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Abstract. The paper deals with a semi-algebraic set A in Rd con-
structed by the inequalities pi(x) > 0, pi(x) ≥ 0, and pi(x) = 0 for
a given list of polynomials p1, . . . , pm, and presents several statements
that fit into the following template. Assume that in a neighborhood
of a boundary point the semi-algebraic set A can be described by an
irreducible polynomial f . Then f is a factor of a certain multiplicity
of some of the polynomials p1, . . . , pm. Special attention is paid to the
case when A is a polytope.
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1. Introduction

In what follows x := (x1, . . . , xd) is a variable vector in Rd (d ∈ N). As usual,
R[x] := R[x1, . . . , xd] denotes the ring of polynomials in variables x1, . . . , xd and
coefficients in R. A subset A of Rd is said to be semi-algebraic if

A =
{
x ∈ Rd : Φ

(
(sign p1(x) ∈ E1), . . . , (sign pm(x) ∈ Em)

)}
, (1.1)
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where Φ is a boolean formula, p1, . . . , pm ∈ R[x], and E1, . . . , Em are non-empty
subsets of {0, 1}; see also [1], [8], and [6]. We call (1.1) a representation of
A by polynomials p1, . . . , pm. We distinguish the following particular types of
semi-algebraic sets:

(p1, . . . , pm)≥0 :=
{
x ∈ Rd : p1(x) ≥ 0, . . . , pm(x) ≥ 0

}
, (1.2)

(p1, . . . , ps)>0 :=
{
x ∈ Rd : p1(x) > 0, . . . , pm(x) > 0

}
, (1.3)

Z(p1, . . . , pm) :=
{
x ∈ Rd : p1(x) = 0, . . . , pm(x) = 0

}
. (1.4)

Sets representable by (1.2), (1.3), and (1.4), respectively, are called elementary
closed semi-algebraic, elementary open semi-algebraic, and algebraic, respectively.

A subset P of Rd is said to be a polytope if P is the convex hull of a non-
empty and finite set of points; see [14]. It is known that a set P in Rd is a
polytope if and only if P is non-empty, bounded, and can be represented by
P = (p1, . . . , pm)≥0, where p1, . . . , pm ∈ R[x] (m ∈ N) are of degree one (the
so-called H-representation). Thus, polytopes are just special elementary closed
semi-algebraic sets. The study of polynomial representations of polygons and
polytopes was initiated in [7] and [12]; see also the survey [13]. In [12] it was
noticed that, if a d-dimensional polytope P is represented by

P = (q1, . . . , qm)≥0 (1.5)

with q1, . . . , qm ∈ R[x], then m ≥ d. In [9] it was conjectured that every d-
dimensional polytope in Rd can be represented by (1.5) with m = d. This conjec-
ture has recently been confirmed by L. Bröcker [10]; see also [4], [3], and [5] for
further related results. We refer to [1, Chapter 5] and [8, §6.5 and §10.4] for re-
sults on minimal representations of general elementary semi-algebraic sets. In this
paper we derive necessary conditions on representations of polytopes consisting
of d polynomials.

Theorem 1.1. Let P be a d-dimensional polytope in Rd with m facets such that

P = (p1, . . . , pm)≥0 = (q1, . . . , qd)≥0,

where p1, . . . , pm, q1, . . . , qd ∈ R[x] and p1, . . . , pm are of degree one. Then every
pi, i ∈ {1, . . . ,m}, is a factor of precisely one polynomial qj with j ∈ {1, . . . , d}.
Furthermore, for i and j as above, the factor pi of qj is of odd multiplicity. �

Theorem 1.1 improves Proposition 2.1(i) from [12]. In [7] it was shown that every
convex polygon P in R2 can be represented by two polynomials. We are able to
determine the precise structure of such minimal representations.

Theorem 1.2. Let P be a convex polygon in R2 with m ≥ 7 edges and let

P = (p1, . . . , pm)≥0 = (q1, q2)≥0,

where p1, . . . , pm, q1, q2 ∈ R[x] and p1, . . . , pm are of degree one. Then there exist
k1, . . . , km ∈ N and g1, g2 ∈ R[x] such that {q1, q2} = {pk1

1 · · · · · pkm
m g1, g2} and

the following conditions are fulfilled:
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1. k1, . . . , km are odd ;

2. g1, g2 are not divisible by pi for every i ∈ {1, . . . ,m};
3. g2(y) = 0 for every vertex y of P . �

It is not hard to see that the set (q1, q2)≥0 in Theorem 1.2 does not depend on
the concrete choice of odd numbers k1, . . . , km. More precisely, for g1, g2 as in
Theorem 1.2 we have P = (p1 · · · · · pm g1, g2)≥0. In [7] the polynomials q1, q2

representing P were defined in such a way that g1 = 1 and k1 = · · · = km = 1
see Figure 1 for an illustration of this result and Theorem 1.2. We also remark
that the assumption m ≥ 7 cannot be relaxed in general, since Theorem 1.2
would not hold if P is a centrally symmetric hexagon. In fact, assume that P is
a centrally symmetric hexagon and p1, . . . , p6 are polynomials of degree one such
that Z(p1) ∩ P, . . . , Z(p6) ∩ P are consecutive edges of P . Then P = (q1, q2)≥0

for q1 := p1 p3 p5 and q2 := p2 p4 p6; see Figure 2. It will be seen from the proof
of Theorem 1.2 that the assumption m ≥ 7 can be relaxed to m ≥ 5 for the case
when P does not have parallel edges.

(q1)≥0 (q2)≥0 P

Figure 1. Illustration to Theorem 1.2 and the result on representation of convex
polygons by two polynomials

(q1)≥0

(q2)≥0
P

Figure 2. Centrally symmetric hexagon P represented by P = (q1, q2)≥0 for q1 =
p1 p3 p4 and q2 = p2 p4 p6

Theorems 1.1 and 1.2 are obtained as corollaries of the more general Theorem 2.2
given in Section 2. Theorem 2.2 and Corollaries 2.3–2.5 from Section 2 are results
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analogous to Theorems 1.1 and 1.2 for more general classes of semi-algebraic sets.
Even though the mentioned general results are somewhat technical, they can be
of independent interest (see also Section 2.2 providing related examples).

2. The proofs

The origin in Rd is denoted by o. Given c ∈ Rd and ρ > 0 by Bd(c, ρ) we denote
the open Euclidean ball with center c and radius ρ. The abbreviations int and
bd stands for the interior and boundary, respectively. By dim we denote the
dimension.

We refer to [2] and [11] for standard notions and results from commutative
algebra and algebraic geometry. The notion of dimension of a semi-algebraic
set can be defined in several equivalent ways; for details see [8, §2.8]. Given a
polynomial p ∈ R[x], by ∇p we denote the gradient of p. The statement of the
following lemma is known (see [8, Theorem 4.5.1]).

Lemma 2.1. Let f be a polynomial irreducible over R[x]. Then dim Z(f) = d−1
if and only if for some y ∈ Rd one has f(y) = 0 and ∇f(y) 6= o. Furthermore, if
dim Z(f) = d− 1 and p ∈ R[x], then the following conditions are equivalent:

(i) dim(Z(f) ∩ Z(p)) = d− 1.

(ii) Z(f) ⊆ Z(p).

(iii) f is a factor of p. �

In the proofs below we shall deal with polynomials p1, . . . , pm. Throughout the
proofs f1, . . . , fn will denote the polynomials irreducible over R[x] which are in-
volved in the prime factorization of the product p1 · · · · · pm (see [11, p. 149]),
i.e.

p1 · · · · · pm = f s1
1 · · · · · f sn

n

for some s1, . . . , sn ∈ N and for every i, j ∈ {1, . . . , n} with i 6= j the polynomials
fi and fj do not coincide up to a constant multiple.

Theorem 2.2. Let A be a semi-algebraic set in Rd given by (1.1) and let f be a
polynomial irreducible over R[x]. Then the following statements hold true.

I. One has bd A ⊆
⋃m

i=1 Z(pi).

II. If
dim(bd A ∩ Z(f)) = d− 1, (2.1)

then f is a factor of pi for some i ∈ {1, . . . ,m}.
III. If there exist a ∈ Z(f) and ε > 0 such that

dim(Z(f) ∩Bd(a, ε)) = d− 1, (2.2)

(f)≥0 ∩Bd(a, ε) = A ∩Bd(a, ε), (2.3)

then (2.1) is fulfilled and, moreover, f is an odd-multiplicity factor of pi for
some i ∈ {1, . . . ,m}.
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IV. If there exist a ∈ Z(f) and ε > 0 such that

dim(Z(f) ∩Bd(a, ε)) = d− 1,

(f)>0 ∩Bd(a, ε) = A ∩Bd(a, ε),

then (2.1) is fulfilled and, moreover, f is an odd-multiplicity factor of pi for
some i ∈ {1, . . . ,m}. �

Proof. For x ∈ Rd we define

Ψ(x) := Φ
(
(sign p1(x) ∈ E1), . . . , (sign pm(x) ∈ Em)

)
.

Part I: Let x0 6∈
⋃m

i=1 Z(pi), that is pi(x0) 6= 0 for every i = 1, . . . ,m. Then there
exists an ε > 0 such that the sign of every pi(x), i ∈ {1, . . . ,m}, remains constant
on Bd(x0, ε). It follows that Ψ(x) is constant for x ∈ Bd(x0, ε). Consequently,
either Bd(x0, ε) ⊆ A or Bd(x0, ε) ∩ A = ∅. Hence x0 is either an interior or an
exterior point of A, and we get the conclusion of Part I.

Part II: By Part I we have bd A ⊆
⋃n

i=1 Z(fi). Consequently

d− 1
(2.1)
= dim(bd A ∩ Z(f)) ≤ dim

(( m⋃
i=1

Z(pi)

)
∩ Z(f)

)
= max

1≤i≤m
dim(Z(pi) ∩ Z(f)) ≤ d− 1.

Hence dim Z(f) = d−1 and for some i ∈ {1, . . . ,m} one has dim(Z(pi)∩Z(f)) =
d− 1. Then Lemma 2.1 yields the assertion of Part II.

Part III: Let a ∈ Z(f) and ε > 0 satisfy (2.2) and (2.3). From (2.2) it follows
that dim Z(f) = d−1. By Lemma 2.1, there exists a′ ∈ Z(f)∩Bd(a, ε) such that
∇f(a′) 6= o. We choose ε′ > 0 such that Bd(a′, ε′) ⊆ Bd(a, ε) and ∇f(x) 6= o for
every x ∈ Bd(a′, ε′). Let us show that

Z(f) ∩Bd(a′, ε′) ⊆ bd A. (2.4)

Consider an arbitrary point x ∈ Z(f) ∩ Bd(a′, ε′). In view of (2.3) we have
x ∈ A. On the other hand, since f(x) = 0 and ∇f(x) 6= o, there exists a sequence(
xk
)+∞

k=1
of points from Bd(a′, ε′) such that f(xk) < 0 for every k ∈ N and xk → x,

as k → +∞. Since xk 6∈ (f)≥0 and xk ∈ Bd(a, ε), in view of (2.3) it follows that
xk 6∈ A for every k ∈ N. Hence, x is a point of A and is a limit of a sequence of
points lying outside A. The latter implies (2.4). Since f(a′) = 0 and ∇f(x) 6= o
for every x ∈ Z(f)∩Bd(a′, ε′) it follows that Z(f)∩Bd(a′, ε′) has dimension d−1.
Consequently, we have

d− 1 = dim(Z(f) ∩Bd(a′, ε′))
(2.4)
= dim(Z(f) ∩ bd A ∩Bd(a′, ε′))

≤ dim(Z(f) ∩ bd A) ≤ dim(Z(f)) = d− 1.

Hence dim(Z(f) ∩ bd A) = d− 1. By Part II, it follows that f coincides, up to a
constant multiple, with fi for some i ∈ {1, . . . , n}. Without loss of generality we
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assume that f = f1. By Lemma 2.1, we can choose a′′ ∈ Z(f) ∩ Bd(a′, ε′) such
that fi(a

′′) 6= 0 for i ∈ {2, . . . , n}. This means the sign of the polynomials fi, i =
{2, . . . , n}, remains constant on Bd(a′′, ε′′). We prove the statement of Part III
by contradiction. Assume that whenever f is factor of pi, i ∈ {1, . . . ,m}, this
factor is of even multiplicity. Since ∇f(a′′) 6= o, we can choose x0, y0 ∈ Bd(a′′, ε′′)
such that f(x0) > 0 and f(y0) < 0. Since the signs of f2, . . . , fn do not change
on Bd(a′′, ε′′) and since f1 = f appears with an even multiplicity only, we obtain
sign pj(x0) = sign pj(y0) for every j = 1, . . . ,m. Hence Ψ(x0) = Ψ(y0). But by
(2.3), x0 ∈ A and y0 6∈ A, which implies that Ψ(x0) 6= Ψ(y0), a contradiction.

The proof of Part IV is omitted, since it is analogous to the proof of Part III.

Let us give an informal interpretation of Theorem 2.2. Let f be an irreducible
polynomial such that Z(f) is a (d− 1)-dimensional algebraic surface. Consider a
semi-algebraic set A given by (1.1). If the boundary of A coincides locally with
a part of Z(f), then f is a factor of some pi. If A coincides locally with a part
of (f)≥0, then f is an odd-multiplicity factor of some pi. Furthermore, if in a
neighborhood of a boundary point the set A coincides locally with a part of Z(f),
then f is a factor of at least two different polynomials pi or an even-multiplicity
factor of at least one polynomial pi.

We remark that (2.2) cannot be replaced by the weaker condition dim Z(f) =
d − 1 and Z(f) ∩ Bd(a, ε) 6= ∅, since the algebraic set Z(f) corresponding to
an irreducible polynomial f can have “parts” of dimensions strictly smaller than
dim Z(f). In fact, for d = 2 the irreducible polynomial f(x) := x2

1 + x2
2 − x3

1

generates the cubic curve Z(f) with isolated point at the origin. For d = 3, for the
irreducible polynomial f(x) = x2

3 x1 − x2
2 the set Z(f) is the well-known Whitney

umbrella, which is a two-dimensional algebraic surface with the one-dimensional
“handle” Z(x2, x3).

Corollary 2.3. Let A be a semi-algebraic set given by

A =
{
x ∈ Rd : Φ

(
(p1(x) ≥ 0), . . . , (pm(x) ≥ 0)

)}
,

where Φ is a boolean formula and p1, . . . , pm ∈ R[x]\{0}, and let f be a polynomial
irreducible over R[x]. Then the following statements hold true.

I. If there exist b ∈ Z(f) and ε > 0 such that

dim(Z(f) ∩Bd(b, ε)) = d− 1, (2.5)

Z(f) ∩Bd(b, ε) = A ∩Bd(b, ε), (2.6)

then (2.1) is fulfilled, and furthermore f is a factor of pi and pj for some
i, j ∈ {1, . . . ,m} with i 6= j or f is an even-multiplicity factor of pi for some
i ∈ {1, . . . ,m}.

II. If there exist a, b ∈ Rd and ε > 0 such that equalities (2.2), (2.3), (2.5), and
(2.6) are fulfilled, then f is a factor of pi and an odd-multiplicity factor of
pj for some i, j ∈ {1, . . . ,m} with i 6= j.
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Proof. Part I: Let b ∈ Z(f) and ε > 0 satisfy (2.5) and (2.6). From (2.5) it follows
that dim Z(f) = d − 1. By Lemma 2.1, there exists b′ ∈ Z(f) ∩ Bd(b, ε) such
that ∇f(b′) 6= o. Choose ε′ > 0 such that Bd(b′, ε′) ⊆ Bd(b, ε) and ∇f(x) 6= o
for every x ∈ Bd(b′, ε′). Using arguments analogous to those from the proof
of Theorem 2.2(III) we show the inclusion Z(f) ∩ Bd(b′, ε′) ⊆ bd A and (2.1).
Hence, by Theorem 2.2(II), f coincides, up to a constant multiple, with fi for
some i ∈ {1, . . . , n}. Without loss of generality we assume that f = f1. If f is a
factor of pi and pj for some i, j ∈ {1, . . . ,m} with i 6= j, we are done. We consider
the opposite case, that is, for some i ∈ {1, . . . ,m} the polynomial f is a factor of
precisely one polynomial pi with i ∈ {1, . . . ,m}, say p1. We show by contradiction
that in this case the factor f of p1 has even multiplicity. Assume the contrary,
i.e., the factor f of p1 has odd multiplicity. Analogously to the arguments from
the proof of Theorem 2.2, we choose b′′ ∈ Z(f) and ε′′ > 0 such that Bd(b′′, ε′′) ⊆
Bd(b′, ε′) and fi(x) 6= 0 for every i ∈ {2, . . . , n} and every x ∈ Bd(b′′, ε′′). By
the choice of b′′ and ε′′ we have sign pi(x) = sign pi(b

′′) for all i ∈ {2, . . . ,m} and
x ∈ Bd(b′′, ε′′). Since ∇f(b′′) 6= o, there exist points x0, y0 ∈ Bd(b′′, ε′′) such
that f(x0) f(y0) < 0. Then p1(x0) p1(y0) < 0. Consequently, either p1(x0) > 0 or
p1(y0) > 0. Without loss of generality we assume that p1(x0) > 0. It follows that
(pi(x0) ≥ 0) ≡ (pi(b

′′) ≥ 0) for i = 1, . . . ,m. Hence x0 ∈ A. But since f(x0) 6= 0,
in view of (2.6), we get x0 6∈ A, a contradiction.

Part II: By Theorem 2.2 (III) f is a factor of odd multiplicity of some pi with
i ∈ {1, . . . ,m}. Furthermore, for some j ∈ {1, . . . ,m} with i 6= j the polynomial
f is a factor of pj, since otherwise we would get a contradiction to Part I.

Corollary 2.4. Let p1, . . . , pm ∈ R[x] \ {0} and A := (p1, . . . , pm)≥0. Let f be
a polynomial irreducible over R[x]. Assume that there exist b ∈ Z(f) and ε > 0
such that equalities (2.5) and (2.6) are fulfilled and additionally

dim(int A ∩ Z(f)) = d− 1. (2.7)

Then f is a factor of pi for some i ∈ {1, . . . ,m} and, for every i ∈ {1, . . . ,m}
such that pi is divisible by f , the factor f of pi has even multiplicity.

Proof. By Corollary 2.3 (I), f is a factor of some pi, say p1. Without loss of
generality we assume that f1 = f . Let us show that the factor f of p1 is of
even multiplicity. Assume the contrary. In view of Lemma 2.1, we can choose
a′ ∈ int A ∩ Z(f) such that ∇f(a′) 6= o. We fix ε′ > 0 such that ∇f(x) 6= o
for every x ∈ Bd(a′, ε′). By Lemma 2.1 we can choose a′′ ∈ Bd(a′, ε′) such that
fi(a

′′) 6= 0 for every i ∈ {2, . . . , n}. Fix ε′′ > 0 such that for every i ∈ {2, . . . , n}
the sign of fi remains constant on Bd(a′′, ε′′). Since ∇f(a′′) 6= o, there exist x0

and y0 in Bd(a′′, ε′′) with f(x0) f(y0) < 0. Hence p1(x0) p1(y0) < 0, and we get
that either x0 or y0 does not belong to A, a contradiction.

Corollary 2.5. Let p1, . . . , pm ∈ R[x] \ {0} and A := (p1, . . . , pm)>0. Let f be
a polynomial irreducible over R[x]. Assume that there exist b ∈ Z(f) and ε > 0
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such that

dim(bd A ∩ Z(f) ∩Bd(b, ε)) = d− 1, (2.8)

Bd(b, ε) \ Z(f) = A ∩Bd(b, ε). (2.9)

Then f is a factor of pi for some i ∈ {1, . . . ,m} and, for every i ∈ {1, . . . ,m}
such that pi is divisible by f , the factor f of pi has even multiplicity.

Proof. Equality (2.8) implies (2.1), and hence, by Theorem 2.2 (II), f is a factor
of pi for some i ∈ {1, . . . ,m}. The rest of the proof is analogous to the proof of
Corollary 2.4.

Now we are able to prove Theorems 1.1 and 1.2 from the introduction.

Proof of Theorem 1.1. Let us prove the first part of the assertion. Assume the
contrary, say p1 is a factor of both q1 and q2. Then within the (d−1)-dimensional
affine space Z(p1) the facet P ∩ Z(p1) of P is represented by d − 2 polynomials
q3, . . . , qd in the following way

P ∩ Z(p1) = {x ∈ Z(p1) : q3(x) ≥ 0, . . . , qd(x) ≥ 0} .

This yields a contradiction to the fact that a k-dimensional convex polytope can-
not be represented (in the above form) by less than k polynomials; see [12,
Corollary 2.2]. The second part of the assertion follows directly from Theo-
rem 2.2 (III).

Proof of Theorem 1.2. For j ∈ {1, 2} denote by Ij the set of indices i ∈ {1, . . . ,m}
for which pi is a factor of qj. By Corollary 2.4 it follows that I1∪ I2 = {1, . . . ,m}.
Furthermore, I1 ∩ I2 = ∅, by Theorem 1.1. Let us show that either I1 or I2 is
empty. Assume the contrary. We show that then there exist i ∈ I1 and j ∈ I2 such
that the edges Z(pi) ∩ P and Z(pj) ∩ P of P are not adjacent and not parallel.
Since m ≥ 7, after possibly exchanging the roles of q1 and q2, we may assume that
the cardinality of I2 is at least four. Let us take an arbitrary i ∈ I1. Then there
exist at least two sides of the form Z(pj) ∩ P, j ∈ I2, which are not adjacent to
Z(pi) ∩ P . One of these sides is not parallel to Z(pi) ∩ P . The intersection point
y of Z(pi) and Z(pj) lies outside P and fulfills the equalities q1(y) = q2(y) = 0, a
contradiction to the inclusion (q1, q2)≥0 ⊆ P . Hence I1 or I2 is empty. Without
loss of generality we assume that I2 = ∅.

For i ∈ {1, . . . ,m} let ki be the multiplicity of the factor pi of p1. Then
q1 = pk1

1 · · · · · pkm
m g1 for some polynomial g1, and statements 1 and 2 follow

directly from Theorem 2.2 (III).
It remains to verify condition 2 (which involves g2 = q2). This condition can be

deduced from Proposition 2.1 (ii) in [12], but below we also give a short proof. We
argue by contradiction. Let y be a vertex of P with g2(v) > 0. Up to reordering
the sequence p1, . . . , pm we may assume that p1(v) = 0. Clearly, any point y′

lying in Z(p1) \ P and sufficiently close to y fulfills the conditions q1(y
′) = 0 and

q2(y
′) > 0. Hence y′ ∈ P , a contradiction to the inclusion (q1, q2)≥0 ⊆ P .
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3. Examples to Theorem 2.2 and its corollaries

Each of the examples below is supplied with a figure referring to the case d = 2.
Let

A :=
{
x ∈ Rd : xd > 0 and

(
(x1 − 1)2 + x2

2 + · · ·+ x2
d ≤ 1

or x2
1 + x2

2 + · · ·+ x2
d ≤ 1

)}
,

see Figure 3. By Theorem 2.2, if A is given by (1.1), then the polynomials xd,
(x1 − 1)2 + x2

2 + · · · + x2
d − 1, (x1 + 1)2 + x2

2 + · · · + x2
d − 1 are factors of odd

multiplicity of some of the polynomials p1, . . . , pm.

A

Figure 3. Illustration to Theorem 2.2

The set

A :=
{
x ∈ Rd : (1− x2

1 − · · · − x2
d) (xd + 2)2 ≥ 0

}
, (3.1)

=
{
x ∈ Rd : (1− x2

1 − · · · − x2
d) (xd + 2) ≥ 0, xd + 2 ≥ 0

}
, (3.2)

depicted in Figure 4 is the disjoint unit of a closed unit ball centered at o and
a hyperplane given by the equation xd + 2 = 0. By Corollary 2.3 (I), if A is
given by (1.1), then xd + 2 is a factor of at least two polynomials pi or a factor
of even multiplicity of at least one polynomial p1, . . . , pm. From (3.1) and (3.2)
we see that both of these possibilities are indeed realizable. Figure 5 depicts the
semi-algebraic set

A :=
{
x ∈ R2 : xd ≥ 0, (1− x2

1 − · · · − x2
d) xd ≥ 0

}
,

=
{
x ∈ R2 : xd ≥ 0, (1− x2

1 − · · · − x2
d) x2

d ≥ 0
}

. (3.3)

By Corollary 2.3 (II), if A is given by (1.1) with E1 = . . . = Em = {0, 1}, the
polynomial xd is a factor of at least two polynomials pi and an odd-multiplicity
factor of at least one polynomial pi. By (3.3) we see that the above conclusion
cannot be strengthened. In fact, (3.3) provides a representation A = (p1, p2)≥0

such that xd is an odd-multiplicity factor of precisely one polynomial pi.

A

A

AA

Bd(a, ε)Bd(b, ε)

Figure 4. Illustration to Corollary 2.3(I) Figure 5. Illustration to Corollary 2.3(II)
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Figure 6 presents the semi-algebraic set

A :=
{
x ∈ Rd : (1− x2

1 − · · · − x2
d) x2

d ≥ 0
}

,

which serves as an illustration of Corollary 2.4. By Corollary 2.4, if A = (p1, . . . ,
pm)≥0 for p1, . . . , pm ∈ R[x], some of these polynomials are divisible by xd, and
furthermore, if pi is divisible by xd, the multiplicity of the factor xd of pi is even.
Figure 7 depicts the semi-algebraic set

A :=
{
x ∈ R2 : (1− x2

1 − · · · − x2
d) x2

d > 0
}

illustrating Corollary 2.5. By Corollary 2.5, if A = (p1, . . . , pm)>0 for some poly-
nomials p1, . . . , pm ∈ R[x], then xd is a factor of at least one pi and f cannot be a
factor of pi of odd multiplicity. We notice that Corollary 2.5 is in a certain sense
an analogue of Corollary 2.4 for elementary open semi-algebraic sets (since the
conclusions of both corollaries are the same).

A A

A

Bd(b, ε)

Figure 6. Illustration to Corollary 2.4 Figure 7. Illustration to Corollary 2.5

Finally, we present examples of semi-algebraic sets for which we can verify that
they are not elementary semi-algebraic (see also similar examples given in [1,
p. 24]). We define the closed semi-algebraic set

A :=
{
x ∈ Rd : xd = 0 or (x1 − 3)2 + x2

2 + · · ·+ x2
d ≤ 1

or
(
x2

1 + x2
2 + · · ·+ x2

d ≤ 1 and xd ≥ 0
)}

,

see Figure 8. We can show that A is not elementary closed. In fact, let us assume
the contrary, that is A = (p1, . . . , pm)≥0 for some polynomials p1, . . . , pm ∈ R[x].
Then, by Theorem 2.2 (III) applied for a = o and 0 < ε < 1, we get that xd is
a factor of odd multiplicity of pi for some i ∈ {1, . . . ,m}. Since (2.7) is fulfilled
for f = xd, we can apply Corollary 2.4 obtaining that xd is a factor of even
multiplicity of pi, a contradiction. Now we introduce the open semi-algebraic set

A :=
{
x ∈ Rd : x2

1 + x2
2 + · · ·+ x2

d < 1 and xd > 0

or (x1 − 3)2 + x2
2 + · · ·+ x2

d < 1 and xd 6= 0
}
,
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see Figure 9. By Theorem 2.2 (IV) and Corollary 2.5 (applied for f(x) = xd) A is
not elementary open.

A A

Bd(a, ε)

A A

Bd(a, ε)

A

Figure 8. A closed semi-algebraic set
which is not elementary closed

Figure 9. An open semi-algebraic set
which is not elementary open
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