
Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 49 (2008), No. 1, 205-215.

A Note on Secantoptics

Magdalena Skrzypiec

Institute of Mathematics, UMCS
pl. M. Curie-Sk lodowskiej 1, 20-031 Lublin, Poland

e-mail: mskrzypiec@hektor.umcs.lublin.pl

Abstract. In this paper we define a certain generalization of isoptic
curves. We call the new curves secantoptics, since we use secants to
construct them. We extend to secantoptics some properties of isoptics
known from [1] and [6]. At the end we discuss other generalizations of
isoptics and relations between them.
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1. Introduction

Isoptic curves occur in connection with cam mechanisms and were studied by
engineers [11]. Therefore it seems to be justified to study some generalizations
of isoptics, which might have applications in machinery. Let us remind that an
α-isoptic of a closed, convex curve is composed of those points in the plane from
which the curve is seen under a fixed angle π−α. In [6] authors give the equation
of isoptic in terms of a support function. They derive that a mapping associated
with isoptics has positive jacobian and that it is a diffeomorphism. They give
the formula for curvature of isoptics and also they formulate and derive a relation
called the sine theorem for isoptics. Now, we want to extend these results for
secantoptics.

2. Definition of a secantoptic

Let C be an oval, that is, a closed convex curve of class C2 with the nonvanishing
curvature. We introduce a coordinate system with origin O in the interior of C
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and denote by p(t), t ∈ [0, 2π] the support function of the curve C. Then, as
was shown in [9], the support function is differentiable and the curve C can be
parametrized by

z(t) = p(t)eit + p′(t)ieit for t ∈ [0, 2π]. (2.1)

Note that for ovals p′′′(t) exists and p(t) + p′′(t) > 0 for t ∈ [0, 2π].
Let C be an oval and let β ∈ [0, π), γ ∈ [0, π− β) and α ∈ (β + γ, π) be fixed

angles. We take a tangent line l1(t) to the oval C at a point z(t). We construct
a secant line s1(t) of C rotating l1(t) about the point z(t) through angle −β . Let
us take another tangent line l2(t) = l1(t+α−β−γ) at the point z(t+α−β−γ) and
let s2(t) be a secant obtained by rotating l2(t) about the tangency point through
angle γ. Then s1(t) and s2(t) intersect each other forming a fixed angle α.

Definition 2.1. The set of intersection points zα,β,γ(t) of s1(t) and s2(t) for t ∈
[0, 2π] form a curve which we call a secantoptic Cα,β,γ of an oval C.

Note that the intersection points of tangents l1(t) and l2(t) for t ∈ [0, 2π] form
the isoptic Cα−β−γ of an oval C. In the general case we can formulate a definition
of secantoptic for a curve which is not convex. Moreover, we can use any other
parametrization for curve C, but parametrization with the support function is
very convenient. In this paper we want to consider only secantoptics of ovals.

Consider two triangles, T1 with vertices z(t), z(t+α−β−γ) and zα−β−γ(t) and
T2 with vertices z(t), z(t+α−β−γ) and zα,β,γ(t). The segment [z(t), z(t+α−β−γ)]
forms a common side of triangles T1 and T2. The point zα−β−γ(t) lies in the interior
of T2 for t ∈ [0, 2π], since 0 < π − α ≤ π − α + β + γ ≤ π. Hence the isoptic
Cα−β−γ lies in the interior of the secantoptic Cα,β,γ. All isoptics of a curve C lie
in the exterior of C, so the secantoptic Cα,β,γ lies in the exterior of C, too.

Figure 1.
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To obtain an equation of a secantoptic we use the same method as authors [6] for
isoptics. Consider the following vector

q(t) = z(t)− z(t + α− β − γ), (2.2)

which in terms of the support function may be written as

q(t) = (p(t)−p(t+α−β − γ) cos(α− β − γ) + p′(t + α− β − γ) sin(α− β − γ)

+i(p′(t)−p(t+α−β−γ) sin(α− β − γ)− p′(t + α− β − γ) cos(α− β − γ)))eit.

We introduce additional notations to simplify calculations

b(t) = p(t+α−β−γ) sin(α− β − γ) + p′(t+α−β−γ) cos(α− β − γ)− p′(t),

B(t) = p(t)− p(t+α−β−γ) cos(α− β − γ) + p′(t + α− β − γ) sin(α− β − γ),

where [v, w] = ad− bc when v = a + ib and w = c + id. Thus we have

q(t) = (B(t)− ib(t))eit.

The equation of secantoptic Cα,β,γ of the curve C can be derived from the formula

zα,β,γ(t) = z(t) + λ(t)iei(t−β) = z(t + α− β − γ) + µ(t)iei(t+α−β), (2.3)

where λ(t) and −µ(t) are the segments of secants (Figure 1) and may be written
as

λ(t) =
b(t) sin(α− β)−B(t) cos(α− β)

sin α
, (2.4)

µ(t) =
−(b(t) sin β + B(t) cos β)

sin α
. (2.5)

The equation of secantoptic in terms of the support function is then

zα,β,γ(t) = (p(t) + λ(t) sin β + i(p′(t) + λ(t) cos β))eit, (2.6)

where

λ(t) =
1

sin α
(p(t + α− β − γ) cos γ + p′(t + α− β − γ) sin γ − p′(t) sin(α− β)

−p(t) cos(α− β)).

Note that all secantoptics of a curve C for a fixed β ∈ [0, π), fixed γ ∈ [0, π − β),
and various α ∈ (β + γ, π) form two parameters family of curves Fβ,γ(α, t). Note,
that if we take β = 0 and γ = 0, then we get isoptics. At the Figure 2 one can see
geometric shapes of secantoptics for a curve with p(t) = a + b cos 3t, where b > 0
and a > 8b.
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Figure 2.

3. Jacobian and curvature

Let C be a fixed oval, t 7→ z(t) for t ∈ [0, 2π]. We denote by e(C) the exterior of
C and by ζ(α) a set of points zα,β,γ(0) for α ∈ (β + γ, π) and a fixed β and γ. We
define a mapping

Fβ,γ : (β + γ, π)× (0, 2π) 7→ e(C) \ ζ

for secantoptics Fβ,γ(α, t).
We are going to determine partial derivatives of Fβ,γ at (α, t)

∂Fβ,γ

∂α
=

1

sin α
(R(t + α− β − γ) sin γ − µ(t))(sin β + i cos β)eit, (3.1)

∂Fβ,γ

∂t
=

1

sin α
((R(t + α− β − γ) sin β sin γ −R(t) sin(α− β) sin β

+ B(t) cos(α− 2β)− b(t) sin(α− 2β)) + i(R(t) cos(α− β) sin β

+ R(t + α− β − γ) sin γ cos β + b(t) cos(α− 2β)

+ B(t) sin(α− 2β)))eit. (3.2)

Now, we can compute jacobian J(Fβ,γ) of Fβ,γ at (α, t)

J(Fβ,γ) =
1

sin α
(R(t + α− β − γ) sin γ − µ(t))(R(t) sin β + λ(t)) > 0. (3.3)

Expressions R(t+α−β−γ) sin γ−µ(t) and R(t) sin β+λ(t) which we obtained in
the jacobian seem to be interesting for us. There is the osculating circle of radius
R(t) at every point z(t) of oval C. If we elongate the segment [zα,β,γ(t), z(t)] at
the orthogonal projection of radius of osculating circle at z(t) on line s1(t) we
obtain the segment of secant s1(t) which length is R(t) sin β + λ(t). Similarly by
elongation the segment [zα,β,γ(t), z(t + α− β− γ)] at the orthogonal projection of
radius of osculating circle at z(t + α− β − γ) on line s2(t) we get the segment of
length R(t + α− β − γ) sin γ − µ(t). We define a vector

Q(t) = −(R(t + α− β − γ) sin γ − µ(t))iei(t+α−β) − (R(t) sin β + λ(t))iei(t−β)

= (B(t) + R(t + α− β − γ) sin γ sin(α− β)−R(t) sin2 β + i(−b(t)

−R(t + α− β − γ) sin γ cos(α− β)−R(t) sin β cos β))eit (3.4)
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Figure 3.

which will be very useful to simplify calculations.

We are looking for a geometric interpretation of the vector Q(t). Consider the en-
velope Γ1 of the set of lines s1(t), so-called “evolutoid”[3], [5] of C. We want to give
an interpretation of Γ1 in terms of the starting curve. Consider a parametrization

Γ1 : z1(t) = Ψ1(t)e
it + Ψ′

1(t)ie
it,

where
Ψ1(t) = p(t + β) cos β − p′(t + β) sin β, t ∈ [0, 2π],

and p(t) is the support function of C. Note that for β = π
2

this evolutoid is the
evolute of C. Similarly we can define Γ2 as the envelope of the set of lines s2(t).
Then we obtain

Γ2 : z2(t) = Ψ2(t)e
it + Ψ′

2(t)ie
it,

where
Ψ2(t) = p(t− γ) cos γ + p′(t− γ) sin γ, t ∈ [0, 2π].

We have two curves Γ1 and Γ2. Now we construct an α-isoptic of a pair of these
envelopes. Consider a vector

q1(t) = z1(t)− z2(t + α)

and notice that for argument t− β we obtain

q1(t− β) = z1(t− β)− z2(t + α− β) = Q(t).

We introduce the following notations:

L1(t− β) = λ(t) + R(t) sin β,

M1(t− β) = −(R(t + α− β − γ) sin γ − µ(t)),
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where
q1(t− β) = M1(t− β)iei(t+α−β) − L1(t− β)iei(t−β).

Therefore the equation of an isoptic of a pair of Γ1 and Γ2 has the form

ze(t− β) = z(t− β) + L1(t− β)iei(t−β)

= eit(p(t) + λ(t) sin β + i(p′(t) + λ(t) cos β)).

Hence
ze(t− β) = zα,β,γ(t).

Therefore we can call a “secantoptic” an “isoptic curve of a pair of, generally
different, evolutoids of C”. We are going to answer the question, whether the
secantoptics are regular curves. Consider a tangent vector to secantoptic∣∣z′α,β,γ(t)

∣∣ =
1

sin α
(B2(t) + b2(t) + 2R(t + α− β − γ)ρ(t) sin α sin γ

+2R(t)η(t) sin α sin β + R2(t + α− β − γ) sin2 γ

+2R(t + α− β − γ)R(t) sin β sin γ cos α + R2(t) sin2 β)1/2,

where

ρ(t) =
1

sin α
(B(t) sin(α− β) + b(t) cos(α− β)), (3.5)

η(t) =
1

sin α
(b(t) cos β −B(t) sin β). (3.6)

Since

|Q(t)|2 = B2(t) + b2(t) + 2R(t + α− β − γ)ρ(t) sin α sin γ

+2R(t)η(t) sin α sin β + R2(t + α− β − γ) sin2 γ

+2R(t + α− β − γ)R(t) sin β sin γ cos α + R2(t) sin2 β 6= 0,

then we obtain ∣∣z′αβ(t)
∣∣ =

|Q(t)|
sin α

. (3.7)

Corollary 3.1. Secantoptics Cα,β,γ of an oval C for β ∈ [0, π), γ ∈ [0, π−β) and
α ∈ (β + γ, π) are regular curves.

We are interested in the curvature of a secantoptic. Since we assumed that C is
an oval, R′(t) exists for t ∈ [0, 2π]. We calculate the curvature from the formula

κ(t) =
[z′α,β,γ(t), z

′′
α,β,γ(t)]

|z′α,β,γ(t)|3
.

The numerator of this formula has the form

[z′αβ(t), z′′αβ(t)] =
1

sin2 α
(2|q(t)|2 − [q(t), q′(t)] + sin β sin α(3R(t)η(t)−R′(t)µ(t))

+ sin γ sin α(3R(t + α− β − γ)ρ(t)−R′(t + α− β − γ)λ(t))

+2R(t)R(t + α− β − γ)(2 cos α sin β sin γ − sin β sin(α− γ)

− sin γ sin(α− β)) + sin α sin β sin γ(R(t + α− β − γ)R′(t)

−R(t)R′(t + α− β − γ)) + 2(R2(t + α− β − γ) sin2 γ

+R(t)R(t + α− β − γ) sin β sin γ cos α + R2(t) sin2 β).
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Notice that

[Q(t), Q′(t)] = [q(t), q′(t)] + R(t)R(t + α− β − γ) sin α sin(β + γ)

+sin β sin α(R′(t)µ(t)+R(t)η(t)) + sin γ sin α(R′(t + α−β−γ)λ(t)

+R(t + α− β − γ)ρ(t)) + (R(t)R′(t + α− β − γ)

+R(t + α− β − γ)R′(t)) sin α sin β sin γ,

therefore the formula for the curvature may be written as

κ(t) =
sin α

|Q(t)|3
(2|Q(t)|2 − [Q(t), Q′(t)]).

Hence we have a condition for convexity of secantoptics.

Theorem 3.2. A secantoptic Cα,β,γ of an oval C is convex if and only if

[Q(t), Q′(t)] ≤ 2|Q(t)|2 for t ∈ [0, 2π]. (3.8)

4. Sine theorem for secantoptics

Figure 4.

The sine theorem for isoptics is known from [1] and [6]. We extend it now for
secantoptics using the method which is presented in [6]. Consider a tangent line
to secantoptic Cα,β,γ at zα,β,γ(t). Let α1 and α2 be angles as at Figure 4. It is
clear that

sin α1 =
−[z′α,β,γ(t), ie

i(t−β)]

|z′α,β,γ(t)|
,

where
[z′α,β,γ(t), ie

i(t−β)] = −(λ(t) + R(t) sin β)
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and

sin α2 =
[z′α,β,γ(t), ie

i(t+α−β)]

|z′α,β,γ(t)|
,

where
[z′α,β,γ(t), ie

i(t+α−β)] = R(t + α− β − γ) sin γ − µ(t).

Since we know that

|z′α,β,γ(t)| =
|Q(t)|
sin α

,

then we obtain

|Q(t)|
sin α

=
λ(t) + R(t) sin β

sin α1

and
|Q(t)|
sin α

=
R(t + α− β − γ) sin γ − µ(t)

sin α2

.

Thus we have the following theorem.

Theorem 4.1. Secantoptics have the following property

|Q(t)|
sin α

=
λ(t) + R(t) sin β

sin α1

=
R(t + α− β − γ) sin γ − µ(t)

sin α2

.

Using the classical sine theorem for triangle we obtain

α1 = σ1 and α2 = σ2.

5. Other properties of secantoptics

Figure 5.

Let us consider secants s1(t) and s2(t) to oval C as in definition of secantoptic.
They are parallel to tangent lines to C at z(t−β) and z(t+α−β), respectively. In
this way we obtain a point zα(t−β) on the isoptic Cα (Figure 5). The assumption
β ∈ [0, π), γ ∈ [0, π − β) and α ∈ (β + γ, π) guarantees that the isoptic Cα−β−γ

exists.
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Corollary 5.1. There are two isoptic curves Cα and Cα−β−γ connected to each
secantoptic Cα,β,γ of oval C.

Another property of secantoptics presents the following theorem.

Theorem 5.2. Let z(t) = p(t)eit + p′(t)ieit for t ∈ [0, 2π] be an oval. Let t 7→
zα,β,γ(t) be its secantoptic defined in (2.6). Then∫ 2π

0

z(t)dt =

∫ 2π

0

zα,β,γ(t)dt. (5.1)

Proof. It is known [6] that∫ 2π

0

z(t)dt = 2

∫ 2π

0

p(t)eitdt.

Consider the right side of our hypothesis∫ 2π

0

zα,β,γ(t)dt =

∫ 2π

0

z(t)dt +
sin β

sin α
(cos γ

∫ 2π

0

p(t + α− β − γ)eitdt

+ sin γ

∫ 2π

0

p′(t + α− β − γ)eitdt− sin(α− β)

∫ 2π

0

p′(t)eitdt

− cos(α−β)

∫ 2π

0

p(t)eitdt)+i
cos β

sin α
(cos γ

∫ 2π

0

p(t + α− β − γ)eitdt

+ sin γ

∫ 2π

0

p′(t + α− β − γ)eitdt− sin(α− β)

∫ 2π

0

p′(t)eitdt

− cos(α− β)

∫ 2π

0

p(t)eitdt).

By calculating the integrals we obtain∫ 2π

0

p(t + α− β − γ)eitdt = (cos(α− β − γ)− i sin(α− β − γ))

∫ 2π

0

p(t)eitdt,∫ 2π

0

p′(t + α− β − γ)eitdt = −(sin(α− β − γ) + i cos(α− β − γ))

∫ 2π

0

p(t)eitdt,∫ 2π

0

p′(t)eitdt = −i

∫ 2π

0

p(t)eitdt.

Finally we have ∫ 2π

0

zα,β,γ(t)dt =

∫ 2π

0

z(t)dt. �

Let us make a note about other generalizations of isoptics. Consider the tangent
l1(t) to oval C at z(t). We want to construct a secant s1(t) to C which makes
a fixed angle β with l1(t). We can do it in three ways. First, as we did for
secantoptics, we rotate l1(t) through angle −β, second, we rotate l1(t) through
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angle β and third, we rotate l1(t) through angle π−β. The secant s2(t) we obtain
by rotation l2(t) through angle γ, −γ or −(π − γ), respectively. Notice that for
β ∈ [−π, π] and γ ∈ [−π, π] we get the same family of curves for these three
cases. The second and third case we can formulate in terms of secantoptics. Let
Fβ,γ(α, t) = F (t, α, β, γ) in this section. Then

F2(t, α, β, γ) = F (t, α,−β,−γ) and F3(t, α, β, γ) = F (t, α, π − β, π − γ).

Figure 6. a) A construction of the second case b) a construction of the third case

Unfortunately, not all obtained curves have nice shapes and properties. We want
to obtain positive jacobian of mapping Fβ,γ(α, t), given by (3.3). Therefore, for
the first case we assume that β ∈ [0, π) and γ ∈ [0, π − β), for the second that
β ∈ (−π, 0] and γ ∈ (β − π, 0] and for the third that β ∈ (0, π] and γ ∈ (β, π].

The author would like to thank the referee for his remarks which improved essen-
tially this paper.
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[1] Benko, K.; Cieślak, W.; Góźdź, S.; Mozgawa, W.: On isoptic curves. An.
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[5] Ferréol, R.: Développöıde d’une courbe plane. From Mathcurve–Encyclopédie
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