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Abstract. In 1937, A. D. Alexandrov proved that if no parallel faces
of two 3-dimensional convex polytopes can be placed strictly one into
another via a translation, then the polytopes are translates of one an-
other.
The theory of hyperbolic virtual polytopes elucidates this theorem and
suggests natural ways of its refinement.
Namely, we present an example of two different 3-dimensional polytopes
such that, for each pair of their parallel faces, there exists at most one
translation placing one of the faces into another.
Another refinement: given two polytopes, if for any pair of parallel faces,
there exists at most one translation placing the face of the first polytope
strictly in the face of the second one, and there exists no translation
placing the face of the second polytope strictly in the face of the first
one, then the polytopes are translates of one another.
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1. Introduction

In 1939, A. D. Alexandrov formulated the following uniqueness conjecture and
proved it for analytic surfaces.
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Uniqueness conjecture for smooth convex surfaces. [2] Let K1 ∈ R3 and
K2 ∈ R3 be smooth closed convex surfaces of positive curvature. If the second
differential of the function H = H1 − H2 is an alternating or zero form, then
the surfaces F1 and F2 are translates of each other. (H1 and H2 are the support
functions of K1 and K2.)

In the same paper, he claims that there is an analogous assertion for convex
polytopes:

Theorem 1.1. (Uniqueness theorem for convex polytopes [1]) Let K, M be 3-
dimensional convex polytopes. If, for any pair of their parallel faces, no face can
be placed strictly into another via a translation, then the polytopes coincide up to
a translation. �

Much later, it turned out that the above conjecture for smooth surfaces is wrong.
The first counterexample was presented by Y. Martinez-Maure in 2001 [5]. Some
later, the author of the paper presented a series of new counterexamples based on
the theory of hyperbolic virtual polytopes [9], [10].

In the paper, we show that Theorem 1.1 admits a natural interpretation in
terms of the theory of hyperbolic polytopes. Moreover, a natural question arises
in this framework: what happens if we replace the condition of Theorem 1.1 by
a milder one. Namely, we allow at most one translation which places one of the
parallel faces into another (such a translation is called a rigid insertion).

Theorem 5.1 (a positive-type refinement) shows that under this condition, the
polytopes K and L do not necessarily coincide. We present such an example of
two different polytopes, each of them with 56 faces.

The example is far from trivial. For its construction, we need a hyperbolic
polytope H with the following additional property: the fan of H admits a regular
triangulation without Steiner points.

It seems that none of hyperbolic polytopes known before (see [6], [9], [10]) pos-
sesses this property, so we need some advanced technique to construct hyperbolic
polytopes.

To construct such a polytope H, we first construct the dual object, namely, the
graph of its support function which is a (spherically) saddle surface in the 3-
dimensional sphere, spanned by some special linkage of 8 great semicircles.

Theorem 6.1 (a negative-type refinement) asserts that, if we allow only one-
side rigid insertions, then the polytopes are translates of one another.

At the end of the paper, we formulate two open problems.

Acknowledgements. The author is grateful to Nikolai Mnëv for his attention
to the subject and useful remarks.

2. Virtual polytopes, hyperbolic polytopes

Virtual polytopes (introduced by A. Pukhlikov and A. Khovanskii [4], appeared
also in a natural way in P. McMullen’s polytope algebra [7]) can be represented
in more than four different but equivalent ways.
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In the paper, we make use of the first three of them.

• Virtual polytopes are elements of the Grothendieck group of the semigroup
of convex polytopes P equipped with the Minkowski addition ⊗; i.e., they
are formal expressions of type K ⊗ L−1, where K, L ∈ P .

• Virtual polytopes are polytopal functions [4], [7], i.e., finite linear combina-
tions of indicator functions of convex polytopes. So it makes sense to speak
of the value of a polytope K at a point x ∈ Rn.

• Virtual polytopes are defined by their support functions, i.e., piecewise linear
positively homogeneous functions defined on Rn (see [4]).

• A virtual polytope is a pair of type (a closed polytopal surface in Rn with
cooriented facets; a spherical fan) (see [9], [10]).

Now we give detailed explanations of the items, bounding from now on by dimen-
sion 3.

Denote by P the set of all compact convex polytopes in R3 (degenerate polytopes
are also included). P is a semigroup with respect to the Minkowski addition ⊗.

Denote by P∗ the Grothendieck group of P . The element of P∗ that is inverse to
K is denoted by K−1.

A function F : R3 → Z is polytopal if it admits a representation of the form

F =
∑

i

aiIKi
,

where ai ∈ Z, Ki ∈ P , and IKi
is the indicator function of the polytope Ki:

IKi
(x) =

{
1 if x ∈ Ki,

0 otherwise.

The affine hull aff(F ) of a polytopal function F is the affine hull of the support of
F . The dimension dim(F ) of a polytopal function F is the dimension of its affine
hull. The set of all polytopal functions M is endowed with two ring operations.
The role of addition is played by the pointwise addition, denoted by +. The
multiplication is generated by ⊗ and is denoted by the same symbol.

The unit element of the ring M is obviously the function E = I{O}.
Identifying convex compact polytopes with their indicator functions, we get

an inclusion π : P ⊂M. Keeping this identification in mind, we write K instead
of IK for convenience.

Due to the following theorem, all elements of the semigroup π(P) are invertible
in M.

Theorem 2.1. (On Minkowski inversion [4]) For any convex polytope K, we have

(−1)dim KIRelint(sK) ⊗K = E,

where s is the central symmetry mapping (with respect to the origin O), Relint(sK)
is the relative interior of the polytope sK (i.e., the interior taken in the affine hull
of K). �
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Hence the inclusion π : P ⊂M induces an inclusion P∗ ⊂M.

Definition 2.2. The image of the latter inclusion is called the group of virtual
polytopes. We denote it by the same letter P∗ for convenience.

Definition 2.3. Let K = L ⊗M−1 be a virtual polytope. The support function
hK of K is defined to be the pointwise difference of the support functions of L and
M :

hK = hL − hM .

Remark 2.4. Similarly to the convex case, the support function of a virtual
polytope is piecewise linear with respect to some fan. By a fan we mean (as
usual) a splitting of R3 in a union of polytopal cones with the common apex at O.
But in the sequel, we sometimes speak of (and draw) the intersection of the fan
with the unit sphere S2 centered at O. Thus the cones correspond to the spherical
polytopes (spherical cells).

Definition 2.5. [8] Let K =
∑

i aiKi with Ki ∈ P. Let ei(ξ) be a support plane

to Ki with the outer normal vector ξ. The polytope Kξ
i = Ki ∩ ei(ξ) is called

the face of the polytope Ki with the normal vector ξ, while the polytopal function
Kξ =

∑
i aiK

ξ
i is called the face of the polytopal function K with the normal vector

ξ.

A face of a virtual polytope is a virtual polytope as well. The 0-dimensional,
1-dimensional and 2-dimensional faces are called vertices, edges and facets re-
spectively.

Similarly to faces of convex polytopes, virtual faces behave linearly with re-
spect to the Minkowski addition:

Theorem 2.6. [8] In the above notation,

Kξ
1 ⊗Kξ

2 = (K1 ⊗K2)
ξ. �

Definition 2.7. [10] A point X is called a boundary point of a virtual polytope
K, if x ∈ cl(supp(Kξ)) for some ξ ∈ S2 such that ξ is not orthogonal to aff(K).
(cl denotes the closure.)

Theorem 2.8. [4] For two convex polytopes K and L, and a point x ∈ R3,

K ⊗ L−1(x) = χ(K ∩ tx(RelintL))(−1)dim L,

where χ stands for the Euler characteristic, tx is the translation by x. �

Corollary 2.9. Let M1, M2 be some convex polygons lying in a plane. Put M =
M1 ⊗ M−1

2 (it is a virtual polygon, i.e., a 2-dimensional virtual polytope.) The
following two assertions are valid :

(1) M admits a positive value at a point x if and only if txM2 ⊂ M1 or M1 ⊂
Relint(txM1).
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(2) Assume that M admits positive values only at its boundary points. If M
has no parallel edges (i.e., dim M ξ = 1 ⇒ dim M−ξ = 0), then it admits a
positive value at no more than one point.

Proof. (1) follows easily from Theorem 2.8.

(2) Suppose that M(x) = M(y) = 1 for x 6= y. Then for each point v of the
segment [xy], we have M(v)=1. Indeed, the inclusions txM2 ⊂ M1 and tyM2 ⊂ M1

imply tvM2 ⊂ M1. This means that the segment [xy] lies on edges M ξ and M−ξ,
where ξ is orthogonal to [xy]. A contradiction. �

The fan of a virtual polytope is defined below analogously to the classical definition
of the outer normal fan.

Definition 2.10. For a virtual polytope K ∈ P∗, its fan ΣK is the collection of
sets {ΣK(ν)}, where ν ranges over the set of faces of K, and

ΣK(ν) = cl({ξ|Kξ = ν}).

These polytopal sets (all of them are finite unions of some spherical polytopes)
are called cells of a fan. Similarly to the convex case, the support function of
K is linear on each cell of ΣK . Moreover, the fan of a virtual polytope K can
be defined as the minimal fan for which hK is linear on each cell. In addition,
we have the usual combinatorial duality: k-dimensional cells of ΣK correspond to
(3− k − 1)-dimensional faces of K.

The 0-dimensional cells are called the vertices of the fan.

3. Spherical graph of support function

It makes sense to draw the graph of the support function of a virtual polytope on
the 3-dimensional sphere. Fix an embedding of the 3-dimensional real space R3

in R4. The unit sphere centered at O in R3 (respectively, in R4) is denoted by S2

(respectively, by S3). Let h : R3 → R be a positively homogeneous continuous
function. For a point ξ ∈ S2, denote by e(ξ) the 2-plane in R3 tangent to S2 at ξ.
Denote by h|e the restriction of h on the plane e = e(ξ).

Consider the affine graph of the restriction h|e, namely,

Γaff (h, e) := {(x, y, z, t) ∈ R4 | (x, y, z) ∈ e; t = h(x, y, z)}

and its image Γsph(h, e) on S3 under the central projection φ with the center O
(see Figure 3.1).

The union of all these images Γsph(h) := ∪ξ∈S2Γsph(h, e(ξ)) is called the spher-
ical graph of the function h.

It is a 2-dimensional submanifold of S3. The spherical central projection
π : S3 \ {(0, 0, 0, 1), (0, 0, 0,−1)} → S2 maps Γsph(h) one-to-one on S2.
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Figure 3.1

Definition 3.2. [3] A surface F ⊂ R3 is called a saddle surface if there is no
plane cutting a bounded connected component off F .

Equivalently, a surface F is saddle if no plane intersects F locally at just one
point.

A surface F ⊂ S3 is called a spherically saddle surface if no great 2-dimen-
sional sphere intersects F locally at just one point.

A surface F ⊂ S3 is called spherically convex if each its chord lies (non-
strictly) above the surface (“above” refers to the direction of t-axes).

Definition 3.3. [9] A virtual polytope K is called hyperbolic if Γaff (h, e(ξ)) is a
saddle surface for every ξ ∈ S2. In the sequel, we call such virtual polytopes for
short hyperbolic polytopes.

Theorem 3.4. [10] K is a hyperbolic polytope if and only if all non-boundary
values of its facets are non-positive. �

Proposition 3.5. In the above notation,

• h is a convex function if and only if its spherical graph Γsph(h) is a spherically
convex surface;

• h is a linear function (i.e., the support function of a point) if and only if
Γsph(h) is a great 2-dimensional sphere;

• h is the support function of a hyperbolic polytope if and only if Γsph(h) is a
spherically saddle piecewise linear surface.

Proof. It suffices to observe that the central projection φ does not change the
convexity type because it maps planes to great 2-dimensional spheres on S3. �

4. A. D. Alexandrov’s theorem from the viewpoint of hyperbolic poly-
topes

Consider two conditions for 3-dimensional convex polytopes K and L.
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(∗) For each ξ ∈ S2 such that either dim(Kξ) = 2 or dim(Lξ) = 2, there exists
no translation t such that either tKξ ⊂ Lξ, tKξ 6= Lξ or tKξ ⊃ Lξ, tKξ 6= Lξ.

(∗∗) For each ξ ∈ S2 such that either dim(Kξ) = 2 or dim(Lξ) = 2, there
exists at most one translation t such that either tKξ ⊂ Lξ, tKξ 6= Lξ or
tKξ ⊃ Lξ, tKξ 6= Lξ . (If such a translation exists, we say that Kξ can be
rigidly inserted in Lξ.)

Theorem 4.1. (A. D. Alexandrov [1]) The condition (∗) implies that the poly-
topes K and L are translates of one another. �

The conditions can be reformulated in terms of hyperbolic polytopes.

Proposition 4.2. (1) Polytopes K and L satisfy the condition (∗) if and only if
the following two conditions are valid.

• The virtual polytope H = K ⊗ L−1 is hyperbolic.

• None of its 2-dimensional faces Hξ and their inverses (Hξ)−1 (considered
as the polytopal functions) admit positive values.

(2) If polytopes K and L satisfy the condition (∗∗), we have

• The virtual polytope H = K ⊗ L−1 is hyperbolic.

• The edges of the fan ΣH and edges of the fan ΣL have no common inner
points.

• No vertex of ΣL is an inner point of an edge of ΣH .

• A vertex ξ of ΣH is an inner point of an edge of ΣL implies dim Kξ =
dim Lξ = 1.

Proof. (1) and the first assertion of (2) follow directly from Theorem 3.4 and
Corollary 2.9.

Suppose an edge of ΣH and an edge of ΣL have a common inner point ξ. This
means that Kξ = Hξ ⊗ Lξ is a parallelogram, whereas Lξ equals one of its edges.
A contradiction to (∗∗).

Let ξ be a vertex of ΣL which is an inner point of an edge of ΣH . Then
dim Lξ = 2, and Kξ⊗(Lξ)−1 is a virtual segment. It means that either Kξ⊗(Lξ)−1

or Lξ⊗ (Kξ)−1 is a convex segment, and therefore admits positive values at all its
points. A contradiction. �

5. The main example (a positive-type refinement)

Theorem 5.1. There exist two different 3-dimensional convex polytopes K, L sat-
isfying the condition (∗∗).

Proof. Consider the polytopes H and L from the below Lemma 5.2. We can
assume that the Minkowski sum K = H ⊗ L is convex. (If it is not, replace L
by CL for a sufficiently big constant C.) Show that the pair K,L satisfies the
condition (∗∗).
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By Lemma 5.2 (1), dim Kξ = 2 ⇔ dim Hξ = 2 ⇔ dim Lξ = 2.
H is a hyperbolic polytope and its facets have no parallel edges. For each ξ,

the polytopal functions Hξ and (Hξ)−1 admit positive values at most at one point
(Theorem 3.4 and Corollary 2.9). This means (Corollary 2.9) that there exists at
most one translation which places one of the polygons Kξ, Lξ into another. �

Lemma 5.2. There exist a hyperbolic polytope H and a convex polytope L such
that

1. The fan ΣL is a refinement of ΣH without Steiner points. (I.e., ΣL refines
regularly ΣH without adding new vertices.)

2. Facets of H have no parallel edges.

Proof of the lemma. We shall construct the spherical graph of the support function
hH , keeping in mind the construction from Section 3.

Step 1. Fix the positive and negative hemispheres S2
± with the poles P = (0, 0, 1)

and −P = (0, 0,−1). Consider eight geodesic lines (i.e., great circles) in S3

forming a linkage as is shown in Figure 5.3. This means that each pair of lines
li, mi has two common points Pi and −Pi. No other pair of lines has intersections.
Figure 5.3 depicts the planar diagram of the linkage (i.e., its images under the
projection π on the positive and negative hemispheres with indicated “passes”).
In particular, the line l1 passes over l2 above S2

+, the line l1 passes under m2 above
S2

+ (“under” and “over” refer to the direction of the t-axes). Denote by λi the
spherical 2-gon with edges lying on li and mi, assuming that its image is marked
grey in Figure 5.3. Each of these 2-gons has two vertices, namely, Pi and −Pi.
The 2-gons Λi = π(λi) form a disconnected polytopal complex Λ embedded in S2.

Projection of the linkage on S2
+ Projection of the linkage on S2

−

Figure 5.3

For i = 1, . . . , 4, let
Qi ∈ li+1, π(Qi) ∈ π(mi) ∩ S2

+;

Ri ∈ li+1, π(Qi) ∈ π(li) ∩ S2
+.

(We assume here that l5 = l1, m5 = m1.)
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The tiling θ of S2 generated by the collection of lines π(mi) and π(li) is
obviously regular. Each of its vertices lies on the boundary of Λi for some i. Fix
its regular triangulation Θ.

Step 2. Next, move somewhat the vertices of the triangulation Θ (and denote
the new points by the same letters with primes) to satisfy the following conditions:

• All the movements are small.

• The new triangulation Θ′ of S2 is regular.

• Each of Λi is replaced by a spherical polytope Λ′ bounded by two convex
broken lines (see Figure 5.4). The lines are broken at each vertex of the
triangulation.

• No two edges of Θ′ adjacent to a vertex are parallel. (This is to satisfy the
condition (2) of Lemma 5.2.)

Apply the synchronized changes to λi. Namely, let λ′i be 2-dimensional spherical
polygons lying close to λi such that π(λ′i) = Λ′

i. In addition, we claim that the
prolongations of the edges of λ′i adjacent to P ′

i (and (−Pi)
′) and the boundary

(broken) lines of λ′i form the same linkage as the original lines li, mi.

Figure 5.4

Step 3. There exists a unique piecewise linear function h such that

1. The function h is linear on each triangle of Θ′ and on each Λ′
i (to be precise, h

is linear on each cone in R3 based on these spherical polygons, see Remark 2.4).

2. The polytopes λ′i lie on its spherical graph Γsph(h).

Prove that the surface Γsph(h) is saddle at each vertex A.
If A is not one of P ′

i or (−Pi)
′, it is a vertex of λ′i for some i, and the angle of

λ′i at A is greater than π. This means the required.
Consider now the vertex P ′

i . By construction, the surface in question contains
four segments with an endpoint at P ′

i : the two adjacent edges of λ′i and the seg-
ments P ′

iQ
′
i and P ′

iR
′
i. Due to the linking type, each hemisphere whose boundary

passes through P ′
i contains at least one of the segments. Therefore P ′

i is a saddle
vertex as well. The vertices (−Pi)

′ are treated similarly.

Step 4. Let H be the virtual polytope with the support function h. Let L be a
convex polytope with the fan generated by the triangulation θ. �
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Remark 5.4. Each of the polytopes K and L has 56 faces. The faces corresponds
to pairwise intersection points of the eight lines π(li) and π(mi). For ξ = π(P ′

i )
or π((−Pi)

′), the faces Kξ and Lξ are noninsertable in each other. The other 48
pairs of parallel faces admit rigid insertions.

6. A negative-type refinement and some open problems

We show that there is no an analogous example with one-side rigid insertions.
Namely, the following theorem holds.

Theorem 6.1. Let K, M be 3-dimensional convex polytopes. Suppose that for
each ξ ∈ S2 such that either dim(Kξ) = 2 or dim(Lξ) = 2, the two assertions are
valid:

1. There exists at most one translation t such that tKξ ⊂ Lξ, tKξ 6= Lξ.

2. There exists no translation t such that tLξ ⊂ Kξ, tLξ 6= Kξ.

Then the polytopes coincide up to a translation.

Prove the following lemma first.

Lemma 6.2. Let K be a virtual polytope, Γ = Γsph(hK) be the spherical graph of
its support function, Γ be its subgraph.

For a point ξ ∈ S2 and a point E in aff(Kξ), we have

Kξ(E) = 1 + χ(e ∩ Γ ∩ U(Ξ)),

where χ stands for the Euler characteristic; Ξ is the point on Γ such that π(Ξ) =
ξ; e is the spherical graph of the point E (i.e., a 2-dimensional sphere on S3);
U(Ξ) = {η ∈ S3| 0 6= |η, Ξ| < ε} is a deleted neighborhood of Ξ.

Proof of the lemma. Without loss of generality we may assume that dim K = 2 and
K = Kξ. Indeed, the spherical graphs of K and Kξ coincide in a neighborhood
of Ξ.

−χ(e ∩ Γ ∩ U(Ξ))

by duality,

= (#{l|l ⊂ aff (K) is an oriented line, E ∈ l; l is a support line to K})/2

= 1−K(E).

The latter equality is well-known for convex polygons. Owing to linearity, it also
is valid for virtual polygons. �

Proof of Theorem 6.1. Suppose the contrary and consider the hyperbolic polytope
H = K ⊗ L−1. It is proved in [10] that the fan of a hyperbolic polytope has at
least 4 cells (say, α1, . . . , α4) possessing the following property. Denote by (α)
the great sphere in S3 containing the face of Γsph(hH) which corresponds to one
of these cells. The spherical polytope α is bounded by two convex (piecewise
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geodesic) broken lines (say, L1and L2) such that their convexity directions look
like in Figure 6.3.

Figure 6.3

Each of L1, L2 has inner vertices. Indeed, if L1 has no inner vertices, it is a
geodesic segment longer or equal than π. This means that ΣH has no regular
refinement without Steiner points.

Near inner points of one of these lines (say, L1), the graph Γsph(hH) lies (non-
strictly) upon (α), whereas in a neighborhood of any inner point of the other line,
the graph Γsph(hH) lies below (α).

By Lemma 6.2, for any inner vertex ξ of the line L1, Hξ(A) = 1. Therefore,
the facet Lξ can be inserted in Kξ. �

Open problems

Problem 1 What is the minimal number of facets of two polytopes satisfying the
condition (∗∗)?

Problem 2 Do there exist 3-dimensional polytopes K and L satisfying the fol-
lowing intermediate condition?
(∗∗∗) For each ξ ∈ S2, such that either dim(Kξ) = 2 or dim(Lξ) = 2,
there exists a unique translation t such that either tKξ ⊂ Lξ, tKξ 6=
Lξ or tKξ ⊃ Lξ, tKξ 6= Lξ.

References

[1] Alexandrov, A. D.: An elementary proof of the Minkowski theorem and
some other theorems on convex polyhedra. In: A. D. Alexandrov, Selected
works. Part 1: Selected scientific papers. Gordon and Breach Publ., Ams-
terdam 1996. Zbl 0960.01035−−−−−−−−−−−−

[2] Alexandrov, A. D.: On uniqueness theorems for closed surfaces. (Russian)
Doklady Akad. Nauk SSSR 22(3) (1939), 99–102. Zbl 0020.40202−−−−−−−−−−−−

http://www.emis.de/MATH-item?0960.01035
http://www.emis.de/MATH-item?0020.40202


70 G. Panina: A. D. Alexandrov’s Uniqueness Theorem

[3] Burago, Yu.; Shefel, S. Z.: Theory of surfaces. In: Encyclopaedia of Mathe-
matical Sciences 48 (1992), Geometry III. Zbl 0777.00060−−−−−−−−−−−−

[4] Khovanskii, A.; Pukhlikov, A.: Finitely additive measures of virtual poly-
topes. St. Petersbg Math. J. 4(2) (1993), 337–356. Zbl 0791.52010−−−−−−−−−−−−

[5] Martinez-Maure, Y.: Contre-exemple à une caractérisation conjecturée de la
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