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1. Introduction

In [1] the following definition of determinants of rectangular matrices is given:

The determinant of m × n matrix A with columns A1, . . . , An and m ≤ n is the
sum ∑

1≤j1<j2<···<jm≤n

(−1)r+s|Aj1 , . . . , Ajm|, (1.1)

where r = 1 + · · ·+ m, s = j1 + · · ·+ jm.
It is clear that every real m×n matrix A = [A1, . . . , An] determines a polygon

in Rm (the columns of the matrix correspond to the vertices of the polygon) and
vice versa. The polygon which corresponds to the matrix [A1, . . . , An] will be
denoted by A1 . . . An.

In the following we shall restrict ourselves to the case when m = 2 (polygons
in R2). Here we list some results given in [2] which will be used.

Theorem 3. Let A1 . . . An be a polgon in R2. Then

2 area of A1 . . . An = |A1 + A2, A2 + A3, . . . , An−1 + An, An + A1|. (1.2)
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Corollary 6.1. If n is odd, then for every point X in R2 it holds

|A1 + X, . . . , An + X| = |A1, . . . , An|. (1.3)

Theorem 7. Let A1 . . . An be a polygon in R2 and let n be an even integer. Then
for every point X in R2 it holds

|A1 + X, A2 + X, . . . , An + X| = |A1, A2, . . . , An| (1.4)

only if
∑n

i=1(−1)iAi = 0.

Corollary 7.1. It holds

|A1 + A2 + X, . . . , An + A1 + X| = |A1 + A2, . . . , An + A1|, (1.5)

where
∑n

i=1(−1)iAi = 0 need not be fulfilled. (It is enough for n to be even.)

Namely, if n is even, then
∑n

i=1(−1)i(Ai + Ai+1) = 0.
Of course, (1.5) also holds if n is odd since holds (1.3) where now instead of

Ai we have Ai + Ai+1.

Theorem 8. Let A1 . . . An be a polygon in R2 and let
∑n

i=1(−1)iAi = 0. Then

|A1, . . . , An| = |A1, . . . , An−1|. (1.6)

Theorem 9. Let A1 . . . An be a polygon in R2 with even n and let
∑n

i=1(−1)iAi =
0. Then

|A1, . . . , An| = |A1, . . . , Ak|+ |Ak+1, . . . , An|, (1.7)

where k may be any integer such that 1 < k < n.

Corollary 10.1. If n is odd then for each i ∈ {1, . . . , n} holds (cyclic)

|Ai, . . . , An, A1, . . . , Ai−1| = |A1, . . . , An|. (1.8)

If n is even then above relation holds if
∑n

i=1(−1)iAi = 0.
Thus, in both cases when n is odd or when n is even, it holds

|Ai + Ai+1, . . . , An + A1, A1 + A2, . . . , Ai−1 + Ai| = |A1 + A2, . . . , An + A1|. (1.9)

Here in this article, we shall mostly deal with k-outscribed polygons where we have
the following definition Dk (definition for k-outscribed). This is the fundamental
definition for this article.
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Let A1 . . . An be any given polygon in R2 and let k be any given positive
integer such that k < n. Then polygon P1 . . . Pn, if such exists, will be called
k-outscribed polygon to the polygon A1 . . . An if

P1 + P2 + · · ·+ Pk = kA1,

P2 + P3 + · · ·+ Pk+1 = kA2,

...

Pn + P1 + · · ·+ Pk−1 = kAn.

 (Dk)

In other words, if the center of gravity of the vertices Pi, Pi+1, . . . , Pi+k−1 is the
vertex Ai.

Remark 1. In the proofs of some of the following theorems we shall for conve-
nience (simplicity writing and complete analogy) first consider an example and
then state the main general facts from which will be clear that considered theorem
holds good. In this way we also attain the proof be relatively easy to read.

2. Areas of k-outscribed polygons

First we prove the following theorem.

Theorem 1. Let A1 . . . An be any given polygon in R2 and let k be any given
positive integer such that k < n and GCD(k, n) = 1. Then there exists unique
k-outscribed polygon P1 . . . Pn to the polygon A1 . . . An and it holds

2 area of P1 . . . Pn = k2|B1 + B2, B2 + B3, . . . , Bn + B1|, (2.1)

where
Bi = Ai + Ai+k + · · ·+ Ai+(xk−1)k, i = 1, . . . , n (2.2)

and xk is the least positive integer x such that

kx = 1 (mod n). (2.3)

(Of course, indices are calculated modulo n.)

Proof. First let us remark that from the equations (Dk) follows

P1 + · · ·+ Pn = A1 + · · ·+ An. (2.4)

It is convenient to consider one example first, say, that where n = 11 and k = 5.
In this case we have the following nine equations

P1 + P2 + P3 + P4 + P5 = 5A1, (2.5)
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P6 + P7 + P8 + P9 + P10 = 5A6,

P11 + P1 + P2 + P3 + P4 = 5A11,

P5 + P6 + P7 + P8 + P9 = 5A5,

P10 + P11 + P1 + P2 + P3 = 5A10,

P4 + P5 + P6 + P7 + P8 = 5A4,

P9 + P10 + P11 + P1 + P2 = 5A9,

P3 + P4 + P5 + P6 + P7 = 5A3,

P8 + P9 + P10 + P11 + P1 = 5A8, (2.6)

or briefly written

5∑
i=1

Pi = 5A1,
2·5∑

i=1+5

Pi = 5A6, . . . ,
9·5∑

i=1+8·5

Pi = 5A8 (2.7)

where the sums 1 + 5, 1 + 2 · 5, . . ., 1 + 8 · 5 and the products 2 · 5, 3 · 5,. . . , 9 · 5
are calculated modulo 11. By adding up of the above nine equations we get

4(P1 + P2 + · · ·+ P11) + P1 = 5(A1 + A6 + A11 + A5 + A10 + A4 + A9 + A3 + A8),

from which follows

P1 = −4S + 5(A1 + A6 + A11 + A5 + A10 + A4 + A9 + A3 + A8),

where
S = A1 + A2 + · · ·+ A11 (2.8)

since holds P1 + · · ·+ P11 = A1 + · · ·+ A11.
In this connection let us remark that the left-hand side of the equation (2.5)

begins with P1 and that left-hand side of the equation (2.6) ends with P1.
If we begin with the equation

P2 + P3 + P4 + P5 + P6 = 5A2,

where now P2 is the first, in the end the ninth equation will be

P9 + P10 + P11 + P1 + P2 = 5A9.

From so obtained nine equations

1+5∑
i=2

Pi = 5A2,
1+2·5∑
i=2+5

Pi = 5A7, . . . ,

1+9·5∑
i=2+8·5

Pi = 5A9

by adding up, we get

P2 = −4S + 5(A2 + A7 + A1 + A6 + A11 + A5 + A10 + A4 + A9),
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where S is given by (2.8).
In the same way can be get P3, P4 and so on. Thus, we have

Pi = −4S + 5(Ai + Ai+5 + Ai+2·5 + · · ·+ Ai+8·5), i = 1, . . . , 11. (2.9)

It can be seen that x5 = 9 is the least positive solution of the equation

5x = 1 (mod 11). (2.10)

So for each Pi, i = 1, . . . , 11, there are 9 equations which completely determine Pi.
In this connection let us remark that for the least positive solution x5 of the

equation (2.10) there is positive integer y5 such that

5x5 − 11y5 = 1. (2.11)

It is easy to see that instead of −4S in the relation (2.9) can be written −y5S.
Thus, the equation (2.11) is closely connected with Pi given by (2.9).

It is not difficult to see that analogously holds generally for the case when
GCD(k, n) = 1. Namely, we have Diofant’s equation

kx− ny = 1, (2.12)

and it holds: If xk is the least positive integer such that holds (2.3) and yk is such
that

kxk − nyk = 1, (2.13)

then the solution of the system

Pi + Pi+1 + · · ·+ Pi+k−1 = kAi, i = 1, . . . , n (2.14)

is given by

Pi = −ykS + k(Ai + Ai+k + Ai+2k + · · ·+ Ai+(xk−1)k), i = 1, . . . , n (2.15)

where
S = A1 + · · ·+ An. (2.16)

In this connection let us remark that, for example, instead of equations given by
(2.7) we have the following equations

k∑
i=1

Pi = k · A1,
2k∑

i=1+k

Pi = k · A1+k, . . . ,

k·xk∑
i=1+(xk−1)k

Pi = k · A1+(xk−1)k.

Thus, the solving of the system (2.14) reduces in fact to the solving of the Diofant’s
equation (2.12). So, if n = 11, k=5, we have Diofant’s equation (2.11) whose
solution is given by

x = 11u− 2, y = 5u− 1

where u ∈ Z. For u = 0 we have x5 = 9, y5 = 4.
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Now, when we have P1, . . . , Pn given by (2.15), we can use property (1.3) or
property (1.5). Namely, if we take X = 2ykS we can write

|P1 + P2, . . . , Pn + P1| = |P1 + P2 + 2ykS, . . . , Pn + P1 + 2ykS|
= |kB1 + kB2, . . . , kBn + kB1|
= k2|B1 + B2, . . . , Bn + B1|,

where B1, . . . , Bn are given by (2.2).
In this connection let us remark that

|k(B1 + B2), . . . , k(Bn + B1)| = k2|B1 + B2, . . . , Bn + B1|

since determinant has two rows.
This completes the proof of Theorem 1. �

Corollary 1.1. Let A1 . . . An and k be as in Theorem 1. Then there is a unique
(n− k)-outscribed polygon Q1 . . . Qn to the polygon A1 . . . An for which

2 area of Q1 . . . Qn = (n− k)2|C1 + C2, . . . , Cn + C1|, (2.17)

where

Ci = Ai + Ai+n−k + Ai+2(n−k) + · · ·+ Ai+(xn−k−1)(n−k), i = 1, . . . , n

and xn−k is the least positive solution of the equation

(n− k)x = 1 (mod n). (2.18)

Proof. It is easy to see that GCD(n, k) = 1 ⇔ GCD(n, n− k) = 1. �

Theorem 2. Let xk be as in Theorem 1 and xn−k as in Corollary 1.1. Then

xk + xn−k = n. (2.19)

Proof. From the known fact number theory it follows

xk < n, xn−k < n. (2.20)

Namely,

{k · 1, k · 2, . . . , k(n− 1)}mod n = {1, 2, . . . , n− 1},
{(n− k) · 1, (n− k) · 2, . . . , (n− k)(n− 1)}mod n = {1, 2, . . . , n− 1}.

Now, from
kxk = 1(mod n), (n− k)xn−k = 1 (mod n)

or
kxk = pn + 1, (n− k)xn−k = qn + 1

where p and q are some integers, follows

k(xk + xn−k) = (p− q + xn−k)n.

Thus, xk + xn−k must be divisible by n, since holds (2.20). �
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Theorem 3. Let P1 . . . Pn be as in Theorem 1 and Q1 . . . Qn as in Corollary 1.1.
Then

(1/k2) area of P1 . . . Pn = (1/(n− k)2) area of Q1 . . . Qn. (2.21)

In other words, it holds

|B1 + B2, . . . , Bn + B1| = |C1 + C2, . . . , Cn + C1|, (2.22)

where
Bi = Ai + Ai+k + · · ·+ Ai+(xk−1)k, i = 1, . . . , n (2.23)

Ci = Ai + Ai+(n−k) + · · ·+ Ai+(xn−k−1)(n−k), i = 1, . . . , n. (2.24)

Proof. First we show that there is similarity from P1 . . . Pn to Q1 . . . Qn given by

Qn−k+i = −n− k

k
Pi +

S

k
, i = 1, . . . , n (2.25)

where S is given by (2.16). For this purpose it is enough to show that for each
i = 1, . . . , n it holds

Qn−k+i + Qn−k+i+1 + · · ·+ Qn−k+i+(n−k)−1 = (n− k)An−k+i.

For simplicity, taking i = 1, we can write

n−k∑
i=1

Qn−k+i = −n− k

k
(P1 + P2 + · · ·+ Pn−k) +

(n− k)S

k

= −n− k

k
[S − (Pn−k+1 + Pn−k+2 + · · ·+ Pn−k+k)] +

(n− k)S

k

= −n− k

k
[S − kAn−k+1] +

(n− k)S

k
= (n− k)An−k+1.

Now, we have

|Qn−k+1 + Qn−k+2, . . . , Qn−k+n + Qn−k+1|

= | − n− k

k
(P1 + P2) +

2S

k
, . . . ,−n− k

k
(Pn + P1) +

2S

k
|

= (
n− k

k
)2|P1 + P2, . . . , Pn + P1|,

which according to (1.5) can be written as

k2|Q1 + Q2, . . . , Qn + Q1| = (n− k)2|P1 + P2, . . . , Pn + P1|.

This proves Theorem 3. �
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Example 1. Let A1 . . . A11 and k be as in Theorem 1. Since in this case x5 =
9, y5 = 4, x6 = 2, y6 = 1, we have

P1 = −4S + 5(A1 + A6 + A11 + A5 + A10 + A4 + A9 + A3 + A8)

= −5S + 5(A1 + A6 + A11 + A5 + A10 + A4 + A9 + A3 + A8) + S

= −5(A2 + A7) + S,

Q1 = 6(A1 + A7)− S.

Generally it holds

Pi = −5(Ai+1 + A(i+1)+5) + S, i = 1, . . . , 11 (2.26)

Qi = 6(Ai + Ai+6)− S, i = 1, . . . , 11 (2.27)

so that we have

|P1 + P2, . . . , P11 + P1| = 25|A2 + A7 + A3 + A8, . . . , A11 + A6 + A2 + A7|,
|Q1 + Q2, . . . , Q11 + Q1| = 36|A2 + A7 + A3 + A8, . . . , A11 + A6 + A2 + A7|,

where properties (1.5) and (1.9) are used.

In this connection let us remark that each column of determinants

|P1 + P2, . . . , Pn + P1|, |Q1 + Q2, . . . , Qn + Q1|

can be expressed as sum of four corresponding vertices since from x5 + x6 = 11
follows 2x6 = 2(11− x5) = 4.

Analogously holds generally since from xk + xn−k = n follows 2xn−k = 2(n−
xk).

Concerning relation (2.27), we can, using (2.26), write

Q6+i = −6

5
(−5(Ai+1 + Ai+6 + S)) +

S

5
= 6(Ai+1 + Ai+6)− S.

So, if i = 6, then Q1 = 6(A7 + A1)− S.
Now we shall consider the case where GCD(k, n) > 1. The following theorem

is easy to prove.

Theorem 4. Let A1 . . . An be a polygon in R2 and let k be an integer such that
1 < k < n and GCD(k, n) = d > 1. Then only one of the following two assertions
is true:

(i) There is no k-outscribed polygon to the polygon A1 . . . An

(ii) There are infinitely many k-outscribed polygons to the polygon A1 . . . An.
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The second appears only if

A1 + A1+k + A1+2k + · · ·+ A1+(x̂−1)k

=A2 + A2+k + A2+2k + · · ·+ A2+(x̂−1)k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=Ad + Ad+k + Ad+2k + · · ·+ Ad+(x̂−1)k,

 (Ek)

where x̂ is the least positive integer which is a solution of the equation

kx = 0 (modn). (2.28)

In other words, the relations given by (Ek) (existence for k-outscribed) are neces-
sary and sufficient conditions for existence. In particular, if GCD(k, n) = 2, then
(Ek) can be written as

∑n
i=1(−1)Ai = 0.

Proof. First let us remark that the relations (conditions) (Ek) express that the
center of gravity of the vertices

Ai, Ai+k, Ai+2k, . . . , Ai+(x̂−1)k

is the same for each i = 1, . . . , d. Alike it is easy to see that this center is also the
center of gravity of the vertices A1, A2, . . . , An. Namely, if c is such that

Ai + Ai+k + Ai+2k + · · ·+ Ai+(x̂−1)k

x̂
= c, i = 1, . . . , d

then

x̂cd =
n∑

i=1

Ai or c =
1

n

n∑
i=1

Ai, since x̂d = n.

To prove Theorem 4 we shall first consider one example, say, that where n = 15
and k = 6. In this case we have

P1 + P2 + P3 + P4 + P5 + P6 = 6A1,

P7 + P8 + P9 + P10 + P11 + P12 = 6A7,

P13 + P14 + P15 + P1 + P2 + P3 = 6A13,

P4 + P5 + P6 + P7 + P8 + P9 = 6A4,

P10 + P11 + P12 + P13 + P14 + P15 = 6A10,

P2 + · · ·P7 = 6A2, P3 + · · ·+ P8 = 6A3

P8 + · · ·P13 = 6A8, P9 + · · ·+ P14 = 6A9

P14 + · · ·P4 = 6A14, P15 + · · ·+ P5 = 6A15

P5 + · · ·P10 = 6A5, P6 + · · ·+ P11 = 6A6

P11 + · · ·P1 = 6A11, P12 + · · ·+ P2 = 6A12

Since 2(P1 + · · ·+ P15) = 2S, where S = A1 + · · ·+ A15, it holds

2S = 6(A1 + A7 + A13 + A4 + A10)

= 6(A2 + A8 + A14 + A5 + A11)

= 6(A3 + A9 + A15 + A6 + A12).
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The above relations can be written as

A1 + A1+6 + A1+2·6 + A1+3·6 + A1+(x̂−1)6

= A2 + A2+6 + A2+2·6 + A2+3·6 + A2+(x̂−1)6

= A3 + A3+6 + A3+2·6 + A3+3·6 + A3+(x̂−1)6.

 (E6)

since x = 5 is the least positive integer such that 6x = 0 (mod 15).
From this it is clear that the system

Pi + Pi+1 + · · ·+ Pi+5 = 6Ai, i = 1, . . . , 15

has a solution if and only if holds (E6).
In the same way can be seen that the system

Pi + Pi+1 + · · ·+ Pi+k−1 = kAi, i = 1, . . . , n

where GCD(k, n) = d > 1, has a solution if and only if holds (Ek). Here instead
of the equations stated in example where n = 15 and k = 6, we have the equations

k∑
i=1

Pi = kA1,
2k∑

i=1+k

Pi = kA1+k, . . . ,
kx̂∑

i=1+(x̂−1)k

Pi = kA1+(x̂−1)k (i1)

......................................................................................................................
d−1+k∑

i=d

Pi = kAd,
d−1+2k∑
i=d+k

Pi = kAd+k, . . . ,
d−1+x̂k∑

i=d+(x̂−1)k

Pi = kAd+(x̂−1)k (id)

where x = x̂ is the least positive integer such that kx = 0(mod n).
In this connection let us remark that from the first x̂ equations given by (i1),

by adding up, follows

k

d
S = k(A1 + A1+k + A1+2k + · · ·+ A1+(x̂−1)k),

where S = A1 + · · · + An. Also let us remark that from k
d
n = k n

d
follows that

x̂ = n
d
.

Concerning term k
d
S on the left-hand side of the above equation let us remark

that k
d
n = kx̂.

Thus, supposing that holds (Ek), it remains to prove that matrix of the system
has rank equal n− d + 1. First about the matrix of the system where n = 15 and
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k = 6, that is, about the matrix

K =



1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 1 1 1 1 1

1 1 0 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 1 0 0 0 0 0 0 0 0 0 1 1

1 1 1 1 1 0 0 0 0 0 0 0 0 0 1



.

Consider the 15 lines in K as vectors xi. We have

x1 = (1111110 . . . 0), . . . , x15 = (111110 . . . 01).

{xi} is linear dependent if

15∑
i=1

λixi = 0 with
15∑
i=1

λ2
i > 0. (R)

There is
x1 + x7 + x13 + x4 + x10 = (11 . . . 1)

x2 + x8 + x14 + x5 + x11 = (11 . . . 1)

x3 + x9 + x15 + x6 + x12 = (11 . . . 1).

 (2.29)

Choose

λ1 = λ7 = λ13 = λ4 = λ10

λ2 = λ8 = λ14 = λ5 = λ11

λ3 = λ9 = λ15 = λ6 = λ12.

Then

15∑
i=1

λixi = 2 · (λ1 + λ2 + λ3) · (11 . . . 1) = 0 for λ3 = −λ1 − λ2.

Thus, there exist at least two parameters λ1, λ2 for (R). From this it is clear that
the rank of K is ≤ 15− 2 = 13.
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On the other hand there is

13∑
i=1

λixi = 0 =⇒ λ1 = λ2 = · · · = λ13 = 0.

Therefore, the rank of K is exactly 13.
The general proof is completely analogous to the proof where n = 15 and

k = 6. Instead of the equations given by (2.29) we have the equations

x1 + x1+k + x1+2k + · · ·+ x1+(x̂−1)k = (11 . . . 1),

x2 + x2+k + x2+2k + · · ·+ x2+(x̂−1)k = (11 . . . 1),

...........................................................................

xd + xd+k + xd+2k + · · ·+ xd+(x̂−1)k = (11 . . . 1).

(2.30)

Let λ1, . . . , λn be chosen such that

λ1 = λ1+k = λ1+2k = · · · = λ1+(x̂−1)k

...........................................................

λd = λd+k = λd+2k = · · · = λd+(x̂−1)k.

Then
n∑

i=1

λixi =
k

d
(λ1 + λ2 + · · ·+ λd)(11 . . . 1) = 0 for λd = −λ1 − · · · − λd−1.

This means that there exist at least d− 1 parameters λ1, . . . , λd−1 such that

n∑
i=1

λixi = 0 with
n∑

i=1

λ2
i > 0.

Thus, if the matrix of the system is denoted by L, it holds

rank of L ≤ n− d + 1.

On the other hand there is
n∑

i=1

λixi = 0 =⇒ λ1 = λ2 = · · · = λn−d+1 = 0.

Therefore the rank of L is exactly n−d+1. This completes the proof of Theorem
4. �

Corollary 4.1. If matrix of the system

Pi − Pi+k = k(Ai − Ai+1), i = 1, . . . , n (2.31)

has rank r, then matrix of the system

Pi − Pi+n−k = (n− k)(Ai − Ai+1), i = 1, . . . , n (2.32)

has also rank r.
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Proof. It holds GCD(k, n) = GCD(n− k, n). �

In this connection let us remark that, if M is matrix of the system (2.31), then
MT is matrix of the system (2.32).

Theorem 5. Let A1 . . . An be a polygon in R2 and let k be an integer such that
1 < k < n and GCD(k, n) = d > 1. Then the following two assertions are valid:

(i) The condition for being k-outscribed polygon to the polygon A1 . . . An is the
same as the condition for being (n − k)-outscribed polygon to the polygon
A1 . . . An.

(ii) For every polygon P1 . . . Pn which is k-outscribed to the polygon A1 . . . An

there exists the (n−k)-outscribed polygon Q1 . . . Qn to the polygon A1 . . . An

which is similar to the polygon P1 . . . Pn and it holds

area of Q1 . . . Qn =

(
n− k

k

)2

area of P1 . . . Pn. (2.33)

Proof. To prove (i), we shall first, for simplicity writing, consider one example,
say, that considered in Theorem 4, where n = 15, k = 6. In this case we have
found that the condition for being 6-outscribed polygon to the polygon A1 . . . A15

is given by

A1 +A7 +A13 +A4 +A10 = A2 +A8 +A14 +A5 +A11 = A3 +A9 +A15 +A6 +A12.
(2.34)

Now from Theorem 4 and from

Q1 + Q2 + Q3 + Q4 + Q5 + Q6 + Q7 + Q8 + Q9 = 9A1

Q10 + Q11 + Q12 + Q13 + Q14 + Q15 + Q1 + Q2 + Q3 = 9A10

Q4 + Q5 + Q6 + Q7 + Q8 + Q9 + Q10 + Q11 + Q12 = 9A4

Q13 + Q14 + Q15 + Q1 + Q2 + Q3 + Q4 + Q5 + Q6 = 9A13

Q7 + Q8 + Q9 + Q10 + Q11 + Q12 + Q13 + Q14 + Q15 = 9A7

(2.35)

Q2 + · · ·+ Q10 = 9A2, Q3 + · · ·+ Q11 = 9A3

Q11 + · · ·+ Q4 = 9A11, Q12 + · · ·+ Q5 = 9A12

Q5 + · · ·+ Q13 = 9A5, Q6 + · · ·+ Q14 = 9A6

Q14 + · · ·+ Q7 = 9A14, Q15 + · · ·+ Q9 = 9A15

Q8 + · · ·+ Q1 = 9A8, Q9 + · · ·+ Q2 = 9A9

we see that the condition for being 9-outscribed polygon to the polygon A1 . . . A15

is the same as that for being 6-outscribed polygon to the polygon A1 . . . A15.
Here it is important to see that x = 5 is the least positive integer which is a

solution of the equation
6x = 0 (mod15) (2.36)

and that also x = 5 is the least positive integer which is a solution of the equation

9x = 0 (mod15). (2.37)
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In this connection let us remark that, for example, the first of the five equations
given by (2.35) begins with Q1 and the fifth ends with Q15. Similar holds when
instead of Q1 there is Q2 or Q3.

Also let us remark that for i = 1, 2, 3 and x− 1 = 4, k = 6, n− k = 9 it holds

{Ai, Ai+k, Ai+2k, Ai+3k, Ai+4k}
= {Ai, Ai+n−k, Ai+2(n−k), Ai+3(n−k), Ai+4(n−k)} (2.38)

or

{i, i + k, i + 2k, i + 3k, i + 4k}mod 15

= {i, i + n− k, i + 2(n− k), i + 3(n− k), i + 4(n− k)}mod 15

since

i + k = i + 4(n− k) (mod 15),

i + 2k = i + 3(n− k) (mod 15),

i + 3k = i + 2(n− k) (mod 15),

i + 4k = i + n− k (mod 15).

Namely it holds
5k = jn (mod 15), j = 4, 3, 2, 1.

In this connection let us remark that each of the integers k, 2k, 3k, 4k (mod 15)
is less then 15 since x = 5 is the least positive integer which is a solution of the
equation (2.36).

It is not difficult to see that analogously holds generally for the case when
GCD(k, n) = d > 1. Instead of equations (2.36) and (2.37) we have equations

kx = 0 (mod n), (n− k)x = 0 (mod n) (2.39)

with property that x̂ = n
d

is the least positive integer such that hold both of
the equations (2.39). Also let us remark that instead of relation (2.38) we have
relation

{Ai, Ai+k, . . . , Ai+(x̂−1)k} = {Ai, Ai+n−k, . . . , Ai+(x̂−1)(n−k)},

where i = 1, . . . , d.
Thus assertion (i) is proved.

To prove (ii) let P1 . . . Pn be any given polygon which is k-outscribed to the poly-
gon A1 . . . An and let Qn−k+i be given by

Qn−k+i = −n− k

k
Pi +

S

k
, i = 1, . . . , n

as in Theorem 3 where GCD(k, n) = 1. In the same way as in Theorem 3 can be
shown that

n−k∑
i=1

Qn−k+i = (n− k)An−k+1.
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Also in the same way as in Theorem 3 we have

|Qn−k+1 + Qn−k+2, . . . , Qn−k+n + Qn−k+1|

=| − n− k

k
(P1 + P2) +

2S

k
, · · · ,−n− k

k
(Pn + P1) +

2S

k
|

=

(
n− k

k

)2

|P1 + P2, . . . , Pn + P1|,

which according to (1.5) can be written as

|Q1 + Q2, . . . , Qn + Q1| =
(

n− k

k

)2

|P1 + P2, . . . , Pn + P1|.

This completes the proof of Theorem 5. �

Corollary 5.1. Let P1 . . . Pn be any given polygon which is k-outscribed to the
polygon A1 . . . An. Then there exists unique (n − k)-outscribed polygon Q1 . . . Qn

to the polygon A1 . . . An such that

Qn−k+i = −n− k

k
Pi +

S

k
, i = 1, . . . , n.

Such two polygons, P1 . . . Pn and Q1 . . . Qn, can be called conjugate polygons. They
are similar.

Corollary 5.2. Let by P̄1 . . . P̄n be denoted the k-outscribed polygon to the polygon
A1 . . . An with property that it can be k-outscribed, and let by Q̄1 . . . Q̄n be denoted
the (n − k)-outscribed polygon to the polygon A1 . . . An with the property that it
can be (n − k)-outscribed. Then polygons P̄1 . . . P̄n and Q̄1 . . . Q̄n are conjugate,
that is, from

Qn−k+i = −n− k

k
P̄i +

S

k
, i = 1, . . . , n

follows Qn−k+i = Q̄n−k+i, i = 1, . . . , n.

Proof. From
n∑

i=1

(−1)iQi =
n∑

i=1

(−1)i

[
−n− k

k
P̄i +

S

k

]
= 0

follows
∑n

i=1(−1)iQi = 0. Thus, Q1 . . . Qn is polygon which is (n− k)-outscribed
to the polygon A1 . . . An and has the property that it can be (n− k)-outscribed.
Such polygon is unique, since equation

∑n
i=1(−1)iQi = 0 completely determines

Q1. Thus, Q1 . . . Qn = Q̄1 . . . Q̄n. �

Theorem 6. Let A1 . . . An be a polygon in R2, where n is even, and let k be a
positive integer such that k < n and GCD(k, n) = 2. Then every polygon which
is k-outscribed to the polygon A1 . . . An has the same area. In other words, for
every two polygons P1 . . . Pn and P̂1 . . . P̂n which are k-outscribed to the polygon
A1 . . . An it holds

|P1 + P2, . . . , Pn + P1| = |P̂1 + P̂2, . . . , P̂n + P̂1|. (2.40)
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Proof. We suppose that (Ek) is fulfilled, that is,
∑n

i=1(−1)iAi = 0. The system

Pi + Pi+1 + · · ·+ Pi+k−1 = kAi, i = 1, . . . , n (2.41)

can be written as

Pi − Pi+k = k(Ai − Ai+1), i = 1, . . . , n. (2.42)

It is easy to see that from the above equations follows

P1+ki = P1 + S1+ki, i = 1, 2, . . . ,
n

2
− 1, (2.43)

P2+ki = P2 + S2+ki, i = 1, 2, . . . ,
n

2
− 1 (2.44)

where S1+ki and S2+ki are sums of certain vertices A1 . . . An.
For example, if n = 10 and k = 6, then

P7 = P1+6 = P1 − 6(A1 − A2),

P3 = P1+12 = P7 − 6(A7 − A8) = P1 − 6(A1 − A2 + A7 − A8),

P9 = P1+18 = P3 − 6(A3 − A4) = P1 − 6(A1 − A2 + A7 − A8 + A3 − A4),

P5 = P1+24 = P1 + 6(A5 − A6)

where S1+6 = −6(A1 − A2), S1+12 = −6(A1 − A2 + A7 − A8) and so on.
Analogously holds for S2+6i. Here we have

{P2+6, P2+12, P2+18, P2+24} = {P8, P4, P10, P6}.

Since in the case when GCD(k, n) = 2, the integer k must be even. Thus, both
of the indices i and i + 1 in Pi + Pi+1 are odd or both even. Therefore in the
expression of each of P3, P5, . . . , Pn−1 appears P1 and in the expression of each of
P4, P6, . . . , Pn appears P2, so that determinant

|P1 + P2, P2 + P3, . . . , Pn + P1|

can be written as

|P1 + P2, P1 + P2 + K1, . . . , P1 + P2 + Kn−1|, (2.45)

where each Ki is expressed by A1, . . . , An and also P1 + P2 are expressed by
A1, . . . , An.

Of course, that above determinant is a constant can also be seen using property
(1.5). Namely, since

∑n
i=i(−1)i(Pi + Pi+1) = 0, the above determinant can be

written as
|O, K1, . . . , Kn−1| or |K1, . . . , Kn−1|. (2.46)

This proves Theorem 6. �

Corollary 6.1. Let A1 . . . An and k be as in Theorem 6. Then all the polygons
which are (n− k)-outscribed to the polygon A1 . . . An have the same area.
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The proof is quite analogous to the proof of Theorem 6.
Of course, that Corollary 6.1 is valid can also be concluded from the fact

that for every k-outscribed polygon P1 . . . Pn to the polygon A1 . . . An there exists
(n− k)-outscribed polygon Q1 . . . Qn to the polygon A1 . . . An which is similar to
the polygon P1 . . . Pn.

Here let us remark that it is not always easy to express corresponding de-
terminants in the most simple form for every k. The case when k = 4 may be
interesting and it will be considered in the following theorem.

Theorem 7. Let k = 4 and A1 . . . An be a polygon in R2 where GCD(k, n) =
2 and

∑n
i=1(−1)iAi = 0. Then for every 4-outscribed polygon P1 . . . Pn to the

polygon A1 . . . An it holds

Pi + Pi+1 = 2(Ai − Ai+2 + Ai+4 − · · ·+ Ai+n−2), i = 1, . . . n. (2.47)

Proof. We have to prove that

Pi + Pi+1 + Pi+2 + Pi+3 = 4Ai, i = 1, . . . , n. (2.48)

Since GCD(k, n) = 2, P1 can be arbitrary. Let P2, . . . , Pn be given (inductively)
by

Pi+1 = −Pi + 2(Ai − Ai+2 + Ai+4 − · · ·+ Ai+n−2), i = 1, . . . , n− 1. (2.49)

It is easy to see that from

Pi + Pi+1 = 2(Ai − Ai+2 + Ai+4 − · · ·+ Ai+n−2),

Pi+2 + Pi+3 = 2(Ai+2 − Ai+4 + · · · − Ai+n−2 + Ai+2+n−2)

by adding up, we get Pi + Pi+1 + Pi+2 + Pi+3 = 4Ai. This also can be proved in
the following way.

The equation P1 + P2 +
∑6

i=3 Pi + · · ·+
∑n

i=n−3 Pi =
∑n

i=1 Ai can be written
as

P1 + P2 =
n∑

i=1

Ai − 4(A3 + A7 + · · ·+ An−3)

or, since
∑n

i=1 Ai = 2(A1 + A3 + · · ·+ An−1) = 2(A2 + A4 + · · ·+ An),

P1 + P2 = 2(A1 − A3 + A5 − A7 + · · · − An−3 + An−1).

In the same way can be seen that holds (2.47). This proves Theorem 7. �

Corollary 7.1. It holds

2 area of P1 . . . Pn = 16|B1, . . . , Bn|, (2.50)

where
Bi = Ai+2 + Ai+6 + Ai+10 + · · ·+ Ai+n−4, i = 1, . . . , n. (2.51)

(Of course, the property given by (1.4) is used.)
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Proof. The sum Pi + Pi+1 can also be written as

Pi + Pi+1 = 2T − 4(Ai+2 + Ai+6 + Ai+10 + · · ·+ Ai+n−4), i = 1, . . . , n

where T = A1 + A3 + A5 + · · ·+ An−1 = A2 + A4 + A6 + · · ·+ An. �

Corollary 7.2. Let Q1 . . . Qn be an (n − 4)-outscribed polygon to the polygon
A1 . . . An. Then

2 area of Q1 . . . Qn = (n− 4)2|B1, . . . , Bn|, (2.52)

where B1, . . . , Bn are given by (2.51).

Proof. According to Theorem 3 and Theorem 6 it holds

Qn−4+i = −n− 4

4
Pi +

S

4
, i = 1, . . . , n.

From (2.47) follows

P2 = −P1 + F1,

P3 = P1 − F1 + F2,

P4 = −P1 + F1 − F2 + F3,

and so on,

where F1, . . . , Fn are expressions which depend only of A1, . . . , An and can be
written as

Fi = 2T − 4(Ai+2 + Ai+6 + Ai+10 + · · ·+ Ai+n−4), i = 1, . . . , n

where T = A1 + A3 + A5 + · · ·+ An−1 = A2 + A4 + A6 + · · ·+ An.
Since

Qn−4+1 = −n− 4

4
P1 +

S

4
,

Qn−4+2 = −n− 4

4
(−P1 + F1) +

S

4
,

Qn−4+3 = −n− 4

4
(P1 − F1 + F2) +

S

4
,

and so on,

it holds

Qn−4+1 + Qn−4+2 = −n− 4

n
F1 +

S

2
,

Qn−4+2 + Qn−4+3 = −n− 4

n
F2 +

S

2
,

and so on.

Using properties given by (1.5) and (1.8) we get (2.52). �

In the following theorem will be considered one more case when it is relatively
easy to express corresponding determinants in a simple form.
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Theorem 8. Let A1 . . . An be a polygon in R2 with property that
∑n

i=1(−1)iAi = 0
and let k = n

2
− 1, where n is divisible by 2 but not by 4. Then for every polygon

P1 . . . Pn which is k-outscribed to the polygon A1 . . . An it holds

2 area of P1 . . . Pn = k2|C1, . . . , Cn|, (2.53)

where
Ci = Ai + Ai+k, i = 1, . . . , n. (2.54)

Proof. First it is clear that GCD(n, n
2
− 1) = 2 since n is even integer but not

divisible by 4. So we can write

P1 + P2 + (P3 + · · ·+ P3+k−1) + (P3+k + · · ·+ P3+2k−1) =
n∑

i=1

Ai

or

P1 + P2 = S − k(A3 + A3+k), where S =
n∑

i=1

Ai.

In the same way can be seen that

Pi + Pi+1 = S − k(Ai+2 + Ai+2+k), i = 1, . . . , n.

Thus, according to the properties (1.3) and (1.8) we have

area of P1 . . . Pn = |A3 + A3+k, . . . , A1 + A1+k, A2 + A2+k|
= |A1 + A1+k, . . . , An + An+k|.

This proves Theorem 8. �

Here may be interesting that for each k = 2, 4, . . . , n
2
− 1, n

2
+ 1, . . . , n− 2 we get

relatively simple expressions for Pi +Pi+1. For example, let n = 14. If k = 2, then

P1 + P2 + (P3 + P4) + · · ·+ (P13 + P14) = S, where S =
14∑
i=1

Ai,

from which follows

P1 + P2 = S − 2(A3 + A5 + · · ·+ A13)

= 2A1 +
14∑
i=1

(−1)iAi = 2A1.

Thus, in this case
area of P1 . . . P14 = 4|A1, . . . , A14|.

If k = 4, then Pi + Pi+1 = S − 4(Ai+2 + Ai+2+4 + Ai+2+8), i = 1, . . . , 14.
If k = 6, then Pi + Pi+1 = S − 6(Ai+2 + Ai+2+6), i = 1, . . . , 14.
In the case when k = 8, 10, 12 holds Theorem 5.
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Theorem 9. Let j, k, n be positive integers such that

n = jk + 2 and GCD(k, n) = 2.

Let A1 . . . An be a polygon in R2 which can be k-outscribed, that is
∑n

i=1(−1)iAi =
0. Then for every k-outscribed polygon P1 . . . Pn to the polygon A1 . . . An it holds

area of P1 . . . Pn = k2|B1, . . . , Bn|,

where Bi = Ai + Ai+k + · · ·+ Ai+(j−1)k, i = 1, . . . , n.

Proof. The equality

P1 + P2 +
2+k∑
i=3

Pi +
2+2k∑
i=3+k

Pi + · · ·+
2+jk∑

i=3+(j−1)k

Pi = S,

where S =
∑n

i=1 Ai, can be written as

P1 + P2 = S − k(A3 + A3+k + · · ·+ A3+(j−1)k).

In the same way can be seen that

Pi + Pi+1 = S − k(Ai+2 + Ai+2+k + · · ·+ Ai+2+(j−1)k), i = 1, . . . , n.

In the expression for area of P1 . . . Pn the properties (1.4) and (1.7) are used. This
proves Theorem 9. �

It is easy to see that analogously holds in the case when there are positive integers
a1, . . . , aj and b1, . . . , bj such that

n = a1k + b1,

n = a2b1 + b2,

...............

n = ajbj + bj+1,

where bj+1 = 2. For example, if n = 22, k = 6 then can be written

22 = 3 · 6 + 4,

22 = 5 · 4 + 2.

Concerning areas of the polygon in R2 in connection with g-determinant, the
following theorem can be interesting.

Theorem 10. Let A1, . . . , An be any given real 2× n matrix. Then

|A1, . . . , An| = |A1, A2, A3|+ |A1 − A2 + A3, A4, A5|+
|A1 − A2 + A3 − A4 + A5, A6, A7|+ · · ·+ L, (2.55)
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where

L = |
n−2∑
i=1

(−1)i+1Ai, An−1, An| if n is odd, (2.56)

L = |
n−1∑
i=1

(−1)i+1Ai, An| if n is even. (2.57)

Proof. The proof follows directly from definition of g-determinant of 2×n matrix
[A1, . . . , An]. Namely, it is easy to see that relation (2.55) can be written as

|A1, . . . , An| =
∑

i≤j1<j2≤n

(−1)1+2+j1+j2|Aj1 , Aj2 |. (2.58)

(See relation (1.1).)

So, for example, if n = 5 then

|A1, . . . , A5| = |A1, A2, A3|+ |A1 − A2 + A3, A4, A5|
= |A1, A2| − |A1, A3|+ |A2, A3|+ |A1, A4|+ |A1, A5|
−|A2, A4| − |A2, A5|+ |A3, A4|+ |A3, A5|+ |A4, A5|.

Here let us remark that in (2.58) instead of (−1)1+2+j1+j2 can be written
(−1)1+j1+j2 .

In the case when n is odd, then in the sum on the right-hand side of (2.55)
there are n−1

2
determinants whose type is 2× 3. If n is even then there are n

2
such

determinants or n−1
2

in the case when
∑n

i=1(−1)iAi = 0, namely, then L given by
(2.57) is zero. �

Corollary 10.1. If n is even and
∑n

i=1(−1)iAi = 0, then

|A1, . . . , An| = |A1, . . . , An−1|. (2.59)

Proof. In this case the term L is zero. (Cf. with (1.6).) �

Corollary 10.2. If n is even and
∑n

i=1(−1)iAi = 0 then for every 2-outscribed
polygon P1 . . . Pn to the polygon A1 . . . An it holds

area of P1 . . . Pn = 2(|A1, A2, A3|+ |S1, A4, A5|+ · · ·+ |Su, An−2, An−1|)

or

area of P1 . . . Pn = 2(area of parallelogram A1A2A3S1+

area of parallelogram S1A4A5S2 + · · ·+
area of parallelogram SuAn−2An−1Sv),

where

S1 =
3∑

i=1

(−1)i+1Ai, S2 =
5∑

i=1

(−1)i+1Ai, . . . ,

Su =
n−3∑
i=1

(−1)i+1Ai, Sv = An.
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Proof. Since by Theorem 1 in [2] it holds

2 area of P1 . . . Pn = |P1 + P2, . . . , Pn + P1|,

and P1, . . . , Pn are such that Pi + Pi+1 = 2Ai, i = 1, . . . , n we can write

2 area of P1 . . . Pn = |2A1, 2A2, . . . , 2An|

or
area of P1 . . . Pn = 2|A1, A2, . . . , An|. (2.60)

In this connection let us remark that, for example, |A1, A2, A3| = area of parallelo-
gram A1A2A3S1 since by (2.60) it holds

|A1, A2A3| =
1

2
area of 2-outscribed triangle to the triangle A1A2A3.

As an illustration can be seen Figure 1, where P1, . . . P6 is a 2-outscribed to the
hexagon A1 . . . A6. In this case it holds

area of P1 . . . P6 = 2(area of parallelogram A1A2A3S1+

area of parallelogram S1A4A5A6).
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�

Corollary 10.3. If n is even and
∑n

i=1(−1)iAi = 0, then for every 2-outscribed
polygon P1 . . . Pn to the polygon A1 . . . An and for (unique) 2-outscribed polygon
Q1 . . . Qn−1 to the polygon A1 . . . An−1 it holds

area of P1 . . . Pn = area of Q1 . . . Qn−1.

Proof. Since Qi + Qi+1 = 2Ai, i = 1, . . . , n− 1, by Theorem 1 in [2] it holds

area of Q1 . . . Qn−1 = 2|A1, . . . An−1|.
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In this connection let us remark that Q1 = An, that is, it holds

Q1 =
n−1∑
i=1

(−1)i+1Ai.

Geometrical illustration for n = 6 can be seen in Figure 2.
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Here let us remark that also in the case when GCD(k, n) = 2 and k > 2, using
Theorem 10, can be obtained interesting relations. �

Till now we have dealt with areas of the k-outscribed n-gons in R2 where
GCD(k, n) = 2. Now the following question arises: What is the situation with
areas of the k-outscribed n-gons in the case where GCD(k, n) > 2? The following
theorem gives answer to the question and, as will be seen, can be very interesting.

Theorem 11. Let A1 . . . An be a polygon in R2 and let k be an integer such that
1 < k < n, GCD(k, n) = d > 2 and that holds (Ek). Then the k-outscribed
polygons to the polygon A1 . . . An have different areas.

Proof. For simplicity writing and complete analogy let n = 3r, where r >
1 is an integer, and let k = 3. Then GCD(k, n) = 3. In this case we have
equalities(conditions)

A1 + A4 + A7 + · · ·+ A3r−2 = L

A2 + A5 + A8 + · · ·+ A3r−1 = L

A3 + A6 + A9 + · · ·+ A3r = L

 (E3)

where L = 1
3

∑3r
i=1 Ai. Since k = 3 we have the equations

P1 + P2 + P3 = 3A1

P2 + P3 + P4 = 3A2

...............................

P3r + P1 + P2 = 3A3r

 (D3)
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from which follows

P1 − P4 = 3(A1 − A2)

P2 − P5 = 3(A2 − A3)

...............................

P3r−2 − P1 = 3(A3r−2 − A3r−1)

P3r−1 − P2 = 3(A3r−1 − A3r)

P3r − P3 = 3(A3r−A1).

Now using the above equations, we can write

P1

P4 = P1 − 3(A1 − A2)

P7 = P4 − 3(A4 − A5) = P1 − 3(A1 − A2)− 3(A4 − A5)

P10 = P7 − 3(A7 − A8) = P1 − 3(A1 − A2)− 3(A4 − A5)− 3(A7 − A8)

...

P3r−2 = P3r−5 − 3(A3r−5 − A3r−4) = P1 − 3(A1 − A2)− · · · − 3(A3r−5 − A3r−4)

P2

P5 = P2 − 3(A2 − A3)

P8 = P5 − 3(A5 − A6) = P2 − 3(A2 − A3)− 3(A5 − A6)

P11 = P8 − 3(A8 − A9) = P2 − 3(A2 − A3)− 3(A5 − A6)− 3(A8 − A9)

...

P3r−1 = P3r−4 − 3(A3r−4 − A3r−3) = P2 − 3(A2 − A3)− · · · − 3(A3r−4 − A3r−3)

P3

P6 = P3 − 3(A3 − A4)

P9 = P6 − 3(A6 − A7) = P3 − 3(A3 − A4)− 3(A6 − A7)

P12 = P9 − 3(A9 − A10) = P3 − 3(A3 − A4)− 3(A6 − A7)− 3(A9 − A10)

...

P3r = P3r−3 − 3(A3r−3 − A3r−2) = P3 − 3(A3 − A4)− · · · − 3(A3r−3 − A3r−2).

Since P1 + P2 + P3 = 3A1 follows

P3 = −P1 − P2 + 3A1

P6 = −P1 − P2 + 3A1 − 3(A3 − A4)

P9 = P6 − 3(A6 − A7) = −P1 − P2 + 3A1 − 3(A3 − A4)− 3(A6 − A7)

P12 =P9 − 3(A9−A10)=−P1 − P2 + 3A1 − 3(A3−A4)− 3(A6−A7)− 3(A9−A10)

...

P3r = −P1 − P2 + 3A1 − 3(A3 − A4)− 3(A6 − A7)− · · · − 3(A3r−3 − A3r−2).
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From the above relations it is clear that the set P (3) of 3-outscribed polygons to
the polygon A = A1 . . . An is 4-parametric with the parameters P1 = (λ1, κ1) and
P2 = (λ2, κ2). Therefore, these polygons have different areas. �

Example 2. Let n = 6.

k = 1: P(1) = A:

2 2, 25 1, 75 1 0, 75 1, 25
1 1, 75 2, 25 2 1, 25 0, 75

∑6
i=1 Ai =

(
9
9

)
, area:3

2

(E3) is fulfilled.

k = 3: P(3):

λ1 λ2 6− λ1 − λ2 0, 75 + λ1 −1, 5 + λ2 3, 75− λ1 − λ2

κ1 κ2 3− κ1 − κ2 2, 25 + κ1 1, 5 + κ2 2, 25− κ1 − κ2

2 · area : 6λ1κ2 − 6λ2κ1 − 4, 5λ1 + 2, 25λ2 + 13, 5κ1 − 6, 75κ2 + 6, 75

Special case 1: λ1 = 1, 25; λ2 = 2; κ1 = 0, 5; κ2 = 0, 5:

1, 25 2 2, 75 2 0, 5 0, 5
0, 5 0, 5 2 2, 75 2 1, 25

area:27
8

= 9
4
· 3

2
= 3, 375

Special case 2: λ1 = 1, 2; λ2 = 2; κ1 = 0, 5; κ2 = 0, 5:

1, 2 2 2, 8 1, 95 0, 5 0, 55
0, 5 0, 5 2 2, 75 2 1, 25

area:273
80

= 3, 4125

Case 2Case 1

Figure 3

Center of
gravity

k=1
k=3

Case 1, Case 2

Figure 4

Now in the end of the article it can be said the following.
1. The k-outscribed polygons can be constructed and calculated not only in

the case when GCD(k, n) ≤ 2 but also in the case when GCD(k, n) > 2.
Of course, in both cases the condition (Ek) must be fulfilled.
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2. The solution is 2(d− 1) parametric. For example, P1, . . . , Pd−1 can be arbi-
trary.

3. In the case when d > 2, the areas of k-outscribed polygons are different.
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