Areas of Certain Polygons in Connection with Determinants of Rectangular Matrices

Mirko Radić
University of Rijeka, Faculty of Philosophy, Department of Mathematics 51000 Rijeka, Omladinska 14, Croatia

Abstract

This article can be considered as an appendix to the article [2]. Here we have some results concerning areas of certain polygons. MSC 2000: 51E12, 51M044 Keywords: determinant of rectangular matrix, polygon, area of polygon

1. Introduction

In [1] the following definition of determinants of rectangular matrices is given: The determinant of $m \times n$ matrix A with columns A_{1}, \ldots, A_{n} and $m \leq n$ is the sum

$$
\begin{equation*}
\sum_{1 \leq j_{1}<j_{2}<\cdots<j_{m} \leq n}(-1)^{r+s}\left|A_{j_{1}}, \ldots, A_{j_{m}}\right| \tag{1.1}
\end{equation*}
$$

where $r=1+\cdots+m, s=j_{1}+\cdots+j_{m}$.
It is clear that every real $m \times n$ matrix $A=\left[A_{1}, \ldots, A_{n}\right]$ determines a polygon in \mathbb{R}^{m} (the columns of the matrix correspond to the vertices of the polygon) and vice versa. The polygon which corresponds to the matrix $\left[A_{1}, \ldots, A_{n}\right]$ will be denoted by $A_{1} \ldots A_{n}$.

In the following we shall restrict ourselves to the case when $m=2$ (polygons in \mathbb{R}^{2}). Here we list some results given in [2] which will be used.

Theorem 3. Let $A_{1} \ldots A_{n}$ be a polgon in \mathbb{R}^{2}. Then

$$
\begin{equation*}
2 \text { area of } A_{1} \ldots A_{n}=\left|A_{1}+A_{2}, A_{2}+A_{3}, \ldots, A_{n-1}+A_{n}, A_{n}+A_{1}\right| \text {. } \tag{1.2}
\end{equation*}
$$

0138-4821/93 \$ 2.50 © 2008 Heldermann Verlag

Corollary 6.1. If n is odd, then for every point X in \mathbb{R}^{2} it holds

$$
\begin{equation*}
\left|A_{1}+X, \ldots, A_{n}+X\right|=\left|A_{1}, \ldots, A_{n}\right| . \tag{1.3}
\end{equation*}
$$

Theorem 7. Let $A_{1} \ldots A_{n}$ be a polygon in \mathbb{R}^{2} and let n be an even integer. Then for every point X in \mathbb{R}^{2} it holds

$$
\begin{equation*}
\left|A_{1}+X, A_{2}+X, \ldots, A_{n}+X\right|=\left|A_{1}, A_{2}, \ldots, A_{n}\right| \tag{1.4}
\end{equation*}
$$

only if $\sum_{i=1}^{n}(-1)^{i} A_{i}=0$.
Corollary 7.1. It holds

$$
\begin{equation*}
\left|A_{1}+A_{2}+X, \ldots, A_{n}+A_{1}+X\right|=\left|A_{1}+A_{2}, \ldots, A_{n}+A_{1}\right|, \tag{1.5}
\end{equation*}
$$

where $\sum_{i=1}^{n}(-1)^{i} A_{i}=0$ need not be fulfilled. (It is enough for n to be even.)
Namely, if n is even, then $\sum_{i=1}^{n}(-1)^{i}\left(A_{i}+A_{i+1}\right)=0$.
Of course, (1.5) also holds if n is odd since holds (1.3) where now instead of A_{i} we have $A_{i}+A_{i+1}$.

Theorem 8. Let $A_{1} \ldots A_{n}$ be a polygon in \mathbb{R}^{2} and let $\sum_{i=1}^{n}(-1)^{i} A_{i}=0$. Then

$$
\begin{equation*}
\left|A_{1}, \ldots, A_{n}\right|=\left|A_{1}, \ldots, A_{n-1}\right| . \tag{1.6}
\end{equation*}
$$

Theorem 9. Let $A_{1} \ldots A_{n}$ be a polygon in \mathbb{R}^{2} with even n and let $\sum_{i=1}^{n}(-1)^{i} A_{i}=$ 0 . Then

$$
\begin{equation*}
\left|A_{1}, \ldots, A_{n}\right|=\left|A_{1}, \ldots, A_{k}\right|+\left|A_{k+1}, \ldots, A_{n}\right| \tag{1.7}
\end{equation*}
$$

where k may be any integer such that $1<k<n$.
Corollary 10.1. If n is odd then for each $i \in\{1, \ldots, n\}$ holds (cyclic)

$$
\begin{equation*}
\left|A_{i}, \ldots, A_{n}, A_{1}, \ldots, A_{i-1}\right|=\left|A_{1}, \ldots, A_{n}\right| . \tag{1.8}
\end{equation*}
$$

If n is even then above relation holds if $\sum_{i=1}^{n}(-1)^{i} A_{i}=0$.
Thus, in both cases when n is odd or when n is even, it holds

$$
\begin{equation*}
\left|A_{i}+A_{i+1}, \ldots, A_{n}+A_{1}, A_{1}+A_{2}, \ldots, A_{i-1}+A_{i}\right|=\left|A_{1}+A_{2}, \ldots, A_{n}+A_{1}\right| . \tag{1.9}
\end{equation*}
$$

Here in this article, we shall mostly deal with k-outscribed polygons where we have the following definition D_{k} (definition for k-outscribed). This is the fundamental definition for this article.

Let $A_{1} \ldots A_{n}$ be any given polygon in \mathbb{R}^{2} and let k be any given positive integer such that $k<n$. Then polygon $P_{1} \ldots P_{n}$, if such exists, will be called k-outscribed polygon to the polygon $A_{1} \ldots A_{n}$ if

$$
\left.\begin{array}{r}
P_{1}+P_{2}+\cdots+P_{k}=k A_{1}, \tag{k}\\
P_{2}+P_{3}+\cdots+P_{k+1}=k A_{2}, \\
\vdots \\
P_{n}+P_{1}+\cdots+P_{k-1}=k A_{n} .
\end{array}\right\}
$$

In other words, if the center of gravity of the vertices $P_{i}, P_{i+1}, \ldots, P_{i+k-1}$ is the vertex A_{i}.

Remark 1. In the proofs of some of the following theorems we shall for convenience (simplicity writing and complete analogy) first consider an example and then state the main general facts from which will be clear that considered theorem holds good. In this way we also attain the proof be relatively easy to read.

2. Areas of \boldsymbol{k}-outscribed polygons

First we prove the following theorem.
Theorem 1. Let $A_{1} \ldots A_{n}$ be any given polygon in \mathbb{R}^{2} and let k be any given positive integer such that $k<n$ and $G C D(k, n)=1$. Then there exists unique k-outscribed polygon $P_{1} \ldots P_{n}$ to the polygon $A_{1} \ldots A_{n}$ and it holds

$$
\begin{equation*}
2 \text { area of } P_{1} \ldots P_{n}=k^{2}\left|B_{1}+B_{2}, B_{2}+B_{3}, \ldots, B_{n}+B_{1}\right| \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{i}=A_{i}+A_{i+k}+\cdots+A_{i+\left(x_{k}-1\right) k}, i=1, \ldots, n \tag{2.2}
\end{equation*}
$$

and x_{k} is the least positive integer x such that

$$
\begin{equation*}
k x=1(\bmod n) . \tag{2.3}
\end{equation*}
$$

(Of course, indices are calculated modulo n.)
Proof. First let us remark that from the equations $\left(D_{k}\right)$ follows

$$
\begin{equation*}
P_{1}+\cdots+P_{n}=A_{1}+\cdots+A_{n} . \tag{2.4}
\end{equation*}
$$

It is convenient to consider one example first, say, that where $n=11$ and $k=5$. In this case we have the following nine equations

$$
\begin{equation*}
P_{1}+P_{2}+P_{3}+P_{4}+P_{5}=5 A_{1}, \tag{2.5}
\end{equation*}
$$

$$
\begin{array}{r}
P_{6}+P_{7}+P_{8}+P_{9}+P_{10}=5 A_{6}, \\
P_{11}+P_{1}+P_{2}+P_{3}+P_{4}=5 A_{11}, \\
P_{5}+P_{6}+P_{7}+P_{8}+P_{9}=5 A_{5}, \\
P_{10}+P_{11}+P_{1}+P_{2}+P_{3}=5 A_{10}, \\
P_{4}+P_{5}+P_{6}+P_{7}+P_{8}=5 A_{4}, \\
P_{9}+P_{10}+P_{11}+P_{1}+P_{2}=5 A_{9}, \\
P_{3}+P_{4}+P_{5}+P_{6}+P_{7}=5 A_{3}, \\
 \tag{2.6}\\
P_{8}+P_{9}+P_{10}+P_{11}+P_{1}=5 A_{8},
\end{array}
$$

or briefly written

$$
\begin{equation*}
\sum_{i=1}^{5} P_{i}=5 A_{1}, \quad \sum_{i=1+5}^{2.5} P_{i}=5 A_{6}, \quad \ldots, \quad \sum_{i=1+8 \cdot 5}^{9.5} P_{i}=5 A_{8} \tag{2.7}
\end{equation*}
$$

where the sums $1+5,1+2 \cdot 5, \ldots, 1+8 \cdot 5$ and the products $2 \cdot 5,3 \cdot 5, \ldots, 9 \cdot 5$ are calculated modulo 11 . By adding up of the above nine equations we get
$4\left(P_{1}+P_{2}+\cdots+P_{11}\right)+P_{1}=5\left(A_{1}+A_{6}+A_{11}+A_{5}+A_{10}+A_{4}+A_{9}+A_{3}+A_{8}\right)$,
from which follows

$$
P_{1}=-4 S+5\left(A_{1}+A_{6}+A_{11}+A_{5}+A_{10}+A_{4}+A_{9}+A_{3}+A_{8}\right),
$$

where

$$
\begin{equation*}
S=A_{1}+A_{2}+\cdots+A_{11} \tag{2.8}
\end{equation*}
$$

since holds $P_{1}+\cdots+P_{11}=A_{1}+\cdots+A_{11}$.
In this connection let us remark that the left-hand side of the equation (2.5) begins with P_{1} and that left-hand side of the equation (2.6) ends with P_{1}.

If we begin with the equation

$$
P_{2}+P_{3}+P_{4}+P_{5}+P_{6}=5 A_{2},
$$

where now P_{2} is the first, in the end the ninth equation will be

$$
P_{9}+P_{10}+P_{11}+P_{1}+P_{2}=5 A_{9} .
$$

From so obtained nine equations

$$
\sum_{i=2}^{1+5} P_{i}=5 A_{2}, \quad \sum_{i=2+5}^{1+2 \cdot 5} P_{i}=5 A_{7}, \quad \ldots, \quad \sum_{i=2+8 \cdot 5}^{1+9 \cdot 5} P_{i}=5 A_{9}
$$

by adding up, we get

$$
P_{2}=-4 S+5\left(A_{2}+A_{7}+A_{1}+A_{6}+A_{11}+A_{5}+A_{10}+A_{4}+A_{9}\right),
$$

where S is given by (2.8).
In the same way can be get P_{3}, P_{4} and so on. Thus, we have

$$
\begin{equation*}
P_{i}=-4 S+5\left(A_{i}+A_{i+5}+A_{i+2.5}+\cdots+A_{i+8 \cdot 5}\right), i=1, \ldots, 11 . \tag{2.9}
\end{equation*}
$$

It can be seen that $x_{5}=9$ is the least positive solution of the equation

$$
\begin{equation*}
5 x=1(\bmod 11) . \tag{2.10}
\end{equation*}
$$

So for each $P_{i}, i=1, \ldots, 11$, there are 9 equations which completely determine P_{i}.
In this connection let us remark that for the least positive solution x_{5} of the equation (2.10) there is positive integer y_{5} such that

$$
\begin{equation*}
5 x_{5}-11 y_{5}=1 . \tag{2.11}
\end{equation*}
$$

It is easy to see that instead of $-4 S$ in the relation (2.9) can be written $-y_{5} S$. Thus, the equation (2.11) is closely connected with P_{i} given by (2.9).

It is not difficult to see that analogously holds generally for the case when $G C D(k, n)=1$. Namely, we have Diofant's equation

$$
\begin{equation*}
k x-n y=1, \tag{2.12}
\end{equation*}
$$

and it holds: If x_{k} is the least positive integer such that holds (2.3) and y_{k} is such that

$$
\begin{equation*}
k x_{k}-n y_{k}=1, \tag{2.13}
\end{equation*}
$$

then the solution of the system

$$
\begin{equation*}
P_{i}+P_{i+1}+\cdots+P_{i+k-1}=k A_{i}, \quad i=1, \ldots, n \tag{2.14}
\end{equation*}
$$

is given by

$$
\begin{equation*}
P_{i}=-y_{k} S+k\left(A_{i}+A_{i+k}+A_{i+2 k}+\cdots+A_{i+\left(x_{k}-1\right) k}\right), \quad i=1, \ldots, n \tag{2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
S=A_{1}+\cdots+A_{n} . \tag{2.16}
\end{equation*}
$$

In this connection let us remark that, for example, instead of equations given by (2.7) we have the following equations

$$
\sum_{i=1}^{k} P_{i}=k \cdot A_{1}, \quad \sum_{i=1+k}^{2 k} P_{i}=k \cdot A_{1+k}, \ldots, \sum_{i=1+\left(x_{k}-1\right) k}^{k \cdot x_{k}} P_{i}=k \cdot A_{1+\left(x_{k}-1\right) k} .
$$

Thus, the solving of the system (2.14) reduces in fact to the solving of the Diofant's equation (2.12). So, if $n=11, \mathrm{k}=5$, we have Diofant's equation (2.11) whose solution is given by

$$
x=11 u-2, \quad y=5 u-1
$$

where $u \in Z$. For $u=0$ we have $x_{5}=9, y_{5}=4$.

Now, when we have P_{1}, \ldots, P_{n} given by (2.15), we can use property (1.3) or property (1.5). Namely, if we take $X=2 y_{k} S$ we can write

$$
\begin{aligned}
\left|P_{1}+P_{2}, \ldots, P_{n}+P_{1}\right| & =\left|P_{1}+P_{2}+2 y_{k} S, \ldots, P_{n}+P_{1}+2 y_{k} S\right| \\
& =\left|k B_{1}+k B_{2}, \ldots, k B_{n}+k B_{1}\right| \\
& =k^{2}\left|B_{1}+B_{2}, \ldots, B_{n}+B_{1}\right|,
\end{aligned}
$$

where B_{1}, \ldots, B_{n} are given by (2.2).
In this connection let us remark that

$$
\left|k\left(B_{1}+B_{2}\right), \ldots, k\left(B_{n}+B_{1}\right)\right|=k^{2}\left|B_{1}+B_{2}, \ldots, B_{n}+B_{1}\right|
$$

since determinant has two rows.
This completes the proof of Theorem 1.
Corollary 1.1. Let $A_{1} \ldots A_{n}$ and k be as in Theorem 1. Then there is a unique $(n-k)$-outscribed polygon $Q_{1} \ldots Q_{n}$ to the polygon $A_{1} \ldots A_{n}$ for which

$$
\begin{equation*}
2 \text { area of } Q_{1} \ldots Q_{n}=(n-k)^{2}\left|C_{1}+C_{2}, \ldots, C_{n}+C_{1}\right| \text {, } \tag{2.17}
\end{equation*}
$$

where

$$
C_{i}=A_{i}+A_{i+n-k}+A_{i+2(n-k)}+\cdots+A_{i+\left(x_{n-k}-1\right)(n-k)}, \quad i=1, \ldots, n
$$

and x_{n-k} is the least positive solution of the equation

$$
\begin{equation*}
(n-k) x=1(\bmod n) . \tag{2.18}
\end{equation*}
$$

Proof. It is easy to see that $G C D(n, k)=1 \Leftrightarrow G C D(n, n-k)=1$.
Theorem 2. Let x_{k} be as in Theorem 1 and x_{n-k} as in Corollary 1.1. Then

$$
\begin{equation*}
x_{k}+x_{n-k}=n . \tag{2.19}
\end{equation*}
$$

Proof. From the known fact number theory it follows

$$
\begin{equation*}
x_{k}<n, \quad x_{n-k}<n . \tag{2.20}
\end{equation*}
$$

Namely,

$$
\begin{aligned}
& \{k \cdot 1, k \cdot 2, \ldots, k(n-1)\}_{\bmod n}=\{1,2, \ldots, n-1\}, \\
& \{(n-k) \cdot 1,(n-k) \cdot 2, \ldots,(n-k)(n-1)\}_{\bmod n}=\{1,2, \ldots, n-1\} .
\end{aligned}
$$

Now, from

$$
k x_{k}=1(\bmod n), \quad(n-k) x_{n-k}=1(\bmod n)
$$

or

$$
k x_{k}=p n+1, \quad(n-k) x_{n-k}=q n+1
$$

where p and q are some integers, follows

$$
k\left(x_{k}+x_{n-k}\right)=\left(p-q+x_{n-k}\right) n .
$$

Thus, $x_{k}+x_{n-k}$ must be divisible by n, since holds (2.20).

Theorem 3. Let $P_{1} \ldots P_{n}$ be as in Theorem 1 and $Q_{1} \ldots Q_{n}$ as in Corollary 1.1. Then

$$
\begin{equation*}
\left(1 / k^{2}\right) \text { area of } P_{1} \ldots P_{n}=\left(1 /(n-k)^{2}\right) \text { area of } Q_{1} \ldots Q_{n} . \tag{2.21}
\end{equation*}
$$

In other words, it holds

$$
\begin{equation*}
\left|B_{1}+B_{2}, \ldots, B_{n}+B_{1}\right|=\left|C_{1}+C_{2}, \ldots, C_{n}+C_{1}\right|, \tag{2.22}
\end{equation*}
$$

where

$$
\begin{gather*}
B_{i}=A_{i}+A_{i+k}+\cdots+A_{i+\left(x_{k}-1\right) k}, \quad i=1, \ldots, n \tag{2.23}\\
C_{i}=A_{i}+A_{i+(n-k)}+\cdots+A_{i+\left(x_{n-k}-1\right)(n-k)}, \quad i=1, \ldots, n . \tag{2.24}
\end{gather*}
$$

Proof. First we show that there is similarity from $P_{1} \ldots P_{n}$ to $Q_{1} \ldots Q_{n}$ given by

$$
\begin{equation*}
Q_{n-k+i}=-\frac{n-k}{k} P_{i}+\frac{S}{k}, \quad i=1, \ldots, n \tag{2.25}
\end{equation*}
$$

where S is given by (2.16). For this purpose it is enough to show that for each $i=1, \ldots, n$ it holds

$$
Q_{n-k+i}+Q_{n-k+i+1}+\cdots+Q_{n-k+i+(n-k)-1}=(n-k) A_{n-k+i} .
$$

For simplicity, taking $i=1$, we can write

$$
\begin{aligned}
\sum_{i=1}^{n-k} Q_{n-k+i} & =-\frac{n-k}{k}\left(P_{1}+P_{2}+\cdots+P_{n-k}\right)+\frac{(n-k) S}{k} \\
& =-\frac{n-k}{k}\left[S-\left(P_{n-k+1}+P_{n-k+2}+\cdots+P_{n-k+k}\right)\right]+\frac{(n-k) S}{k} \\
& =-\frac{n-k}{k}\left[S-k A_{n-k+1}\right]+\frac{(n-k) S}{k} \\
& =(n-k) A_{n-k+1} .
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
& \left|Q_{n-k+1}+Q_{n-k+2}, \ldots, Q_{n-k+n}+Q_{n-k+1}\right| \\
& =\left|-\frac{n-k}{k}\left(P_{1}+P_{2}\right)+\frac{2 S}{k}, \ldots,-\frac{n-k}{k}\left(P_{n}+P_{1}\right)+\frac{2 S}{k}\right| \\
& =\left(\frac{n-k}{k}\right)^{2}\left|P_{1}+P_{2}, \ldots, P_{n}+P_{1}\right|,
\end{aligned}
$$

which according to (1.5) can be written as

$$
k^{2}\left|Q_{1}+Q_{2}, \ldots, Q_{n}+Q_{1}\right|=(n-k)^{2}\left|P_{1}+P_{2}, \ldots, P_{n}+P_{1}\right| .
$$

This proves Theorem 3.

Example 1. Let $A_{1} \ldots A_{11}$ and k be as in Theorem 1. Since in this case $x_{5}=$ $9, y_{5}=4, x_{6}=2, y_{6}=1$, we have

$$
\begin{aligned}
P_{1} & =-4 S+5\left(A_{1}+A_{6}+A_{11}+A_{5}+A_{10}+A_{4}+A_{9}+A_{3}+A_{8}\right) \\
& =-5 S+5\left(A_{1}+A_{6}+A_{11}+A_{5}+A_{10}+A_{4}+A_{9}+A_{3}+A_{8}\right)+S \\
& =-5\left(A_{2}+A_{7}\right)+S, \\
Q_{1} & =6\left(A_{1}+A_{7}\right)-S .
\end{aligned}
$$

Generally it holds

$$
\begin{gather*}
P_{i}=-5\left(A_{i+1}+A_{(i+1)+5}\right)+S, \quad i=1, \ldots, 11 \tag{2.26}\\
Q_{i}=6\left(A_{i}+A_{i+6}\right)-S, \quad i=1, \ldots, 11 \tag{2.27}
\end{gather*}
$$

so that we have

$$
\begin{aligned}
\left|P_{1}+P_{2}, \ldots, P_{11}+P_{1}\right| & =25\left|A_{2}+A_{7}+A_{3}+A_{8}, \ldots, A_{11}+A_{6}+A_{2}+A_{7}\right|, \\
\left|Q_{1}+Q_{2}, \ldots, Q_{11}+Q_{1}\right| & =36\left|A_{2}+A_{7}+A_{3}+A_{8}, \ldots, A_{11}+A_{6}+A_{2}+A_{7}\right|,
\end{aligned}
$$

where properties (1.5) and (1.9) are used.
In this connection let us remark that each column of determinants

$$
\left|P_{1}+P_{2}, \ldots, P_{n}+P_{1}\right|,\left|Q_{1}+Q_{2}, \ldots, Q_{n}+Q_{1}\right|
$$

can be expressed as sum of four corresponding vertices since from $x_{5}+x_{6}=11$ follows $2 x_{6}=2\left(11-x_{5}\right)=4$.

Analogously holds generally since from $x_{k}+x_{n-k}=n$ follows $2 x_{n-k}=2(n-$ x_{k}).

Concerning relation (2.27), we can, using (2.26), write

$$
\begin{aligned}
Q_{6+i} & =-\frac{6}{5}\left(-5\left(A_{i+1}+A_{i+6}+S\right)\right)+\frac{S}{5} \\
& =6\left(A_{i+1}+A_{i+6}\right)-S .
\end{aligned}
$$

So, if $i=6$, then $Q_{1}=6\left(A_{7}+A_{1}\right)-S$.
Now we shall consider the case where $G C D(k, n)>1$. The following theorem is easy to prove.

Theorem 4. Let $A_{1} \ldots A_{n}$ be a polygon in \mathbb{R}^{2} and let k be an integer such that $1<k<n$ and $G C D(k, n)=d>1$. Then only one of the following two assertions is true:
(i) There is no k-outscribed polygon to the polygon $A_{1} \ldots A_{n}$
(ii) There are infinitely many k-outscribed polygons to the polygon $A_{1} \ldots A_{n}$.

The second appears only if

$$
\left.\begin{array}{r}
A_{1}+A_{1+k}+A_{1+2 k}+\cdots+A_{1+(\hat{x}-1) k} \tag{k}\\
=A_{2}+A_{2+k}+A_{2+2 k}+\cdots+A_{2+(\hat{x}-1) k} \\
\cdots \cdots+A_{d+(\hat{x}-1) k},
\end{array}\right\}
$$

where \hat{x} is the least positive integer which is a solution of the equation

$$
\begin{equation*}
k x=0(\bmod n) . \tag{2.28}
\end{equation*}
$$

In other words, the relations given by $\left(E_{k}\right)$ (existence for k-outscribed) are necessary and sufficient conditions for existence. In particular, if $G C D(k, n)=2$, then $\left(E_{k}\right)$ can be written as $\sum_{i=1}^{n}(-1) A_{i}=0$.

Proof. First let us remark that the relations (conditions) $\left(E_{k}\right)$ express that the center of gravity of the vertices

$$
A_{i}, A_{i+k}, A_{i+2 k}, \ldots, A_{i+(\hat{x}-1) k}
$$

is the same for each $i=1, \ldots, d$. Alike it is easy to see that this center is also the center of gravity of the vertices $A_{1}, A_{2}, \ldots, A_{n}$. Namely, if c is such that

$$
\frac{A_{i}+A_{i+k}+A_{i+2 k}+\cdots+A_{i+(\hat{x}-1) k}}{\hat{x}}=c, \quad i=1, \ldots, d
$$

then

$$
\hat{x} c d=\sum_{i=1}^{n} A_{i} \quad \text { or } \quad c=\frac{1}{n} \sum_{i=1}^{n} A_{i}, \quad \text { since } \hat{x} d=n .
$$

To prove Theorem 4 we shall first consider one example, say, that where $n=15$ and $k=6$. In this case we have

$$
\begin{array}{ll}
P_{1}+P_{2}+P_{3}+P_{4}+P_{5}+P_{6}=6 A_{1}, & \\
P_{7}+P_{8}+P_{9}+P_{10}+P_{11}+P_{12}=6 A_{7}, & \\
P_{13}+P_{14}+P_{15}+P_{1}+P_{2}+P_{3}=6 A_{13}, & \\
P_{4}+P_{5}+P_{6}+P_{7}+P_{8}+P_{9}=6 A_{4}, & \\
P_{10}+P_{11}+P_{12}+P_{13}+P_{14}+P_{15}=6 A_{10}, & \\
P_{2}+\cdots P_{7}=6 A_{2}, & P_{3}+\cdots+P_{8}=6 A_{3} \\
P_{8}+\cdots P_{13}=6 A_{8}, & P_{9}+\cdots+P_{14}=6 A_{9} \\
P_{14}+\cdots P_{4}=6 A_{14}, & P_{15}+\cdots+P_{5}=6 A_{15} \\
P_{5}+\cdots P_{10}=6 A_{5}, & P_{6}+\cdots+P_{11}=6 A_{6} \\
P_{11}+\cdots P_{1}=6 A_{11}, & P_{12}+\cdots+P_{2}=6 A_{12}
\end{array}
$$

Since $2\left(P_{1}+\cdots+P_{15}\right)=2 S$, where $S=A_{1}+\cdots+A_{15}$, it holds

$$
\begin{aligned}
2 S & =6\left(A_{1}+A_{7}+A_{13}+A_{4}+A_{10}\right) \\
& =6\left(A_{2}+A_{8}+A_{14}+A_{5}+A_{11}\right) \\
& =6\left(A_{3}+A_{9}+A_{15}+A_{6}+A_{12}\right) .
\end{aligned}
$$

The above relations can be written as

$$
\left.\begin{array}{rl}
& A_{1}+A_{1+6}+A_{1+2 \cdot 6}+A_{1+3 \cdot 6}+A_{1+(\hat{x}-1) 6} \tag{6}\\
= & A_{2}+A_{2+6}+A_{2+2 \cdot 6}+A_{2+3 \cdot 6}+A_{2+(\hat{x}-1) 6} \\
= & A_{3}+A_{3+6}+A_{3+2 \cdot 6}+A_{3+3 \cdot 6}+A_{3+(\hat{x}-1) 6} .
\end{array}\right\}
$$

since $x=5$ is the least positive integer such that $6 x=0(\bmod 15)$.
From this it is clear that the system

$$
P_{i}+P_{i+1}+\cdots+P_{i+5}=6 A_{i}, \quad i=1, \ldots, 15
$$

has a solution if and only if holds $\left(E_{6}\right)$.
In the same way can be seen that the system

$$
P_{i}+P_{i+1}+\cdots+P_{i+k-1}=k A_{i}, \quad i=1, \ldots, n
$$

where $G C D(k, n)=d>1$, has a solution if and only if holds $\left(E_{k}\right)$. Here instead of the equations stated in example where $n=15$ and $k=6$, we have the equations

$$
\begin{align*}
\sum_{i=1}^{k} P_{i} & =k A_{1}, \sum_{i=1+k}^{2 k} P_{i}=k A_{1+k}, \ldots, \sum_{i=1+(\hat{x}-1) k}^{k \hat{x}} P_{i}=k A_{1+(\hat{x}-1) k} \tag{1}\\
\sum_{i=d} P_{i} & =k A_{d}, \sum_{i=d+k}^{d-1+2 k} P_{i}=k A_{d+k}, \ldots, \sum_{i=d+(\hat{x}-1) k}^{d-1+\hat{x} k} P_{i}=k A_{d+(\hat{x}-1) k} \quad\left(\mathrm{i}_{d}\right) \tag{d}
\end{align*}
$$

where $x=\hat{x}$ is the least positive integer such that $k x=0(\bmod n)$.
In this connection let us remark that from the first \hat{x} equations given by $\left(i_{1}\right)$, by adding up, follows

$$
\frac{k}{d} S=k\left(A_{1}+A_{1+k}+A_{1+2 k}+\cdots+A_{1+(\hat{x}-1) k}\right)
$$

where $S=A_{1}+\cdots+A_{n}$. Also let us remark that from $\frac{k}{d} n=k \frac{n}{d}$ follows that $\hat{x}=\frac{n}{d}$.

Concerning term $\frac{k}{d} S$ on the left-hand side of the above equation let us remark that $\frac{k}{d} n=k \hat{x}$.

Thus, supposing that holds $\left(E_{k}\right)$, it remains to prove that matrix of the system has rank equal $n-d+1$. First about the matrix of the system where $n=15$ and
$k=6$, that is, about the matrix

$$
K=\left[\begin{array}{lllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Consider the 15 lines in K as vectors x_{i}. We have

$$
x_{1}=(1111110 \ldots 0), \ldots, x_{15}=(111110 \ldots 01) .
$$

$\left\{x_{i}\right\}$ is linear dependent if

$$
\begin{equation*}
\sum_{i=1}^{15} \lambda_{i} x_{i}=0 \text { with } \sum_{i=1}^{15} \lambda_{i}^{2}>0 . \tag{R}
\end{equation*}
$$

There is

$$
\left.\begin{array}{r}
x_{1}+x_{7}+x_{13}+x_{4}+x_{10}=(11 \ldots 1) \tag{2.29}\\
x_{2}+x_{8}+x_{14}+x_{5}+x_{11}=(11 \ldots 1) \\
x_{3}+x_{9}+x_{15}+x_{6}+x_{12}=(11 \ldots 1) .
\end{array}\right\}
$$

Choose

$$
\begin{gathered}
\lambda_{1}=\lambda_{7}=\lambda_{13}=\lambda_{4}=\lambda_{10} \\
\lambda_{2}=\lambda_{8}=\lambda_{14}=\lambda_{5}=\lambda_{11} \\
\lambda_{3}=\lambda_{9}=\lambda_{15}=\lambda_{6}=\lambda_{12} .
\end{gathered}
$$

Then

$$
\sum_{i=1}^{15} \lambda_{i} x_{i}=2 \cdot\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) \cdot(11 \ldots 1)=0 \text { for } \lambda_{3}=-\lambda_{1}-\lambda_{2}
$$

Thus, there exist at least two parameters λ_{1}, λ_{2} for (R). From this it is clear that the rank of K is $\leq 15-2=13$.

On the other hand there is

$$
\sum_{i=1}^{13} \lambda_{i} x_{i}=0 \Longrightarrow \lambda_{1}=\lambda_{2}=\cdots=\lambda_{13}=0
$$

Therefore, the rank of K is exactly 13 .
The general proof is completely analogous to the proof where $n=15$ and $k=6$. Instead of the equations given by (2.29) we have the equations

$$
\begin{align*}
& x_{1}+x_{1+k}+x_{1+2 k}+\cdots+x_{1+(\hat{x}-1) k}=(11 \ldots 1), \\
& x_{2}+x_{2+k}+x_{2+2 k}+\cdots+x_{2+(\hat{x}-1) k}=(11 \ldots 1), \tag{2.30}\\
& \ldots \\
& x_{d}+x_{d+k}+x_{d+2 k}+\cdots+x_{d+(\hat{x}-1) k}=(11 \ldots 1) .
\end{align*}
$$

Let $\lambda_{1}, \ldots, \lambda_{n}$ be chosen such that

$$
\begin{gathered}
\lambda_{1}=\lambda_{1+k}=\lambda_{1+2 k}=\cdots=\lambda_{1+(\hat{x}-1) k} \\
\ldots \\
\lambda_{d}=\lambda_{d+k}=\lambda_{d+2 k}=\cdots=\lambda_{d+(\hat{x}-1) k} .
\end{gathered}
$$

Then

$$
\sum_{i=1}^{n} \lambda_{i} x_{i}=\frac{k}{d}\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{d}\right)(11 \ldots 1)=0 \text { for } \lambda_{d}=-\lambda_{1}-\cdots-\lambda_{d-1} .
$$

This means that there exist at least $d-1$ parameters $\lambda_{1}, \ldots, \lambda_{d-1}$ such that

$$
\sum_{i=1}^{n} \lambda_{i} x_{i}=0 \text { with } \sum_{i=1}^{n} \lambda_{i}^{2}>0 .
$$

Thus, if the matrix of the system is denoted by L, it holds

$$
\text { rank of } L \leq n-d+1
$$

On the other hand there is

$$
\sum_{i=1}^{n} \lambda_{i} x_{i}=0 \Longrightarrow \lambda_{1}=\lambda_{2}=\cdots=\lambda_{n-d+1}=0 .
$$

Therefore the rank of L is exactly $n-d+1$. This completes the proof of Theorem 4.

Corollary 4.1. If matrix of the system

$$
\begin{equation*}
P_{i}-P_{i+k}=k\left(A_{i}-A_{i+1}\right), \quad i=1, \ldots, n \tag{2.31}
\end{equation*}
$$

has rank r, then matrix of the system

$$
\begin{equation*}
P_{i}-P_{i+n-k}=(n-k)\left(A_{i}-A_{i+1}\right), \quad i=1, \ldots, n \tag{2.32}
\end{equation*}
$$

has also rank r.

Proof. It holds $G C D(k, n)=G C D(n-k, n)$.
In this connection let us remark that, if M is matrix of the system (2.31), then M^{T} is matrix of the system (2.32).

Theorem 5. Let $A_{1} \ldots A_{n}$ be a polygon in \mathbb{R}^{2} and let k be an integer such that $1<k<n$ and $G C D(k, n)=d>1$. Then the following two assertions are valid:
(i) The condition for being k-outscribed polygon to the polygon $A_{1} \ldots A_{n}$ is the same as the condition for being $(n-k)$-outscribed polygon to the polygon $A_{1} \ldots A_{n}$.
(ii) For every polygon $P_{1} \ldots P_{n}$ which is k-outscribed to the polygon $A_{1} \ldots A_{n}$ there exists the $(n-k)$-outscribed polygon $Q_{1} \ldots Q_{n}$ to the polygon $A_{1} \ldots A_{n}$ which is similar to the polygon $P_{1} \ldots P_{n}$ and it holds

$$
\begin{equation*}
\text { area of } Q_{1} \ldots Q_{n}=\left(\frac{n-k}{k}\right)^{2} \text { area of } P_{1} \ldots P_{n} \text {. } \tag{2.33}
\end{equation*}
$$

Proof. To prove (i), we shall first, for simplicity writing, consider one example, say, that considered in Theorem 4, where $n=15, k=6$. In this case we have found that the condition for being 6 -outscribed polygon to the polygon $A_{1} \ldots A_{15}$ is given by

$$
\begin{equation*}
A_{1}+A_{7}+A_{13}+A_{4}+A_{10}=A_{2}+A_{8}+A_{14}+A_{5}+A_{11}=A_{3}+A_{9}+A_{15}+A_{6}+A_{12} \tag{2.34}
\end{equation*}
$$

Now from Theorem 4 and from

$$
\begin{array}{lr}
Q_{1}+Q_{2}+Q_{3}+Q_{4}+Q_{5}+Q_{6}+Q_{7}+Q_{8}+Q_{9}=9 A_{1} \\
Q_{10}+Q_{11}+Q_{12}+Q_{13}+Q_{14}+Q_{15}+Q_{1}+Q_{2}+Q_{3}=9 A_{10} \\
Q_{4}+Q_{5}+Q_{6}+Q_{7}+Q_{8}+Q_{9}+Q_{10}+Q_{11}+Q_{12}=9 A_{4} \tag{2.35}\\
Q_{13}+Q_{14}+Q_{15}+Q_{1}+Q_{2}+Q_{3}+Q_{4}+Q_{5}+Q_{6}=9 A_{13} \\
Q_{7}+Q_{8}+Q_{9}+Q_{10}+Q_{11}+Q_{12}+Q_{13}+Q_{14}+Q_{15}=9 A_{7} \\
& \\
& \\
Q_{2}+\cdots+Q_{10}=9 A_{2}, & Q_{3}+\cdots+Q_{11}=9 A_{3} \\
Q_{11}+\cdots+Q_{4}=9 A_{11}, & Q_{12}+\cdots+Q_{5}=9 A_{12} \\
Q_{5}+\cdots+Q_{13}=9 A_{5}, & Q_{6}+\cdots+Q_{14}=9 A_{6} \\
Q_{14}+\cdots+Q_{7}=9 A_{14}, & Q_{15}+\cdots+Q_{9}=9 A_{15} \\
Q_{8}+\cdots+Q_{1}=9 A_{8}, & Q_{9}+\cdots+Q_{2}=9 A_{9}
\end{array}
$$

we see that the condition for being 9-outscribed polygon to the polygon $A_{1} \ldots A_{15}$ is the same as that for being 6 -outscribed polygon to the polygon $A_{1} \ldots A_{15}$.

Here it is important to see that $\bar{x}=5$ is the least positive integer which is a solution of the equation

$$
\begin{equation*}
6 x=0(\bmod 15) \tag{2.36}
\end{equation*}
$$

and that also $\bar{x}=5$ is the least positive integer which is a solution of the equation

$$
\begin{equation*}
9 x=0(\bmod 15) . \tag{2.37}
\end{equation*}
$$

In this connection let us remark that, for example, the first of the five equations given by (2.35) begins with Q_{1} and the fifth ends with Q_{15}. Similar holds when instead of Q_{1} there is Q_{2} or Q_{3}.

Also let us remark that for $i=1,2,3$ and $\bar{x}-1=4, k=6, n-k=9$ it holds

$$
\begin{align*}
& \left\{A_{i}, A_{i+k}, A_{i+2 k}, A_{i+3 k}, A_{i+4 k}\right\} \\
& \quad=\left\{A_{i}, A_{i+n-k}, A_{i+2(n-k)}, A_{i+3(n-k)}, A_{i+4(n-k)}\right\} \tag{2.38}
\end{align*}
$$

or

$$
\begin{aligned}
\{i, i+k, i+2 k, i & +3 k, i+4 k\}_{\bmod 15} \\
& =\{i, i+n-k, i+2(n-k), i+3(n-k), i+4(n-k)\}_{\bmod 15}
\end{aligned}
$$

since

$$
\begin{aligned}
& i+k=i+4(n-k)(\bmod 15), \\
& i+2 k=i+3(n-k)(\bmod 15), \\
& i+3 k=i+2(n-k)(\bmod 15), \\
& i+4 k=i+n-k(\bmod 15) .
\end{aligned}
$$

Namely it holds

$$
5 k=j n(\bmod 15), \quad j=4,3,2,1 .
$$

In this connection let us remark that each of the integers $k, 2 k, 3 k, 4 k(\bmod 15)$ is less then 15 since $\bar{x}=5$ is the least positive integer which is a solution of the equation (2.36).

It is not difficult to see that analogously holds generally for the case when $G C D(k, n)=d>1$. Instead of equations (2.36) and (2.37) we have equations

$$
\begin{equation*}
k x=0(\bmod n), \quad(n-k) x=0(\bmod n) \tag{2.39}
\end{equation*}
$$

with property that $\hat{x}=\frac{n}{d}$ is the least positive integer such that hold both of the equations (2.39). Also let us remark that instead of relation (2.38) we have relation

$$
\left\{A_{i}, A_{i+k}, \ldots, A_{i+(\hat{x}-1) k}\right\}=\left\{A_{i}, A_{i+n-k}, \ldots, A_{i+(\hat{x}-1)(n-k)}\right\},
$$

where $i=1, \ldots, d$.
Thus assertion (i) is proved.
To prove (ii) let $P_{1} \ldots P_{n}$ be any given polygon which is k-outscribed to the polygon $A_{1} \ldots A_{n}$ and let Q_{n-k+i} be given by

$$
Q_{n-k+i}=-\frac{n-k}{k} P_{i}+\frac{S}{k}, \quad i=1, \ldots, n
$$

as in Theorem 3 where $G C D(k, n)=1$. In the same way as in Theorem 3 can be shown that

$$
\sum_{i=1}^{n-k} Q_{n-k+i}=(n-k) A_{n-k+1} .
$$

Also in the same way as in Theorem 3 we have

$$
\begin{aligned}
& \left|Q_{n-k+1}+Q_{n-k+2}, \ldots, Q_{n-k+n}+Q_{n-k+1}\right| \\
= & \left|-\frac{n-k}{k}\left(P_{1}+P_{2}\right)+\frac{2 S}{k}, \cdots,-\frac{n-k}{k}\left(P_{n}+P_{1}\right)+\frac{2 S}{k}\right| \\
= & \left(\frac{n-k}{k}\right)^{2}\left|P_{1}+P_{2}, \ldots, P_{n}+P_{1}\right|,
\end{aligned}
$$

which according to (1.5) can be written as

$$
\left|Q_{1}+Q_{2}, \ldots, Q_{n}+Q_{1}\right|=\left(\frac{n-k}{k}\right)^{2}\left|P_{1}+P_{2}, \ldots, P_{n}+P_{1}\right|
$$

This completes the proof of Theorem 5 .
Corollary 5.1. Let $P_{1} \ldots P_{n}$ be any given polygon which is k-outscribed to the polygon $A_{1} \ldots A_{n}$. Then there exists unique $(n-k)$-outscribed polygon $Q_{1} \ldots Q_{n}$ to the polygon $A_{1} \ldots A_{n}$ such that

$$
Q_{n-k+i}=-\frac{n-k}{k} P_{i}+\frac{S}{k}, i=1, \ldots, n .
$$

Such two polygons, $P_{1} \ldots P_{n}$ and $Q_{1} \ldots Q_{n}$, can be called conjugate polygons. They are similar.

Corollary 5.2. Let by $\bar{P}_{1} \ldots \bar{P}_{n}$ be denoted the k-outscribed polygon to the polygon $A_{1} \ldots A_{n}$ with property that it can be k-outscribed, and let by $\bar{Q}_{1} \ldots \bar{Q}_{n}$ be denoted the $(n-k)$-outscribed polygon to the polygon $A_{1} \ldots A_{n}$ with the property that it can be $(n-k)$-outscribed. Then polygons $\bar{P}_{1} \ldots \bar{P}_{n}$ and $\bar{Q}_{1} \ldots \bar{Q}_{n}$ are conjugate, that is, from

$$
Q_{n-k+i}=-\frac{n-k}{k} \bar{P}_{i}+\frac{S}{k}, i=1, \ldots, n
$$

follows $Q_{n-k+i}=\bar{Q}_{n-k+i}, i=1, \ldots, n$.
Proof. From

$$
\sum_{i=1}^{n}(-1)^{i} Q_{i}=\sum_{i=1}^{n}(-1)^{i}\left[-\frac{n-k}{k} \bar{P}_{i}+\frac{S}{k}\right]=0
$$

follows $\sum_{i=1}^{n}(-1)^{i} Q_{i}=0$. Thus, $Q_{1} \ldots Q_{n}$ is polygon which is $(n-k)$-outscribed to the polygon $A_{1} \ldots A_{n}$ and has the property that it can be $(n-k)$-outscribed. Such polygon is unique, since equation $\sum_{i=1}^{n}(-1)^{i} Q_{i}=0$ completely determines Q_{1}. Thus, $Q_{1} \ldots Q_{n}=\bar{Q}_{1} \ldots \bar{Q}_{n}$.

Theorem 6. Let $A_{1} \ldots A_{n}$ be a polygon in \mathbb{R}^{2}, where n is even, and let k be a positive integer such that $k<n$ and $G C D(k, n)=2$. Then every polygon which is k-outscribed to the polygon $A_{1} \ldots A_{n}$ has the same area. In other words, for every two polygons $P_{1} \ldots P_{n}$ and $\hat{P}_{1} \ldots \hat{P}_{n}$ which are k-outscribed to the polygon $A_{1} \ldots A_{n}$ it holds

$$
\begin{equation*}
\left|P_{1}+P_{2}, \ldots, P_{n}+P_{1}\right|=\left|\hat{P}_{1}+\hat{P}_{2}, \ldots, \hat{P}_{n}+\hat{P}_{1}\right| . \tag{2.40}
\end{equation*}
$$

Proof. We suppose that $\left(E_{k}\right)$ is fulfilled, that is, $\sum_{i=1}^{n}(-1)^{i} A_{i}=0$. The system

$$
\begin{equation*}
P_{i}+P_{i+1}+\cdots+P_{i+k-1}=k A_{i}, i=1, \ldots, n \tag{2.41}
\end{equation*}
$$

can be written as

$$
\begin{equation*}
P_{i}-P_{i+k}=k\left(A_{i}-A_{i+1}\right), i=1, \ldots, n . \tag{2.42}
\end{equation*}
$$

It is easy to see that from the above equations follows

$$
\begin{align*}
P_{1+k i} & =P_{1}+S_{1+k i}, i=1,2, \ldots, \frac{n}{2}-1 \tag{2.43}\\
P_{2+k i} & =P_{2}+S_{2+k i}, i=1,2, \ldots, \frac{n}{2}-1 \tag{2.44}
\end{align*}
$$

where $S_{1+k i}$ and $S_{2+k i}$ are sums of certain vertices $A_{1} \ldots A_{n}$.
For example, if $n=10$ and $k=6$, then

$$
\begin{aligned}
& P_{7}=P_{1+6}=P_{1}-6\left(A_{1}-A_{2}\right), \\
& P_{3}=P_{1+12}=P_{7}-6\left(A_{7}-A_{8}\right)=P_{1}-6\left(A_{1}-A_{2}+A_{7}-A_{8}\right), \\
& P_{9}=P_{1+18}=P_{3}-6\left(A_{3}-A_{4}\right)=P_{1}-6\left(A_{1}-A_{2}+A_{7}-A_{8}+A_{3}-A_{4}\right), \\
& P_{5}=P_{1+24}=P_{1}+6\left(A_{5}-A_{6}\right)
\end{aligned}
$$

where $S_{1+6}=-6\left(A_{1}-A_{2}\right), S_{1+12}=-6\left(A_{1}-A_{2}+A_{7}-A_{8}\right)$ and so on.
Analogously holds for $S_{2+6 i}$. Here we have

$$
\left\{P_{2+6}, P_{2+12}, P_{2+18}, P_{2+24}\right\}=\left\{P_{8}, P_{4}, P_{10}, P_{6}\right\} .
$$

Since in the case when $G C D(k, n)=2$, the integer k must be even. Thus, both of the indices i and $i+1$ in $P_{i}+P_{i+1}$ are odd or both even. Therefore in the expression of each of $P_{3}, P_{5}, \ldots, P_{n-1}$ appears P_{1} and in the expression of each of $P_{4}, P_{6}, \ldots, P_{n}$ appears P_{2}, so that determinant

$$
\left|P_{1}+P_{2}, P_{2}+P_{3}, \ldots, P_{n}+P_{1}\right|
$$

can be written as

$$
\begin{equation*}
\left|P_{1}+P_{2}, P_{1}+P_{2}+K_{1}, \ldots, P_{1}+P_{2}+K_{n-1}\right|, \tag{2.45}
\end{equation*}
$$

where each K_{i} is expressed by A_{1}, \ldots, A_{n} and also $P_{1}+P_{2}$ are expressed by A_{1}, \ldots, A_{n}.

Of course, that above determinant is a constant can also be seen using property (1.5). Namely, since $\sum_{i=i}^{n}(-1)^{i}\left(P_{i}+P_{i+1}\right)=0$, the above determinant can be written as

$$
\begin{equation*}
\left|O, K_{1}, \ldots, K_{n-1}\right| \quad \text { or } \quad\left|K_{1}, \ldots, K_{n-1}\right| . \tag{2.46}
\end{equation*}
$$

This proves Theorem 6.
Corollary 6.1. Let $A_{1} \ldots A_{n}$ and k be as in Theorem 6. Then all the polygons which are $(n-k)$-outscribed to the polygon $A_{1} \ldots A_{n}$ have the same area.

The proof is quite analogous to the proof of Theorem 6.
Of course, that Corollary 6.1 is valid can also be concluded from the fact that for every k-outscribed polygon $P_{1} \ldots P_{n}$ to the polygon $A_{1} \ldots A_{n}$ there exists ($n-k$)-outscribed polygon $Q_{1} \ldots Q_{n}$ to the polygon $A_{1} \ldots A_{n}$ which is similar to the polygon $P_{1} \ldots P_{n}$.

Here let us remark that it is not always easy to express corresponding determinants in the most simple form for every k . The case when $k=4$ may be interesting and it will be considered in the following theorem.

Theorem 7. Let $k=4$ and $A_{1} \ldots A_{n}$ be a polygon in \mathbb{R}^{2} where $\operatorname{GCD}(k, n)=$ 2 and $\sum_{i=1}^{n}(-1)^{i} A_{i}=0$. Then for every 4 -outscribed polygon $P_{1} \ldots P_{n}$ to the polygon $A_{1} \ldots A_{n}$ it holds

$$
\begin{equation*}
P_{i}+P_{i+1}=2\left(A_{i}-A_{i+2}+A_{i+4}-\cdots+A_{i+n-2}\right), \quad i=1, \ldots n . \tag{2.47}
\end{equation*}
$$

Proof. We have to prove that

$$
\begin{equation*}
P_{i}+P_{i+1}+P_{i+2}+P_{i+3}=4 A_{i}, \quad i=1, \ldots, n . \tag{2.48}
\end{equation*}
$$

Since $G C D(k, n)=2, P_{1}$ can be arbitrary. Let P_{2}, \ldots, P_{n} be given (inductively) by

$$
\begin{equation*}
P_{i+1}=-P_{i}+2\left(A_{i}-A_{i+2}+A_{i+4}-\cdots+A_{i+n-2}\right), i=1, \ldots, n-1 . \tag{2.49}
\end{equation*}
$$

It is easy to see that from

$$
\begin{aligned}
& P_{i}+P_{i+1}=2\left(A_{i}-A_{i+2}+A_{i+4}-\cdots+A_{i+n-2}\right) \\
& P_{i+2}+P_{i+3}=2\left(A_{i+2}-A_{i+4}+\cdots-A_{i+n-2}+A_{i+2+n-2}\right)
\end{aligned}
$$

by adding up, we get $P_{i}+P_{i+1}+P_{i+2}+P_{i+3}=4 A_{i}$. This also can be proved in the following way.

The equation $P_{1}+P_{2}+\sum_{i=3}^{6} P_{i}+\cdots+\sum_{i=n-3}^{n} P_{i}=\sum_{i=1}^{n} A_{i}$ can be written as

$$
P_{1}+P_{2}=\sum_{i=1}^{n} A_{i}-4\left(A_{3}+A_{7}+\cdots+A_{n-3}\right)
$$

or, since $\sum_{i=1}^{n} A_{i}=2\left(A_{1}+A_{3}+\cdots+A_{n-1}\right)=2\left(A_{2}+A_{4}+\cdots+A_{n}\right)$,

$$
P_{1}+P_{2}=2\left(A_{1}-A_{3}+A_{5}-A_{7}+\cdots-A_{n-3}+A_{n-1}\right)
$$

In the same way can be seen that holds (2.47). This proves Theorem 7.
Corollary 7.1. It holds

$$
\begin{equation*}
2 \text { area of } P_{1} \ldots P_{n}=16\left|B_{1}, \ldots, B_{n}\right| \text {, } \tag{2.50}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{i}=A_{i+2}+A_{i+6}+A_{i+10}+\cdots+A_{i+n-4}, \quad i=1, \ldots, n . \tag{2.51}
\end{equation*}
$$

(Of course, the property given by (1.4) is used.)

Proof. The sum $P_{i}+P_{i+1}$ can also be written as

$$
P_{i}+P_{i+1}=2 T-4\left(A_{i+2}+A_{i+6}+A_{i+10}+\cdots+A_{i+n-4}\right), i=1, \ldots, n
$$

where $T=A_{1}+A_{3}+A_{5}+\cdots+A_{n-1}=A_{2}+A_{4}+A_{6}+\cdots+A_{n}$.
Corollary 7.2. Let $Q_{1} \ldots Q_{n}$ be an $(n-4)$-outscribed polygon to the polygon $A_{1} \ldots A_{n}$. Then

$$
\begin{equation*}
2 \text { area of } Q_{1} \ldots Q_{n}=(n-4)^{2}\left|B_{1}, \ldots, B_{n}\right| \text {, } \tag{2.52}
\end{equation*}
$$

where B_{1}, \ldots, B_{n} are given by (2.51).
Proof. According to Theorem 3 and Theorem 6 it holds

$$
Q_{n-4+i}=-\frac{n-4}{4} P_{i}+\frac{S}{4}, \quad i=1, \ldots, n .
$$

From (2.47) follows

$$
\begin{aligned}
& P_{2}=-P_{1}+F_{1}, \\
& P_{3}=P_{1}-F_{1}+F_{2}, \\
& P_{4}=-P_{1}+F_{1}-F_{2}+F_{3}, \\
& \text { and so on, }
\end{aligned}
$$

where F_{1}, \ldots, F_{n} are expressions which depend only of A_{1}, \ldots, A_{n} and can be written as

$$
F_{i}=2 T-4\left(A_{i+2}+A_{i+6}+A_{i+10}+\cdots+A_{i+n-4}\right), i=1, \ldots, n
$$

where $T=A_{1}+A_{3}+A_{5}+\cdots+A_{n-1}=A_{2}+A_{4}+A_{6}+\cdots+A_{n}$.
Since

$$
\begin{aligned}
Q_{n-4+1} & =-\frac{n-4}{4} P_{1}+\frac{S}{4} \\
Q_{n-4+2} & =-\frac{n-4}{4}\left(-P_{1}+F_{1}\right)+\frac{S}{4}, \\
Q_{n-4+3} & =-\frac{n-4}{4}\left(P_{1}-F_{1}+F_{2}\right)+\frac{S}{4},
\end{aligned}
$$

and so on,
it holds

$$
\begin{aligned}
& Q_{n-4+1}+Q_{n-4+2}=-\frac{n-4}{n} F_{1}+\frac{S}{2}, \\
& Q_{n-4+2}+Q_{n-4+3}=-\frac{n-4}{n} F_{2}+\frac{S}{2},
\end{aligned}
$$

and so on.
Using properties given by (1.5) and (1.8) we get (2.52).
In the following theorem will be considered one more case when it is relatively easy to express corresponding determinants in a simple form.

Theorem 8. Let $A_{1} \ldots A_{n}$ be a polygon in \mathbb{R}^{2} with property that $\sum_{i=1}^{n}(-1)^{i} A_{i}=0$ and let $k=\frac{n}{2}-1$, where n is divisible by 2 but not by 4 . Then for every polygon $P_{1} \ldots P_{n}$ which is k-outscribed to the polygon $A_{1} \ldots A_{n}$ it holds

$$
\begin{equation*}
2 \text { area of } P_{1} \ldots P_{n}=k^{2}\left|C_{1}, \ldots, C_{n}\right|, \tag{2.53}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{i}=A_{i}+A_{i+k}, i=1, \ldots, n . \tag{2.54}
\end{equation*}
$$

Proof. First it is clear that $G C D\left(n, \frac{n}{2}-1\right)=2$ since n is even integer but not divisible by 4 . So we can write

$$
P_{1}+P_{2}+\left(P_{3}+\cdots+P_{3+k-1}\right)+\left(P_{3+k}+\cdots+P_{3+2 k-1}\right)=\sum_{i=1}^{n} A_{i}
$$

or

$$
P_{1}+P_{2}=S-k\left(A_{3}+A_{3+k}\right), \text { where } S=\sum_{i=1}^{n} A_{i} .
$$

In the same way can be seen that

$$
P_{i}+P_{i+1}=S-k\left(A_{i+2}+A_{i+2+k}\right), i=1, \ldots, n .
$$

Thus, according to the properties (1.3) and (1.8) we have

$$
\text { area of } \begin{aligned}
P_{1} \ldots P_{n} & =\left|A_{3}+A_{3+k}, \ldots, A_{1}+A_{1+k}, A_{2}+A_{2+k}\right| \\
& =\left|A_{1}+A_{1+k}, \ldots, A_{n}+A_{n+k}\right| .
\end{aligned}
$$

This proves Theorem 8.
Here may be interesting that for each $k=2,4, \ldots, \frac{n}{2}-1, \frac{n}{2}+1, \ldots, n-2$ we get relatively simple expressions for $P_{i}+P_{i+1}$. For example, let $n=14$. If $k=2$, then

$$
P_{1}+P_{2}+\left(P_{3}+P_{4}\right)+\cdots+\left(P_{13}+P_{14}\right)=S, \text { where } S=\sum_{i=1}^{14} A_{i}
$$

from which follows

$$
\begin{aligned}
P_{1}+P_{2} & =S-2\left(A_{3}+A_{5}+\cdots+A_{13}\right) \\
& =2 A_{1}+\sum_{i=1}^{14}(-1)^{i} A_{i}=2 A_{1} .
\end{aligned}
$$

Thus, in this case

$$
\text { area of } P_{1} \ldots P_{14}=4\left|A_{1}, \ldots, A_{14}\right| .
$$

If $k=4$, then $P_{i}+P_{i+1}=S-4\left(A_{i+2}+A_{i+2+4}+A_{i+2+8}\right), i=1, \ldots, 14$.
If $k=6$, then $P_{i}+P_{i+1}=S-6\left(A_{i+2}+A_{i+2+6}\right), i=1, \ldots, 14$.
In the case when $k=8,10,12$ holds Theorem 5 .

Theorem 9. Let j, k, n be positive integers such that

$$
n=j k+2 \text { and } G C D(k, n)=2 .
$$

Let $A_{1} \ldots A_{n}$ be a polygon in \mathbb{R}^{2} which can be k-outscribed, that is $\sum_{i=1}^{n}(-1)^{i} A_{i}=$ 0 . Then for every k-outscribed polygon $P_{1} \ldots P_{n}$ to the polygon $A_{1} \ldots A_{n}$ it holds

$$
\text { area of } P_{1} \ldots P_{n}=k^{2}\left|B_{1}, \ldots, B_{n}\right|,
$$

where $B_{i}=A_{i}+A_{i+k}+\cdots+A_{i+(j-1) k}, i=1, \ldots, n$.
Proof. The equality

$$
P_{1}+P_{2}+\sum_{i=3}^{2+k} P_{i}+\sum_{i=3+k}^{2+2 k} P_{i}+\cdots+\sum_{i=3+(j-1) k}^{2+j k} P_{i}=S,
$$

where $S=\sum_{i=1}^{n} A_{i}$, can be written as

$$
P_{1}+P_{2}=S-k\left(A_{3}+A_{3+k}+\cdots+A_{3+(j-1) k}\right) .
$$

In the same way can be seen that

$$
P_{i}+P_{i+1}=S-k\left(A_{i+2}+A_{i+2+k}+\cdots+A_{i+2+(j-1) k}\right), i=1, \ldots, n .
$$

In the expression for area of $P_{1} \ldots P_{n}$ the properties (1.4) and (1.7) are used. This proves Theorem 9.
It is easy to see that analogously holds in the case when there are positive integers a_{1}, \ldots, a_{j} and b_{1}, \ldots, b_{j} such that

$$
\begin{aligned}
& n=a_{1} k+b_{1}, \\
& n=a_{2} b_{1}+b_{2}, \\
& \ldots \ldots \ldots \ldots \ldots . . \\
& n=a_{j} b_{j}+b_{j+1},
\end{aligned}
$$

where $b_{j+1}=2$. For example, if $n=22, k=6$ then can be written

$$
\begin{aligned}
& 22=3 \cdot 6+4, \\
& 22=5 \cdot 4+2 .
\end{aligned}
$$

Concerning areas of the polygon in \mathbb{R}^{2} in connection with g-determinant, the following theorem can be interesting.

Theorem 10. Let A_{1}, \ldots, A_{n} be any given real $2 \times n$ matrix. Then

$$
\begin{align*}
\left|A_{1}, \ldots, A_{n}\right|= & \left|A_{1}, A_{2}, A_{3}\right|+\left|A_{1}-A_{2}+A_{3}, A_{4}, A_{5}\right|+ \\
& \left|A_{1}-A_{2}+A_{3}-A_{4}+A_{5}, A_{6}, A_{7}\right|+\cdots+L, \tag{2.55}
\end{align*}
$$

where

$$
\begin{align*}
& L=\left|\sum_{i=1}^{n-2}(-1)^{i+1} A_{i}, A_{n-1}, A_{n}\right| \text { if } n \text { is odd, } \tag{2.56}\\
& L=\left|\sum_{i=1}^{n-1}(-1)^{i+1} A_{i}, A_{n}\right| \text { if } n \text { is even. } \tag{2.57}
\end{align*}
$$

Proof. The proof follows directly from definition of g-determinant of $2 \times n$ matrix $\left[A_{1}, \ldots, A_{n}\right]$. Namely, it is easy to see that relation (2.55) can be written as

$$
\begin{equation*}
\left|A_{1}, \ldots, A_{n}\right|=\sum_{i \leq j_{1}<j_{2} \leq n}(-1)^{1+2+j_{1}+j_{2}}\left|A_{j_{1}}, A_{j_{2}}\right| . \tag{2.58}
\end{equation*}
$$

(See relation (1.1).)
So, for example, if $n=5$ then

$$
\begin{aligned}
\left|A_{1}, \ldots, A_{5}\right| & =\left|A_{1}, A_{2}, A_{3}\right|+\left|A_{1}-A_{2}+A_{3}, A_{4}, A_{5}\right| \\
& =\left|A_{1}, A_{2}\right|-\left|A_{1}, A_{3}\right|+\left|A_{2}, A_{3}\right|+\left|A_{1}, A_{4}\right|+\left|A_{1}, A_{5}\right| \\
& -\left|A_{2}, A_{4}\right|-\left|A_{2}, A_{5}\right|+\left|A_{3}, A_{4}\right|+\left|A_{3}, A_{5}\right|+\left|A_{4}, A_{5}\right| .
\end{aligned}
$$

Here let us remark that in (2.58) instead of $(-1)^{1+2+j_{1}+j_{2}}$ can be written $(-1)^{1+j_{1}+j_{2}}$.

In the case when n is odd, then in the sum on the right-hand side of (2.55) there are $\frac{n-1}{2}$ determinants whose type is 2×3. If n is even then there are $\frac{n}{2}$ such determinants or $\frac{n-1}{2}$ in the case when $\sum_{i=1}^{n}(-1)^{i} A_{i}=0$, namely, then L given by (2.57) is zero.

Corollary 10.1. If n is even and $\sum_{i=1}^{n}(-1)^{i} A_{i}=0$, then

$$
\begin{equation*}
\left|A_{1}, \ldots, A_{n}\right|=\left|A_{1}, \ldots, A_{n-1}\right| . \tag{2.59}
\end{equation*}
$$

Proof. In this case the term L is zero. (Cf. with (1.6).)
Corollary 10.2. If n is even and $\sum_{i=1}^{n}(-1)^{i} A_{i}=0$ then for every 2-outscribed polygon $P_{1} \ldots P_{n}$ to the polygon $A_{1} \ldots A_{n}$ it holds

$$
\text { area of } P_{1} \ldots P_{n}=2\left(\left|A_{1}, A_{2}, A_{3}\right|+\left|S_{1}, A_{4}, A_{5}\right|+\cdots+\left|S_{u}, A_{n-2}, A_{n-1}\right|\right)
$$

or

$$
\begin{aligned}
\text { area of } P_{1} \ldots P_{n}= & 2 \text { area of parallelogram } A_{1} A_{2} A_{3} S_{1}+ \\
& \text { area of parallelogram } S_{1} A_{4} A_{5} S_{2}+\cdots+ \\
& \text { area of parallelogram } \left.S_{u} A_{n-2} A_{n-1} S_{v}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& S_{1}=\sum_{i=1}^{3}(-1)^{i+1} A_{i}, \quad S_{2}=\sum_{i=1}^{5}(-1)^{i+1} A_{i}, \ldots, \\
& S_{u}=\sum_{i=1}^{n-3}(-1)^{i+1} A_{i}, \quad S_{v}=A_{n}
\end{aligned}
$$

Proof. Since by Theorem 1 in [2] it holds

$$
2 \text { area of } P_{1} \ldots P_{n}=\left|P_{1}+P_{2}, \ldots, P_{n}+P_{1}\right|,
$$

and P_{1}, \ldots, P_{n} are such that $P_{i}+P_{i+1}=2 A_{i}, i=1, \ldots, n$ we can write

$$
2 \text { area of } P_{1} \ldots P_{n}=\left|2 A_{1}, 2 A_{2}, \ldots, 2 A_{n}\right|
$$

or

$$
\begin{equation*}
\text { area of } P_{1} \ldots P_{n}=2\left|A_{1}, A_{2}, \ldots, A_{n}\right| . \tag{2.60}
\end{equation*}
$$

In this connection let us remark that, for example, $\left|A_{1}, A_{2}, A_{3}\right|=$ area of parallelogram $A_{1} A_{2} A_{3} S_{1}$ since by (2.60) it holds

$$
\left|A_{1}, A_{2} A_{3}\right|=\frac{1}{2} \text { area of 2-outscribed triangle to the triangle } A_{1} A_{2} A_{3} .
$$

As an illustration can be seen Figure 1, where $P_{1}, \ldots P_{6}$ is a 2 -outscribed to the hexagon $A_{1} \ldots A_{6}$. In this case it holds

> area of $P_{1} \ldots P_{6}=2$ (area of parallelogram $A_{1} A_{2} A_{3} S_{1}+$ area of parallelogram $\left.S_{1} A_{4} A_{5} A_{6}\right)$.

Figure 1

Corollary 10.3. If n is even and $\sum_{i=1}^{n}(-1)^{i} A_{i}=0$, then for every 2 -outscribed polygon $P_{1} \ldots P_{n}$ to the polygon $A_{1} \ldots A_{n}$ and for (unique) 2-outscribed polygon $Q_{1} \ldots Q_{n-1}$ to the polygon $A_{1} \ldots A_{n-1}$ it holds

$$
\text { area of } P_{1} \ldots P_{n}=\text { area of } Q_{1} \ldots Q_{n-1} \text {. }
$$

Proof. Since $Q_{i}+Q_{i+1}=2 A_{i}, i=1, \ldots, n-1$, by Theorem 1 in [2] it holds area of $Q_{1} \ldots Q_{n-1}=2\left|A_{1}, \ldots A_{n-1}\right|$.

In this connection let us remark that $Q_{1}=A_{n}$, that is, it holds

$$
Q_{1}=\sum_{i=1}^{n-1}(-1)^{i+1} A_{i} .
$$

Geometrical illustration for $n=6$ can be seen in Figure 2.

Figure 2

Here let us remark that also in the case when $G C D(k, n)=2$ and $k>2$, using Theorem 10, can be obtained interesting relations.

Till now we have dealt with areas of the k-outscribed n-gons in \mathbb{R}^{2} where $G C D(k, n)=2$. Now the following question arises: What is the situation with areas of the k-outscribed n-gons in the case where $G C D(k, n)>2$? The following theorem gives answer to the question and, as will be seen, can be very interesting.

Theorem 11. Let $A_{1} \ldots A_{n}$ be a polygon in \mathbb{R}^{2} and let k be an integer such that $1<k<n, G C D(k, n)=d>2$ and that holds $\left(E_{k}\right)$. Then the k-outscribed polygons to the polygon $A_{1} \ldots A_{n}$ have different areas.

Proof. For simplicity writing and complete analogy let $n=3 r$, where $r>$ 1 is an integer, and let $k=3$. Then $G C D(k, n)=3$. In this case we have equalities(conditions)

$$
\left.\begin{array}{l}
A_{1}+A_{4}+A_{7}+\cdots+A_{3 r-2}=L \tag{3}\\
A_{2}+A_{5}+A_{8}+\cdots+A_{3 r-1}=L \\
A_{3}+A_{6}+A_{9}+\cdots+A_{3 r}=L
\end{array}\right\}
$$

where $L=\frac{1}{3} \sum_{i=1}^{3 r} A_{i}$. Since $k=3$ we have the equations

$$
\left.\begin{array}{l}
P_{1}+P_{2}+P_{3}=3 A_{1} \tag{3}\\
P_{2}+P_{3}+P_{4}=3 A_{2} \\
\ldots \\
P_{3 r}+P_{1}+P_{2}=3 A_{3 r}
\end{array}\right\}
$$

from which follows

$$
\begin{aligned}
& P_{1}-P_{4}=3\left(A_{1}-A_{2}\right) \\
& P_{2}-P_{5}=3\left(A_{2}-A_{3}\right) \\
& \ldots \\
& P_{3 r-2}-P_{1}=3\left(A_{3 r-2}-A_{3 r-1}\right) \\
& P_{3 r-1}-P_{2}=3\left(A_{3 r-1}-A_{3 r}\right) \\
& P_{3 r}-P_{3}=3\left(A_{3 r-A_{1}}\right) .
\end{aligned}
$$

Now using the above equations, we can write

$$
\begin{aligned}
& P_{1} \\
& P_{4}=P_{1}-3\left(A_{1}-A_{2}\right) \\
& P_{7}=P_{4}-3\left(A_{4}-A_{5}\right)=P_{1}-3\left(A_{1}-A_{2}\right)-3\left(A_{4}-A_{5}\right) \\
& P_{10}=P_{7}-3\left(A_{7}-A_{8}\right)=P_{1}-3\left(A_{1}-A_{2}\right)-3\left(A_{4}-A_{5}\right)-3\left(A_{7}-A_{8}\right) \\
& \quad \vdots \\
& P_{3 r-2}=P_{3 r-5}-3\left(A_{3 r-5}-A_{3 r-4}\right)=P_{1}-3\left(A_{1}-A_{2}\right)-\cdots-3\left(A_{3 r-5}-A_{3 r-4}\right) \\
& \\
& P_{2} \\
& P_{5}=P_{2}-3\left(A_{2}-A_{3}\right) \\
& P_{8}=P_{5}-3\left(A_{5}-A_{6}\right)=P_{2}-3\left(A_{2}-A_{3}\right)-3\left(A_{5}-A_{6}\right) \\
& P_{11}=P_{8}-3\left(A_{8}-A_{9}\right)=P_{2}-3\left(A_{2}-A_{3}\right)-3\left(A_{5}-A_{6}\right)-3\left(A_{8}-A_{9}\right) \\
& \quad \vdots \\
& P_{3 r-1}=P_{3 r-4}-3\left(A_{3 r-4}-A_{3 r-3}\right)=P_{2}-3\left(A_{2}-A_{3}\right)-\cdots-3\left(A_{3 r-4}-A_{3 r-3}\right) \\
& \\
& P_{3} \\
& P_{6}=P_{3}-3\left(A_{3}-A_{4}\right) \\
& P_{9}=P_{6}-3\left(A_{6}-A_{7}\right)=P_{3}-3\left(A_{3}-A_{4}\right)-3\left(A_{6}-A_{7}\right) \\
& P_{12}=P_{9}-3\left(A_{9}-A_{10}\right)=P_{3}-3\left(A_{3}-A_{4}\right)-3\left(A_{6}-A_{7}\right)-3\left(A_{9}-A_{10}\right) \\
& \quad \vdots \\
& P_{3 r}=P_{3 r-3}-3\left(A_{3 r-3}-A_{3 r-2}\right)=P_{3}-3\left(A_{3}-A_{4}\right)-\cdots-3\left(A_{3 r-3}-A_{3 r-2}\right) .
\end{aligned}
$$

Since $P_{1}+P_{2}+P_{3}=3 A_{1}$ follows

$$
\begin{aligned}
& P_{3}=-P_{1}-P_{2}+3 A_{1} \\
& P_{6}=-P_{1}-P_{2}+3 A_{1}-3\left(A_{3}-A_{4}\right) \\
& P_{9}=P_{6}-3\left(A_{6}-A_{7}\right)=-P_{1}-P_{2}+3 A_{1}-3\left(A_{3}-A_{4}\right)-3\left(A_{6}-A_{7}\right) \\
& P_{12}=P_{9}-3\left(A_{9}-A_{10}\right)=-P_{1}-P_{2}+3 A_{1}-3\left(A_{3}-A_{4}\right)-3\left(A_{6}-A_{7}\right)-3\left(A_{9}-A_{10}\right) \\
& \quad \vdots \\
& P_{3 r}=-P_{1}-P_{2}+3 A_{1}-3\left(A_{3}-A_{4}\right)-3\left(A_{6}-A_{7}\right)-\cdots-3\left(A_{3 r-3}-A_{3 r-2}\right) .
\end{aligned}
$$

From the above relations it is clear that the set $P^{(3)}$ of 3 -outscribed polygons to the polygon $A=A_{1} \ldots A_{n}$ is 4-parametric with the parameters $P_{1}=\left(\lambda_{1}, \kappa_{1}\right)$ and $P_{2}=\left(\lambda_{2}, \kappa_{2}\right)$. Therefore, these polygons have different areas.

Example 2. Let $n=6$.
$\underline{k=1}: \mathbf{P}^{(1)}=\mathbf{A}$:

$$
\begin{array}{lllllll}
2 & 2,25 & 1,75 & 1 & 0,75 & 1,25 \\
1 & 1,75 & 2,25 & 2 & 1,25 & 0,75
\end{array} \quad \sum_{i=1}^{6} A_{i}=\binom{9}{9}, \text { area: } \frac{3}{2}
$$

$\left(E_{3}\right)$ is fulfilled.
$k=3: \mathbf{P}^{(3)}$:

$$
\begin{array}{llllll}
\lambda_{1} & \lambda_{2} & 6-\lambda_{1}-\lambda_{2} & 0,75+\lambda_{1} & -1,5+\lambda_{2} & 3,75-\lambda_{1}-\lambda_{2} \\
\kappa_{1} & \kappa_{2} & 3-\kappa_{1}-\kappa_{2} & 2,25+\kappa_{1} & 1,5+\kappa_{2} & 2,25-\kappa_{1}-\kappa_{2}
\end{array}
$$

$$
2 \cdot \text { area }: 6 \lambda_{1} \kappa_{2}-6 \lambda_{2} \kappa_{1}-4,5 \lambda_{1}+2,25 \lambda_{2}+13,5 \kappa_{1}-6,75 \kappa_{2}+6,75
$$

Special case 1: $\lambda_{1}=1,25 ; \lambda_{2}=2 ; \kappa_{1}=0,5 ; \kappa_{2}=0,5$:
$\begin{array}{llllll}1,25 & 2 & 2,75 & 2 & 0,5 & 0,5\end{array}$
$\begin{array}{llllll}0,5 & 0,5 & 2 & 2,75 & 2 & 1,25\end{array}$
area: $\frac{27}{8}=\frac{9}{4} \cdot \frac{3}{2}=3,375$

Special case 2: $\lambda_{1}=1,2 ; \lambda_{2}=2 ; \kappa_{1}=0,5 ; \kappa_{2}=0,5$:

| 1,2 | 2 | 2,8 | 1,95 | 0,5 | 0,55 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0,5 | 0,5 | 2 | 2,75 | 2 | 1,25 |\quad area: $\frac{273}{80}=3,4125$

Figure 3

Figure 4

Now in the end of the article it can be said the following.

1. The k-outscribed polygons can be constructed and calculated not only in the case when $G C D(k, n) \leq 2$ but also in the case when $G C D(k, n)>2$.
Of course, in both cases the condition $\left(E_{k}\right)$ must be fulfilled.
2. The solution is $2(d-1)$ parametric. For example, P_{1}, \ldots, P_{d-1} can be arbitrary.
3. In the case when $d>2$, the areas of k-outscribed polygons are different.

Acknowledgements. The author of the article express thankful to Prof. Dr. Johannes Böhm for many, very useful proposals and information.

References

[1] Radić, M.: A Definition of Determinant of Rectangular Matrix. Glasnik Matematički 1(21) (1966), 17-22.

Zbl 0168.02703
[2] Radić, M.: About a Determinant of Rectangular $2 \times n$ Matrix and its Geometric Interpretation. Beitr. Algebra Geom. 46(1) (2005), 321-349.

Zbl 1010.15009

Received May 20, 2005

