \mathcal{B}^{n}$ with two central ($n-1$)-dimensional sections whose Banach-Mazur distance is over 2.

References

[1] Brass, P.; Moser, W.; Pach, J.: Research problems in discrete geometry. Springer, New York 2005.

Zbl pre02125965
[2] Dvoretzky, A.: Some results on convex bodies and Banach spaces. Proc. Internat. Sympos. Linear Spaces (Jerusalem 1960), 123-160, Jerusalem Academic Press, Jerusalem; Pergamon, Oxford. Zbl 0119.31803
[3] John, F.: Extremum problems with inequalities as subsidiary conditions. Courant Anniversary Volume, 1948, 187-204. Zbl 0034.10503
[4] Rudelson, M.: Extremal distances between sections of convex bodies. Geom. Funct. Anal. 14(5) (2004), 1063-1088.

Zbl 1072.52003
[5] Thompson, A. C.: Minkowski Geometry. Encyclopedia of Mathematics and its Applications 63, Cambridge University Press 1966. Zbl 0868.52001
[6] Tomczak-Jaegermann, N.: Banach-Mazur Distances and Finite-Dimensional Operator Ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics 38, Longman Scientific and Technical, New York 1989.

Zbl 0721.46004

Received May 25, 2007

