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Abstract. In the present paper we study the geometric structure of the
inverse Gamma manifold from the viewpoint of information geometry
and give the Kullback divergence, the J-divergence and the geodesic
equations. Also, some applications of the inverse Gamma distribution
are provided.
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1. Introduction

As we all know that information geometry has been applied into many fields, such
as statistical inference, system control, neural network and quantum theory. Some
scholars studied the statistical manifolds from the viewpoint of information geom-
etry. In [1], Amari proposed the concept of information geometry and studied the
exponential distribution families. Dodson ([4]) and his colleagues investigated the
bivariate normal distribution, the Gamma distribution, the McKay distribution
and the Frund distribution and gave the geometric structures of these distribu-
tions.
In the present paper, we obtain the Ricci curvatures, the Gaussian curvature of
the inverse Gamma manifold and give the Kullback divergence, the J-divergence
and the geodesic equations. In Section 5, some applications of the inverse Gamma
distribution are provided.

∗The subject is partially supported by the Foundation of China Education
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2. Preliminaries

Definition 2.1. For a density function p(x, θ), where θ = (θ1, θ2, . . . , θn), the
function l(x, θ) is defined as

l(x, θ) = ln p(x, θ). (2.1)

Definition 2.2. We call M = {l(x, θ)|(θ1, θ2, . . . , θn) ∈ Rn} an n-dimensional
distribution manifold, where (θ1, θ2, . . . , θn) plays the role of the coordinate system.

Definition 2.3. The Fisher information matrix (gij) is defined by

(gij) = (Eθ[∂il ∂jl]), i, j = 1, 2, . . . , n, (2.2)

where

∂il =
∂

∂θi
l(x, θ), i = 1, 2, . . . , n.

The inverse of (gij) is denoted by

(gij) = (gij)
−1, i, j = 1, 2, . . . , n. (2.3)

Definition 2.4. The Riemannian connection Γijk is defined by

Γijk =
1

2
(∂igjk + ∂jgki − ∂kgij), i, j, k = 1, 2, . . . , n (2.4)

and the α-connections are defined by

Γ
(α)
ijk = Γijk −

α

2
Tijk, i, j, k = 1, 2, . . . , n, (2.5)

where
Tijk = E[∂il ∂jl ∂kl], i, j, k = 1, 2, . . . , n. (2.6)

Definition 2.5. In the θ coordinate system, the α-curvature tensors R
(α)
ijkl are

defined by

R
(α)
ijkl = (∂jΓ

s(α)
ik − ∂iΓ

s(α)
jk )gsl + (Γ

(α)
jtl Γ

t(α)
ik − Γ

(α)
itl Γ

t(α)
jk ),

i, j, k, l, s, t = 1, 2, . . . , n,
(2.7)

where
Γ

k(α)
ij = Γ

(α)
ijs g

sk, i, j, k, s = 1, 2, . . . , n. (2.8)

Definition 2.6. The Ricci curvatures R
(α)
ik are defined by

R
(α)
ik = R

(α)
ijklg

jl, i, j, k, l = 1, 2, . . . , n. (2.9)

Definition 2.7. For n = 2, the Gaussian curvature K(α) is defined by

K(α) =
R

(α)
1212

det(gij)
. (2.10)
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Definition 2.8. Assume P (x, θp) and P (x, θq) are two points of the manifold M ,
then the Kullback divergence K(Pp, Pq) is defined by

K(Pp, Pq) = Eθp

[
ln
P (x, θp)

P (x, θq)

]
=

∫
P (x, θp) ln

P (x, θp)

P (x, θq)
dx

(2.11)

and the J-divergence J(Pp, Pq) is defined by

J(Pp, Pq)) =

∫
(P (x, θp)− P (x, θq)) ln

P (x, θp)

P (x, θq)
dx. (2.12)

When the two points P (x, θp) and P (x, θq) are close enough, from the Taylor’s
formula, one can see that

K(θ, θ + dθ) =
1

2
ds2

and
J(θ, θ + dθ) = ds2.

Definition 2.9. The geodesic equations of the manifold M with coordinate θ =
(θ1, θ2, . . . , θn) are characterized by

d2θk

dt2
+ Γk

ij

dθi

dt

dθj

dt
= 0. (2.13)

3. The inverse Gamma manifold

The set

{p(x, θ) =
µλ

xλ+1Γ(λ)
exp

{
−µ
x

}
, θ = (θ1, θ2) = (µ, λ), x > 0, λ > 0, µ > 0}

is called the inverse Gamma manifold, where

p(x, θ) =
µλ

xλ+1Γ(λ)
exp

{
−µ
x

}
, x > 0, λ > 0, µ > 0

is the probability density function of the inverse Gamma distribution.

Theorem 3.1. The α-Gaussian curvature of the inverse Gamma manifold is
given by

K(α) =
1− α2

4(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))2
(Γ3(λ)Γ

′′
(λ)

− Γ2(λ)(Γ
′
(λ))2 + λΓ3(λ)Γ(3)(λ)− 3λΓ2(λ)Γ

′
(λ)Γ

′′
(λ) + 2λΓ(λ)(Γ

′
(λ))3).
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Proof. Defining

l(x; θ) = ln p(x, θ)

= −µ
x

+ λ lnµ− (λ+ 1) lnx− ln Γ(λ),

then we can see that

∂1l = −1

x
+
λ

µ
, ∂2l = lnµ− lnx− Γ

′
(λ)

Γ(λ)

and

∂1∂1l = − λ

µ2
, ∂1∂2l = ∂2∂1l =

1

µ
, ∂2∂2l =

(Γ
′
(λ))2 − Γ(λ)Γ

′′
(λ)

Γ2(λ)
.

From (2.2), we get the Fisher information matrix

(gij) =

(
λ
µ2 − 1

µ

− 1
µ

Γ(λ)Γ
′′
(λ)−(Γ

′
(λ))2

Γ2(λ)

)
.

Thus the square of the arc length is given by

(ds)2 =
λ

µ2
(dλ)2 − 2

µ
dλdµ+

Γ(λ)Γ
′′
(λ)− (Γ

′
(λ))2

Γ2(λ)
(dµ)2.

The inverse matrix of (gij) is given by

(gij) =

(
µ2Γ(λ)Γ

′′
(λ)−µ2(Γ

′
(λ))2

λΓ(λ)Γ′′ (λ)−λ(Γ′ (λ))2−Γ2(λ)

µΓ2(λ)

λΓ(λ)Γ′′ (λ)−λ(Γ′ (λ))2−Γ2(λ)
µΓ2(λ)

λΓ(λ)Γ′′ (λ)−λ(Γ′ (λ))2−Γ2(λ)

λΓ2(λ)

λΓ(λ)Γ′′ (λ)−λ(Γ′ (λ))2−Γ2(λ)

)
.

From (2.6), we can get

T111 = −2λ

µ3
, T121 = T211 = T112 =

1

µ2
, T221 = T212 = T122 = 0, (3.1)

T222 =
Γ2(λ)Γ(3)(λ)− 3Γ(λ)Γ

′
(λ)Γ

′′
(λ) + 2(Γ

′
(λ))3

Γ3(λ)
. (3.2)

From (2.4), we can get

Γ111 = − 1

µ3
, Γ112 = Γ121 = Γ211 =

1

2µ2
, Γ122 = Γ212 = Γ221 = 0, (3.3)

Γ222 =
Γ2(λ)Γ(3)(λ)− 3Γ(λ)Γ

′
(λ)Γ

′′
(λ) + 2(Γ

′
(λ))3

2Γ3(λ)
. (3.4)

Then from (2.5) and (3.1) → (3.4), we can get

Γ
(α)
111 =

λ(α− 1)

µ3
, Γ

(α)
112 = Γ

(α)
121 = Γ

(α)
211 =

1− α

2µ2
, Γ

(α)
212 = Γ

(α)
122 = Γ

(α)
221 = 0, (3.5)
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Γ
(α)
222 =

Γ2(λ)Γ(3)(λ)− 3Γ(λ)Γ
′
(λ)Γ

′′
(λ) + 2(Γ

′
(λ))3

2Γ3(λ)
(1− α). (3.6)

From (2.8), (3.5) and (3.6), we get

Γ
1(α)
11 = − 2λΓ(λ)Γ

′′
(λ)− 2λ(Γ

′
(λ))2 − Γ2(λ)

2µ(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))
(1− α), (3.7)

Γ
2(α)
11 = − λΓ2(λ)

2µ2(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))
(1− α), (3.8)

Γ
1(α)
12 =

Γ(λ)Γ
′′
(λ)− (Γ

′
(λ))2

2(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))
(1− α), (3.9)

Γ
2(α)
12 =

Γ2(λ)

2µ(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))
(1− α), (3.10)

Γ
1(α)
21 =

Γ(λ)Γ
′′
(λ)− (Γ

′
(λ))2

2(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))
(1− α), (3.11)

Γ
2(α)
21 =

Γ2(λ)

2µ(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))
(1− α), (3.12)

Γ
1(α)
22 =

µ(Γ2(λ)Γ(3)(λ)− 3Γ(λ)Γ
′
(λ)Γ

′′
(λ) + 2(Γ

′
(λ))3)

2Γ(λ)(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))
(1− α) (3.13)

and

Γ
2(α)
22 =

λ(Γ2(λ)Γ(3)(λ)− 3Γ(λ)Γ
′
(λ)Γ

′′
(λ) + 2(Γ

′
(λ))3)

2Γ(λ)(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))
(1− α). (3.14)

From (2.7) and (3.5) → (3.14), we can get

R
(α)
1212 =

1− α2

4µ2Γ(λ)(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))
(Γ2(λ)Γ

′′
(λ)

− Γ(λ)(Γ
′
(λ))2 + λΓ2(λ)Γ(3)(λ)− 3λΓ(λ)Γ

′
(λ)Γ

′′
(λ) + 2λ(Γ

′
(λ))3).

Then from (2.10), by a direct calculation, we can obtain

K(α) =
1− α2

4(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))2
(Γ3(λ)Γ

′′
(λ)

− Γ2(λ)(Γ
′
(λ))2 + λΓ3(λ)Γ(3)(λ)− 3λΓ2(λ)Γ

′
(λ)Γ

′′
(λ) + 2λΓ(λ)(Γ

′
(λ))3).

This completes the proof of Theorem 3.1. �

From Theorem 3.1 we get the following

Corollary 3.1.
(1) R

(0)
1212 = 0 and Γ

k(1)
ij = 0, namely, the inverse Gamma manifolds are ±1-flat

and the coordinate system is 1-affine.
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(2) When α = 0, the Gaussian curvature satisfies

K(0) =
1

4(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))2
(Γ3(λ)Γ

′′
(λ)− Γ2(λ)(Γ

′
(λ))2

+ λΓ3(λ)Γ(3)(λ)− 3λΓ2(λ)Γ
′
(λ)Γ

′′
(λ) + 2λΓ(λ)(Γ

′
(λ))3).

Theorem 3.2. The Kullback divergence of the inverse Gamma manifold is given
by

K(Pp, Pq) = λp lnµp − λq lnµq + ln
Γ(λq)

Γ(λp)

− λp

µp

(µp − µq)− (λp − λq)(lnµp −
Γ

′
(λp)

Γ(λp)
)

and the J-divergence is given by

J(Pp, Pq) = (µp − µq)(
λq

µq

− λp

µp

) + (λp − λq)(ln
µq

µp

+
Γ

′
(λp)

Γ(λp)
− Γ

′
(λq)

Γ(λq)
).

Proof. From (2.11), we can get

K(Pp, Pq) = Eθp [ln
P (x, θp)

P (x, θq)
] =

∫
P (x, θp) ln

P (x, θp)

P (x, θq)
dx

= λp lnµp − λq lnµq + ln
Γ(λq)

Γ(λp)
− λp

µp

(µp − µq)

− (λp − λq)(lnµp −
Γ

′
(λp)

Γ(λp)
).

Then from (2.12) we can get

J(Pp, Pq) =

∫
(P (x, θp)− P (x, θq)) ln

P (x, θp)

P (x, θq)
dx

= K(Pp, Pq) +K(Pq, Pp)

= (µp − µq)(
λq

µq

− λp

µp

) + (λp − λq)(ln
µq

µp

+
Γ

′
(λp)

Γ(λp)
− Γ

′
(λq)

Γ(λq)
).

Corollary 3.2. When µp = µq , then

K(Pp, Pq) = ln
Γ(λq)

Γ(λp)
+ (λp − λq)

Γ
′
(λp)

Γ(λp)
, J(Pp, Pq) = (λp − λq)(

Γ
′
(λp)

Γ(λp)
− Γ

′
(λq)

Γ(λq)
).

When λp = λq = λ , then

K(Pp, Pq) = λ ln
µp

µq

− (µp − µq)
λ

µp

, J(Pp, Pq) = (µp − µq)(
λ

µq

− λ

µp

).
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Theorem 3.3. The geodesic equations are given by

d2λ

dt2
− 2(λΓ(λ)Γ

′′
(λ)− λ(Γ

′
(λ))2 − Γ2(λ)) + Γ2(λ)

2µ(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))
(
dλ

dt
)2

− Γ(λ)Γ
′′
(λ)− (Γ

′
(λ))2

λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ)

dλ

dt

dµ

dt

− µ(Γ2(λ)Γ(3)(λ)− 3Γ(λ)Γ
′
(λ)Γ

′′
(λ) + 2(Γ

′
(λ))3)

2Γ(λ)(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))
(
dµ

dt
)2 = 0,

(3.15)

d2µ

dt2
− λΓ2(λ)

2µ2(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))
(
dλ

dt
)2

+
Γ2(λ)

µ(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))

dλ

dt

dµ

dt

− λ(Γ2(λ)Γ(3)(λ)− 3Γ(λ)Γ
′
(λ)Γ

′′
(λ) + 2(Γ

′
(λ))3)

2Γ(λ)(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))
(
dµ

dt
)2 = 0.

(3.16)

Proof. By Definition 2.9 and using Γk
ij which we have calculated above, we can

get the geodesic equations immediately.

In particular, for fixed λ, from (3.16) we can get the solution with respect to µ
that µ = constant or c1t+ c2 = 1.

Similarly, for fixed µ, from (3.15) we can get the solution with respect to λ that
λ =constant or ∫

exp{−
∫
ϕ(λ, µ)dλ}dλ = t,

where

ϕ(λ, µ) =
2λΓ(λ)Γ

′′
(λ)− 2λ(Γ

′
(λ))2 − Γ2(λ)

2µ(λΓ(λ)Γ′′(λ)− λ(Γ′(λ))2 − Γ2(λ))
.

4. The affine immersion

Let M be an m-dimensional manifold, f be an immersion from M to Rm+1, and
ξ be a transversal vector field along f . We can identify TxR

m+1 ≡ Rm+1 for
∀x ∈ Rm+1. Then the pair {f, ξ} is said to be an affine immersion from M to
Rm+1, if for each point P ∈M , the following formula holds

Tf(P )R
m+1 = f∗(TPM)⊕ span ξP .

We denote the standard flat affine connection of Rm+1 with D. Identifying the
covariant derivative along f with D, we have the following decompositions

DXf∗Y = f∗(∇XY ) + h(X,Y )ξ,

DXξ = −f∗(Sh(X)) + τ(X)ξ.

The induced objects ∇, h, Sh and τ are the induced connection, the affine fun-
damental form, the affine shape operator and the transversal connection form,
respectively.



224 T. Li et al.: The Geometric Structure of the Inverse Gamma Distribution

Since the inverse Gamma distribution can be written as

ln p(x, λ, µ) = −µ
x
− (λ+ 1) lnx− (ln Γ(λ)− λ lnµ), x > 0, λ > 0, µ > 0,

where ψ(θ) = ln Γ(λ) − λ lnµ is called the potential function, then we get the
following

Proposition 4.1. Denote by θ = (θ1, θ2) = (µ, λ + 1) a natural coordinate
system. Then the inverse Gamma manifold can be realized in R3 by the graph of a
θ-potential function, namely, the inverse Gamma manifold can be realized by the
affine immersion {f, ξ}:

f :

(
θ1

θ2

)
=

(
µ

λ+ 1

) θ1

θ2

ψ(θ)

 =

 µ
λ+ 1
ψ(θ)

 , ξ =

 0
0
1

 ,

where ψ(θ) is the potential function.

5. Applications

The inverse Gamma distribution is very famous and it can be applied to various
fields. In [5], the authors used the inverse Gamma distribution to model the overall
distribution of total chip leakage. The Gamma and inverse Gamma texture dis-
tribution ([6]) were derived after the general CRB expressions under an arbitrary
texture model were simplified. Then the generalized Gauss-Laguerre quadrature
was used to compute the CRBs for gamma texture whereas the CRBs for the
inverse gamma texture. In non-Rayleigh distributed radar images, the number
of scatterers was viewed as a Poisson distributed random variable with the mean
itself random. Then in [7], the authors added three new possible distributions for
this mean, inverse Gamma, Beta of the first kind and Beta of the second kind,
and showed that new intensity distributions so obtained could be estimated, with
the interest of the extension validated on a real image.
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