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Abstract. The object of this paper is the tameness conjecture intro-
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1. Introduction

This paper studies the category of polytopal algebras over a field k, denoted
Pol(k). We investigate the concept of tameness, as introduced in [3], where it is
conjectured that every graded k-algebra homomorphism is tame. In short, such
a homomorphism is called tame if it can be obtained by a composition of some
standard homomorphisms, defined in [3].

In this work we will show the following: If graded homomorphisms between
two polytopal rings are tame, then graded homomorphisms from rings obtained
by taking multiples, joins, and products of the underlying polytopes are also tame.
Thus, we extend the class of polytopal rings on which graded homomorphisms are
tame, giving further evidence in support of the mentioned conjecture.

The objects of Pol(k), the polytopal (monoid) rings, are defined as follows.
Let P be a convex lattice polytope in Rn. Let L(P ) denote the lattice points in
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P , i.e. L(P ) = P ∩Zn, and let S(P ) be the additive monoid of Zn+1 generated by
{(x, 1) |x ∈ L(P )}. A lattice point in S(P ) can be represented as a monomial in
n+ 1 variables by identifying its coordinate vector with the monomial’s exponent
vector. The degree of a monomial is in this case the last component of its exponent
vector. The polytopal ring k[P ] is the monoid ring of S(P ) with coefficients in
k. k[P ] is a graded ring generated by its degree 1 monomials. These monomials
correspond bijectively to the lattice points in P . The generators’ relations are the
binomial relations representing the affine dependencies in L(P ).

A homomorphism in Pol(k) is a homomorphism of two polytopal rings as k-
algebras preserving the grading. Such a homomorphism also has to preserve the
binomial relationships among the generators. Therefore, Hom(k[P ], k[Q]), which
is the set of all graded homomorphism between the two polytopal rings, is the zero
set of a system of polynomials. Hence Hom(k[P ], k[Q]) gives rise to a Zariski closed
set in the space of matrices Mmn(k), where m = #L(Q) and n = #L(P ), called
the Hom-variety. We are aiming to describe the structure of the Hom-variety.
The tameness conjecture is a geometric description of this set.

A tame homomorphism is a graded k-algebra homomorphism which can be
obtained by a composition of four standard homomorphisms: polytope changes,
homothetic blow-ups, Minkowski sums, and free extensions.

For the following definitions, assume f : k[P ] → k[Q] is a graded homomor-
phism and P,Q ⊂ Rn are lattice polytopes.

First, suppose P ′ and Q′ are lattice polytopes such that P ′ ⊂ P , Q′ ⊃ Q,
and f(k[P ′]) ⊂ k[Q′]. This gives rise to a new homomorphism f ′ : k[P ′] →
k[Q′] obtained from f in a natural way. Also, two polytopes P̃ and Q̃ that are
isomorphic to P respectively Q as lattice polytopes, result in the homomorphism
f̃ : k[P̃ ] → k[Q̃], induced by f . The homomorphisms obtained these ways are
called polytope changes.

Second, consider the normalization of S(P ), defined by

S(P ) = {x ∈ gp(S(P )) |xm ∈ S(P ) for some m ∈ N}

and the normalization of S(Q), defined similarly. The set gp(S(P )) denotes the
group of differences of S(P ). S(P ) is normal if and only if S(P ) = S(P ). It
is well known that k[P ] := k[S(P )] = k[P ]. If there are no monomials in the
kernel of f , i.e. ker(f)∩S(P ) = ∅, then f extends uniquely to the homomorphism
f : k[P ] → k[Q] defined by

f(x) =
f(y)

f(z)
where x =

y

z
, x ∈ S(P ), and y, z ∈ S(P ).

In fact, f(y)/f(z) belongs to k[Q] since x ∈ S(P ) implies xc ∈ S(P ), for some
natural number c, which in turn implies f(xc) = (f(y)/f(z))c ∈ k[Q]. Let k[P ]c
be the subring of k[P ] generated by the homogeneous components of degree c
in S(P ) (and similarly for k[Q]c). Note that k[P ]c ' k[cP ] and k[Q]c ' k[cQ]
in a natural way. Since f is graded, f restricts to the graded homomorphism
f (c) : k[cP ] → k[cQ], which we call the homothetic blow-up of f .
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Third, consider having two graded homomorphisms f, g : k[P ] → k[Q]. Let
N(f(x)) denote the Newton polytope of f(x), i.e. the convex hull of the support
monomials in f(x) (and similarly for N(g(x))). Assume f and g satisfy

N(f(x)) + N(g(x)) ⊂ Q for allx ∈ L(P )

where + denotes the Minkowski sum in Rn. We have z−1f(x)g(x) ∈ k[Q] where
z = (0, 0, . . . , 1), and thus

f ? g : k[P ] → k[Q] such that f ? g(x) = z−1f(x)g(x)

for all x ∈ L(P ) defines a new graded homomorphism, called the Minkowski sum
of f and g.

Lastly, assume P is a pyramid with base P0 and vertex v such that L(P ) =
{v}∪L(P0) and that we are given a homomorphism f0 : k[P0] → k[Q]. This means
k[P ] is a polynomial extension of k[P0]. Thus, f0 extends to a homomorphism
f : k[P ] → k[Q] by letting f(v) = q for any q ∈ k[Q] and f(x) = f0(x) for all
x ∈ L(P0). The homomorphism f is called a free extension of f0.

The tameness conjecture, as found in [3], states the following.

Conjecture 1. (W. Bruns, J. Gubeladze) Every homomorphism in Pol(k) is ob-
tained by a sequence of taking free extensions, Minkowski sums, homothetic blow-
ups, polytope changes and compositions, starting from the identity mapping k → k.
Moreover, there are normal forms of such sequences.

Certain subvarieties of the Hom-variety have already been described.
In [1] the subvariety corresponding to automorphisms has been described com-

pletely, showing that every automorphism is a composition of some basic auto-
morphisms. This can be viewed as a polytopal generalization of the linear algebra
fact that every invertible matrix can be written as the product of elementary,
permutation, and diagonal matrices. The result is stronger than the notion of
tameness, thus implying that automorphisms are tame.

In [2] the variety corresponding to codimension-1 retractions of polygons has
been described. It is conjectured that the result generalizes to arbitrary dimen-
sions of the polytope. This result is also stronger than tameness; hence, such
retractions are tame.

In showing that these results imply tameness of the corresponding morphisms,
some other classes of homomorphisms are shown to be tame in [3]. Among these
classes, the following two will be used. First, homomorphisms respecting mono-
mial structures are tame. Second, homomorphisms from k[c∆n] (where ∆n is the
n-simplex, c, n ∈ N) are tame. We will also use the notion of face retractions,
which are idempotent endomorphisms of k[P ] defined by

πF (x) =

{
x, if x ∈ F
0, if x /∈ F

for all x ∈ L(P ), where F is a face of P (note that face retractions are tame since
they respect the monomial structures).
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2. Main results

The results of this work concern joins, multiples, and Segre products.
The join of two lattice polytopes P ⊂ Rn and Q ⊂ Rm of dimension n respec-

tively m is a subset of Rn+m+1. Consider the embeddings ι1 and ι2 of Rn and Rm

into Rn+m+1 defined as

ι1 : (x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0) for all (x1, . . . , xn) ∈ Rn

ι2 : (y1, . . . , ym) 7→ (0, . . . , 0, y1, . . . , ym, 1) for all (y1, . . . , ym) ∈ Rm .

The join of P and Q is defined as the convex hull of the image of P under ι1 and
the image of Q under ι2, i.e. join(P,Q) = conv(ι1(P ), ι2(Q)).

We denote the cth multiple of P by cP , i.e. cP = {cx |x ∈ P}. Since the
lattice points in S(P ) sitting on height c may correspond to a proper subset of
the lattice points in cP , k[cP ] is in general an overring of the cth Veronese subring
of k[P ] (the ring generated by the homogeneous components of degree c in S(P )).
The two rings coincide when P is normal.

The Segre product of k[P ] and k[Q] is k[P × Q] where P × Q = {(x, y)|x ∈
P, y ∈ Q}.

Theorem 1. If every graded homomorphism from k[P ] respectively k[Q] is tame,
then

(a) every graded homomorphism from k[join(P,Q)] is tame,

(b) every graded homomorphism from k[cP ], where c ∈ N, is tame,

(c) every graded homomorphism from k[P ×Q] is tame.

To prove Theorem 1, the following lemma will be used. The lemma is stated and
proved in the case of Segre products, but similar arguments hold true for joins
and multiples.

Lemma 1. Let f be a graded homomorphism from k[P × Q] and assume the
hypothesis of Theorem 1. To show that f is tame we can without loss of generality
assume that ker(f) ∩ S(P ×Q) = ∅.

Proof. Let f : k[P × Q] → k[R] be a graded homomorphism (where R is some
lattice polytope). First we observe that the hypothesis of Theorem 1 descends to
the faces of the polytopes. That is, if every graded homomorphism from k[P ] is
tame and F is a face of P , then any graded homomorphism from k[F ] is tame.
Note that such a homomorphism f ′ : k[F ] → k[R] is the composition of the
homomorphisms

k[F ]
x 7→ x−−−→ k[P ]

x 7→ πF (x)−−−−−−→ k[F ]
x 7→ f ′(x)−−−−−→ k[R]
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The first map is tame since it maps monomials to monomials. The composition
of the last two maps is tame since it is a homomorphism from k[P ], tame by
assumption.

Now, assume there exist a monomial m ∈ ker(f). Since ker(f) is a prime ideal,
the ideal I = (ker(f)∩S(P×Q)) ⊂ k[P×Q] is a monomial prime ideal containing
m. However, monomial prime ideals are exactly the kernels of face retractions [4].
Thus, f is a composition of a face retraction and a map g : k[F ′] → k[R] where
F ′ is a face of P × Q. Face retractions are known to be tame. Hence, since a
composition of tame homomorphisms is tame, tameness of g will imply tameness
of f . Note that there are no monomials in the kernel of g. Also, a face of P ×Q
is of the form P ′ ×Q′ where P ′ is a face of P and Q′ a face of Q [6].

Thus, Theorem 1(c) is proved by establishing tameness of every graded ho-
momorphism g from k[P ′ × Q′] such that ker(g) ∩ S(P ′ × Q′) = ∅, given that
homomorphisms from k[P ′] and k[Q′] are tame.

From here on, it is assumed that there are no monomials in the kernel of the
homomorphisms in question.

3. Translation into discrete objects

A graded homomorphism in Hom(k[P ], k[Q]) can be viewed as an affine map from
L(P ) to Zl

+, and vice versa. In this case, “affine” refers to a map admitting an
affine extension to the corresponding affine hulls. By viewing a graded homomor-
phism as an affine map, polynomials in a polytopal ring translate into discrete
objects, which will aid in proving Theorem 1.

Suppose P and Q are lattice polytopes such that L(P ) ⊂ Zd
+ and L(Q) ⊂ Ze

+

(this can always be assumed by a polytope change). Let f : k[P ] → k[Q] be a
graded homomorphism. L(Q) is a subset of {Xa1

1 · · · Xae
e Z|ai ∈ Z+} and thus

the polynomials ϕx = f(x)Z−1 belong to k[X1, . . . , Xe] for all x ∈ L(P ). Clearly,
since f respects the binomial relations in L(P ), so does the map x 7→ ϕx.

The polynomial ring k[X1, . . . , Xe] is a unique factorization domain. There-
fore (k[X1, . . . , Xe] \ {0})/k∗ is a free commutative monoid. Hence, there is a
subset P ⊂ (k[X1, . . . , Xe] \ {0})/k∗ of irreducibles such that for each class [ϕx] ∈
(k[X1, . . . , Xe] \ {0})/k∗ we have [ϕx] = P a1

1 · · ·P al
l for some class Pi ∈ P, l ∈ N,

and uniquely determined ai ≥ 0. Since only finitely many irreducibles are needed
to represent any [ϕx] there exists an l ∈ N such that [ϕx] ∈ {P a1

1 · · ·P al
l |Pi ∈

P , ai ∈ Z+} for all x ∈ L(P ). Note that {P a1
1 · · ·P al

l |Pi ∈ P , ai ∈ Z+} is iso-
morphic to Zl

+. Each polynomial f(x) with x ∈ L(P ) therefore gives rise to an
integral vector by the correspondence

f(x) 7→ [ϕx] = P a1
1 · · · P al

l 7→ (a1, . . . , al).

Consequently, f gives rise to an affine map from L(P ) to Zl
+ which respects the

binomial relations in L(P ).
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Conversely, suppose α is an affine map L(P ) → Zl
+. For each x ∈ L(P ),

α(x) ∈ Zl
+ gives rise to a polynomial px in k[X1, . . . , Xe] under the correspondence

α(x) = (a1, . . . , al) 7→ P a1
1 · · ·P al

l = px.

Therefore, for each x ∈ L(P ), ϕx = txpx for some nonzero scalar tx. Note that the
scalars tx are clearly subject to the same binomial relations as the lattice points
in P . Letting p′x = txpx for all x ∈ L(P ), results in f(x) = p′xZ, thus recovering
the homomorphism f from α.

Also, α can be extended to an affine integral map P → Rl
+. If L(P ) =

{x0, . . . , xn} then P = conv(x0, . . . , xn) and any x ∈ P can be represented as
x = c0x0 + · · ·+ cnxn for some nonnegative real numbers ci satisfying

∑n
i=0 ci = 1.

Hence, if f(xi) corresponds to ai ∈ Zl
+ for each i ∈ {0, 1, . . . , n}, f(x) corresponds

to c0a0 + · · ·+ cnan ∈ Rl
+. The correspondence is well-defined since f respects the

binomial relations in L(P ).

4. Joins

The proof of Theorem 1(a) is mainly derived from well-known properties of joins.
It is known that there are no relations between the lattice points coming from
P and the lattice points coming from Q, in join(P,Q). Any two polytopal rings
k[P ] and k[Q] therefore satisfy k[join(P,Q)] ' k[P ] ⊗ k[Q]. Also, by definition,
there are no new lattice points in join(P,Q) since if x ∈ L(join(P,Q)) then x ∈
L(ι1(P )) ' L(P ) or x ∈ ι2(L(Q)) ' L(Q). Hence, two graded homomorphisms
f : k[P ] → k[L] and g : k[Q] → k[L] define a new graded homomorphism F :
k[join(P,Q)] → k[L] by letting

F (x) =

{
f(x), if x ∈ L(P )

g(x) if x ∈ L(Q)
for all x ∈ L(join(P,Q)).

Conversely every homomorphism F : k[join(P,Q)] → k[L] is necessarily of this
form.

Theorem 1(a) is proved once it is shown that this “pasting” of the two tame
homomorphisms is also tame.

Proof of Theorem 1(a). Suppose P and Q are lattice polytopes.
Let F : k[join(P,Q)] → k[R] be a graded homomorphism where R is a lattice
polytope in Rd. Assume Z = (0, . . . , 0, 1) ∈ L(R), after a polytope change.
Further assume L(P ) = {x0, . . . , xn} and L(Q) = {y0, . . . , ym}. There exist ho-
momorphisms f : k[P ] → k[R] and g : k[Q] → k[R] such that F (xi) = f(xi) for
i ∈ {0, 1, . . . , n] and F (yj) = g(yj) for j ∈ {0, 1, . . . ,m].

Consider the homomorphisms

aP : k[join(P,Q)] → k[R] such that aP (xi) = f(xi), aP (yj) = Z

aQ : k[join(P,Q)] → k[R] such that aQ(xi) = Z, aQ(yj) = g(yj)
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for i ∈ {0, 1, . . . , n} and j ∈ {0, 1, . . . ,m}. Note that aP factors through the
homomorphism k[join(P,Q)] → k[join(P, y0)] such that xi 7→ xi and yj 7→ y0 and
the homomorphism k[join(P, y0)] → k[R] such that xi 7→ f(xi) and y0 7→ Z. The
first map is tame since it maps monomials to monomials and the second is tame
since it is a free extension of f which is tame by assumption. Thus aP is tame.
Similarly aQ factors through the homomorphisms k[join(P,Q)] → k[join(x0, Q)]
such that yj 7→ yj and xi 7→ x0 and k[join(x0, Q)] → k[R] such that yj 7→ f(yj)
and x0 7→ Z. These maps are tame for the same reasons and hence aQ is also a
tame homomorphism.

F is obtained by the Minkowski sum of aP and aQ since for all v∈L(join(P,Q))

(aP ? aQ)(v) = aP (v)aQ(v)Z−1 =

{
f(v), if v ∈ L(P )

g(v), if v ∈ L(Q)

which is precisely F . F is tame as desired.

5. Multiples

Graded homomorphisms from k[c∆n], where c∆n is the cth multiple of the n-
simplex, are tame, as shown in [3]. A similar argument is used to prove its
generalization concerning the cth multiple of a general lattice polytope, stated as
Theorem 1(b). The following lemma is used.

Lemma 2. Suppose P is a lattice polytope and α : L(cP ) → Zl
+ is an affine map.

Then there exists a vector v ∈ Zl
+ and an affine map β : L(P ) → Zl

+ such that
α(cx) = v + cβ(x) for all x ∈ L(P ).

Proof of Lemma 2. Assume L(P ) = {x0, . . . , xn}. Suppose α(cxi) = (ai1, . . . , ail)
for i ∈ {0, 1, . . . , n}. Let v = (min{ai1}ni=0, . . . ,min{ail}ni=0) ∈ Zl

+. We will show
that α(cxi)− v are cth multiples of integral vectors for all i.

Let i ∈ {0, 1, . . . , n}. Note that for all k ∈ {1, 2, . . . , l} the kth component
of either α(cxi) − v or α(cxj) − v, for some j 6= i, is 0. If the kth component of
α(cxi)− v is 0 we are done.

Assume the kth component of α(cxj) − v is 0 for some j 6= i. Since α is
an affine map, α(cxi)− α(cxj) = c(α(xi)− α(xj)) is a cth multiple of an integral
vector. But α(cxi)−α(cxj) = (α(cxi)−v)−(α(cxj)−v). Since the kth component
of α(cxj) − v is 0, the kth component of α(cxi) − α(cxj) is the kth component of
α(cxi)− v. Consequently, the kth component is a cth multiple of an integer and it
is clearly nonnegative by the choice of v.

Hence α(cxi)−v are cth multiples of integral vectors for all i. Denote 1
c
(α(cxi)−

v) by β(xi) for each i. This results in the affine map β : L(P ) → Zl
+ such that

α(cx) = v + cβ(x) for all x ∈ L(P ), as desired.

Note that the positivity condition in Lemma 2 is needed so that the integral vectors
can be identified with polynomials through the process explained in Section 3.
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Proof of Theorem 1(b). Suppose L(P ) = {x0, . . . , xn}, L(cP ) ⊂ Zd
+ and L(Q) ⊂

Zm
+ , so that L(Q) ⊂ {Xa1

1 · · ·Xam
m Z | ai ≥ 0}. After changing the lattice of ref-

erence gp(S(P )) = Zd+1. Thus, for all x ∈ L(cP ), x = a0x0 + · · · + anxn for
some integers ai such that

∑n
i=0 ai = c. Let f : k[cP ] → k[Q] be a graded

homomorphism.
By Section 3, ϕx = f(x)Z−1 gives rise to the integral affine map α : cP → Rl

+

which respects the binomial relations in L(cP ). By Lemma 2 there exists a vector
v ∈ Zl

+ and an affine integral map β : P → Rl
+ such that α = v + cβ. Now,

β(xi) gives rise to a polynomial θi ∈ k[X1, . . . , Xm] for each i ∈ {0, 1, . . . n}.
Similarly v gives rise to a polynomial ψ ∈ k[X1, . . . , Xm]. Then for x ∈ L(cP ),
ϕx = ψθa0

0 · · · θan
n . Consider the cth homothetic blow-up of

Θ : k[P ] → k[Q′] such that Θ(xi) = θiZ

for all xi ∈ L(P ). f is obtained by a polytope change applied to Ψ ?Θc where

Ψ : k[cP ] → k[Q′] such that Ψ(x) = ψZ

for all x ∈ L(cP ) and where Q′ is a large enough lattice polytope to contain all
relevant polytopes.

Θ is tame by assumption since it is a homomorphism from k[P ]. Ψ factors as

k[cP ]
x 7→ t−−−→ k[t]

t 7→ ψZ−−−−→ k[Q′]

where the first factor is tame since it maps monomials to monomials, and the
second factor is tame because it is a free extension of the identity map k → k. As
a result, f is tame.

6. Segre products

The first step in proving Theorem 1(c) is Lemma 3. Note that L(P × Q) =
L(P )× L(Q). Suppose L(P ) = {x0, . . . , xn} and L(Q) = {y0, . . . , ym}. The copy
of P in P ×Q with the lattice points {(x0, yj), . . . , (xn, yj)} is denoted by P × yj.
Similarly xi ×Q denotes the copy of Q with lattice points {(xi, y0), . . . , (xi, ym)}.
Lemma 3. Suppose P and Q are lattice polytopes and α : L(P ×Q) → Zl

+ is an
affine map. Then α = aP +aQ for affine maps aP , aQ : L(P ×Q) → Zl

+ satisfying
aP (P × yi) = aP (P × yj) and aQ(xi ×Q) = aQ(xj ×Q) for all i, j

Proof of Lemma 3. Suppose P and Q are lattice polytopes and let α : L(P×Q) →
Zl

+ be an affine map. Since it is enough to prove the lemma for each component of
the maps involved, there is no loss of generality to assume that l = 1. Suppose α
takes its minimum value at the vertex (x′, y′) ∈ L(P ×Q). Let (x, y) ∈ L(P ×Q).
Sine α is affine,

α(x, y) + α(x′, y′) = α(x, y′) + α(x′, y).

In other words,
α(x, y) = α(x, y′) + α(x′, y)− α(x′, y′).

Define aP (x, y) = a(x, y′) and aQ(x, y) = a(x′, y) − a(x′, y′). By the choice of
(x′, y′), the nonnegativity requirements are satisfied.
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Now we can prove the desired result.

Proof of Theorem 1(c). Let f : k[P × Q] → k[R] be a graded homomorphism,
where R is some lattice polytope. Assume L(P × Q) = L(P ) × L(Q) ⊂ Rd+e

+

such that L(P ) ∩ L(Q) = {0}, and L(R) ⊂ Rc
+ (by applying a polytope change if

necessary). Suppose L(P ) = {x0, . . . , xn} and L(Q) = {y0, . . . , ym}.
Since k[R] ⊂ {Xa1

1 · · ·Xac
c Z| ai ≥ 0}, the polynomials ϕ(xi, yj) = f(xi, yj)Z

−1

belong to k[X1, . . . , Xc]. Thus, by Section 3, ϕ gives rise to an affine map α :
L(P ×Q) → Zl

+ for some l ∈ N. Hence, by Lemma 3, α = aP + aQ where aP , aQ :
L(P ×Q) → Zl

+ are affine maps such that aP (xi, yj) = pi and aQ(xi, yj) = qj for
some pi, qj ∈ Zl

+.
Now, each pi and qj gives rise to polynomials πi, %j ∈ k[X1, . . . , Xc], respec-

tively. Then ϕ(xi, yj) = πi · %j for all (xi, yj) ∈ L(P ×Q). This means f = fP ? fQ
where

fP : k[P ×Q] → k[R′] such that fP (xi, yj) = πiZ

fQ : k[P ×Q] → k[R′] such that fQ(xi, yj) = %jZ

for all (xi, yj) ∈ L(P × Q) and where R′ is a large enough lattice polytope to
contain all relevant polytopes. fP is a tame homomorphism since it factors as

k[P ×Q]
(xi, yj) 7→ xi−−−−−−−→ k[P ]

xi 7→ πiZ−−−−−→ k[R′]

where the first factor is tame since it maps monomials to monomials and the
second is tame since it is a homomorphism from k[P ]. Similarly fQ is tame since
it factors as

k[P ×Q]
(xi, yj) 7→ yj−−−−−−−→ k[Q]

yj 7→ %jZ−−−−−→ k[R′].

Therefore f is a tame homomorphism, as desired.
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