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1. Introduction and main results

The study of the geometry of a Riemannian manifold (M, g) through the properties
of its unit tangent sphere bundle T1M represents a well known and interesting
research field in Riemannian geometry. Traditionally, T1M has been equipped
with one of the following Riemannian metrics:

• either the Sasaki metric g̃S, induced by the Sasaki metric gS of the tangent
bundle TM (or the metric ḡ = 1

4
gS of the standard contact metric structure

(η, ḡ) of T1M), or
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• the metric g̃CG, induced by the Cheeger-Gromoll metric gCG on TM .

Since ḡ is homothetic to g̃S, these Riemannian metrics share essentially the same
curvature properties. As concerns (T1M, g̃CG), it is isometric to the tangent sphere
bundle TrM , with radius r = 1√

2
, equipped with the metric induced by the Sasaki

metric of TM , the isometry being explicitly given by Φ : T1M → T 1√
2
M : (x, u) 7→

(x, u/
√

2).
Several curvature properties on T1M , equipped with one of the metrics above,

turn out to correspond to very rigid properties for the base manifold M . We can
refer to [12] for a survey on the geometry of (T1M, g̃S). A survey on the contact
metric geometry of (T1M, η, ḡ) was made by the second author in [13].

In [4], the first author and M. Sarih investigated geometric properties of the
tangent bundle TM , equipped with the most general “g-natural” metric. On unit
tangent sphere bundles, the restrictions of g-natural metrics possess a simpler
form. Precisely, it was proved in [3] that for every Riemannian metric G̃ on T1M
induced by a Riemannian g-natural metric G on TM , there exist four constants
a, b, c and d, with

a > 0, α := a(a + c)− b2 > 0, and φ := a(a + c + d)− b2 > 0, (1.1)

such that G̃ = a.g̃s + b.g̃h + c.g̃v + d.k̃v, where

∗ k is the natural F -metric on M defined by

k(u; X, Y ) = g(u, X)g(u, Y ), for all (u, X, Y ) ∈ TM ⊕ TM ⊕ TM,

∗ g̃s, g̃h, g̃v and k̃s are the metrics on T1M induced by the three lifts gs, gh,
gv and kv, respectively (we refer to Section 2 for the definitions of F -metrics
and their lifts).

In this paper, using curvature expressions for (T1M, G̃) obtained in [2], we will
study contact metric conditions, expressible in terms of the curvature tensor,
of the g-natural contact metric structures (η̃, G̃) on T1M we introduced in [1].
Throughout the paper, we shall assume that (M, g) is a Riemannian manifold of
dimension ≥ 3. We report here the main results we obtained. They generalize
classical theorems on the standard contact metric structure of T1M , which may
be found in Section 9.2 of [7]. Preliminary information about contact metric
manifolds and g-natural contact metric structures will be given at the beginning
of Section 4.

Theorem 1. Let G̃ be a Riemannian g-natural metric on T1M . (T1M, η̃, G̃) has

constant ξ-sectional curvature K̃ if and only if the base manifold (M, g) has con-
stant sectional curvature c̄ either equal to d

a
or to a+c

a
> 0.

Theorem 2. Let G̃ be a Riemannian g-natural metric on T1M . If (T1M, η̃, G̃)
has constant ϕ-sectional curvature, then the base manifold (M, g) is locally iso-
metric to a two-point homogeneous space.



M. T. K. Abbassi, G. Calvaruso: Curvature Properties of g-natural . . . 157

Theorem 3. Let (M, g) be a Riemannian manifold of constant sectional curva-
ture c̄ and dim M ≥ 3, and G̃ a Riemannian g-natural metric on T1M . (T1M, η̃,

G̃) has constant ϕ-sectional curvature K̃ if and only one of the following cases
occurs:

(i) c̄ = 0, b = ±
√

(a + c)(a− 1
8
) and d = −a+c

2
. In this case, K̃ = 5.

(ii) c̄ 6= 0, a = 1
4
, b = d = 0 and c = −1

4
− 2±

√
5

4
c̄. In this case, K̃ = (2±

√
5)2.

Theorem 4. Let G̃ be a Riemannian g-natural metric on T1M . (T1M, η̃, G̃) is a
(k, µ)-space if and only if (M, g) has constant sectional curvature c̄. In this case,
if (T1M, η̃, G̃) is not Sasakian, then

k =
1

16α2

[
−a2c̄2 + 2(α− b2)c̄ + d(2(a + c) + d)

]
, µ =

1

2α
(d− ac̄). (1.2)

Theorem 5. A g-natural contact metric structure (η̃, G̃) on T1M is locally sym-
metric if and only if (η̃, G̃) = (η̄, ḡ) is the standard contact metric structure of
T1M and (M, g) is flat.

The paper is organized in the following way. In Section 2 we shall recall the
definition and properties of g-natural metrics on TM . Section 3 will be devoted
to Riemannian g-natural metrics on T1M and their curvature tensor. Finally,
Theorems 1–5 and further curvature results will be proved in Section 4.

2. Basic formulae on tangent bundles

Let (M, g) be an n-dimensional Riemannian manifold and ∇ its Levi-Civita con-
nection. At any point (x, u) of its tangent bundle TM , the tangent space of TM
splits into the horizontal and vertical subspaces with respect to ∇:

(TM)(x,u) = H(x,u) ⊕ V(x,u).

For any vector X ∈ Mx, there exists a unique vector Xh ∈ H(x,u) (the horizontal
lift of X to (x, u) ∈ TM), such that π∗X

h = X, where π : TM → M is the
natural projection. The vertical lift of a vector X ∈ Mx to (x, u) ∈ TM is a
vector Xv ∈ V(x,u) such that Xv(df) = Xf , for all functions f on M . Here we
consider 1-forms df on M as functions on TM (i.e., (df)(x, u) = uf). The map
X → Xh is an isomorphism between the vector spaces Mx and H(x,u). Similarly,
the map X → Xv is an isomorphism between Mx and V(x,u). Each tangent vector

Z̃ ∈ (TM)(x,u) can be written in the form Z̃ = Xh + Y v, where X, Y ∈ Mx are
uniquely determined vectors. Horizontal and vertical lifts of vector fields on M
can be defined in an obvious way and are uniquely defined vector fields on TM .

The Sasaki metric gs has been the most investigated among all possible Rieman-
nian metrics on TM . However, in many different contexts such metric showed
a very “rigid” behaviour. Moreover, gs represents only one possible choice in-
side a wide family of Riemannian metrics on TM , known as Riemannian g-
natural metrics, which depend on several independent smooth functions from
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R+ to R. As their name suggests, those metrics arise from a very “natural”
construction starting from a Riemannian metric g over M . The introduction of
g-natural metrics moves from the description of all first order natural operators
D : S2

+T ∗  (S2T ∗)T , transforming Riemannian metrics on manifolds into met-
rics on their tangent bundles, where S2

+T ∗ and S2T ∗ denote the bundle functors
of all Riemannian metrics and all symmetric (0, 2)-tensors over n-manifolds re-
spectively. For more details about the concept of naturality and related notions,
we can refer to [16].

We shall call g-natural metric a metric G on TM , coming from g by a first order
natural operator S2

+T ∗  (S2T ∗)T [4]. Given an arbitrary g-natural metric G on
the tangent bundle TM of a Riemannian manifold (M, g), there are six smooth
functions αi, βi : R+ → R, i = 1, 2, 3, such that for every u, X, Y ∈ Mx, we have

G(x,u)(X
h, Y h) = (α1 + α3)(r

2)gx(X,Y ) + (β1 + β3)(r
2)gx(X, u)gx(Y, u),

G(x,u)(X
h, Y v) = α2(r

2)gx(X, Y ) + β2(r
2)gx(X, u)gx(Y, u),

G(x,u)(X
v, Y h) = α2(r

2)gx(X, Y ) + β2(r
2)gx(X, u)gx(Y, u),

G(x,u)(X
v, Y v) = α1(r

2)gx(X, Y ) + β1(r
2)gx(X, u)gx(Y, u),


(2.1)

where r2 = gx(u, u). For n = 1, the same holds with βi = 0, i = 1, 2, 3. Put

• φi(t) = αi(t) + tβi(t),

• α(t) = α1(t)(α1 + α3)(t)− α2
2(t),

• φ(t) = φ1(t)(φ1 + φ3)(t)− φ2
2(t),

for all t ∈ R+. Then, a g-natural metric G on TM is Riemannian if and only if
the following inequalities hold:

α1(t) > 0, φ1(t) > 0, α(t) > 0, φ(t) > 0, (2.2)

for all t ∈ R+. (For n = 1, system (2.2) reduces to α1(t) > 0 and α(t) > 0, for all
t ∈ R+.)

Convention 1. a) In the sequel, when we consider an arbitrary Riemannian
g-natural metric G on TM , we implicitly suppose that it is defined by the
functions αi, βi : R+ → R, i = 1, 2, 3, satisfying (2.1)–(2.2).

b) Unless otherwise stated, all real functions αi, βi, φi, α and φ and their
derivatives are evaluated at r2 := gx(u, u).

c) We shall denote respectively by R and Q the curvature tensor and the Ricci
operator of a Riemannian manifold (M, g). The tensor R is taken with the
sign convention

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

for all vector fields X, Y, Z on M .

Next, as it is well known, the tangent sphere bundle of radius ρ > 0 over a
Riemannian manifold (M, g) is the hypersurface TρM = {(x, u) ∈ TM |gx(u, u) =
ρ2}. The tangent space of TρM , at a point (x, u) ∈ TρM , is given by

(TρM)(x,u) = {Xh + Y v/X ∈ Mx, Y ∈ {u}⊥ ⊂ Mx}. (2.3)
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When ρ = 1, T1M is called the unit tangent (sphere) bundle.
Let G = a.gs + b.gh + c.gv + β.kv be a Riemannian g-natural metric on TM

and G̃ the metric on T1M induced by G. Then, G̃ only depends on a, b, c and
d := β(1), and these coefficients satisfy (1.1) (see also [3]).

Using the Schmidt’s orthonormalization process, a simple calculation shows
that the vector field on TM defined by

NG
(x,u) = 1√

(a+c+d)φ
[−b.uh + (a + c + d).uv], (2.4)

for all (x, u) ∈ TM , is normal to T1M and unitary at any point of T1M . Here φ
is, by definition, the quantity φ(1) = a(a + c + d)− b2.

Now, we define the “tangential lift” X tG – with respect to G – of a vector
X ∈ Mx to (x, u) ∈ T1M as the tangential projection of the vertical lift of X to
(x, u) – with respect to NG –, that is,

X tG = Xv −G(x,u)(X
v, NG

(x,u)) NG
(x,u) = Xv −

√
φ

a+c+d
gx(X, u) NG

(x,u). (2.5)

If X ∈ Mx is orthogonal to u, then X tG = Xv.
The tangent space (T1M)(x,u) of T1M at (x, u) is spanned by vectors of the

form Xh and Y tG , where X, Y ∈ Mx. Hence, the Riemannian metric G̃ on T1M ,
induced from G, is completely determined by the identities

G̃(x,u)(X
h, Y h) = (a + c)gx(X, Y ) + dgx(X, u)gx(Y, u),

G̃(x,u)(X
h, Y tG) = bgx(X, Y ),

G̃(x,u)(X
tG , Y tG) = agx(X, Y )− φ

a+c+d
gx(X, u)gx(Y, u),

 (2.6)

for all (x, u) ∈ T1M and X, Y ∈ Mx. It should be noted that, by (3.4), horizontal
and vertical lifts are orthogonal with respect to G̃ if and only if b = 0.

Convention 2. For any (x, u) ∈ T1M , the tangential lift to (x, u) of the vector
u is given by utG = b

a+c+d
uh, that is, it is a horizontal vector. Hence, the tangent

space (T1M)(x,u) coincides with the set

{Xh + Y tG/X ∈ Mx, Y ∈ {u}⊥ ⊂ Mx}. (2.7)

Then, the operation of tangential lift from Mx to a point (x, u) ∈ T1M will be
always applied only to vectors of Mx which are orthogonal to u.

The Levi-Civita connection and the curvature tensor of (T1M, G̃) were respectively
calculated by the authors in [1] and [2]. In particular, we have the following

Proposition 1. [2] Let (M, g) be a Riemannian manifold and let G = a.gs +
b.gh + c.gv + β.kv, where a, b and c are constants and β : [0,∞) → R is a
function satisfying (1.1). Denote by ∇ and R the Levi-Civita connection and
the Riemannian curvature tensor of (M, g), respectively. If we denote by R̃ the
Riemannian curvature tensor of (T1M, G̃), then:
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(i)

R̃(Xh, Y h)Zh

=
{
R(X,Y )Z + ab

2α
[2(∇uR)(X, Y )Z − (∇ZR)(X,Y )u] + a2

4α
[R(R(Y, Z)u, u)X

−R(R(X,Z)u, u)Y − 2R(R(X, Y )u, u)Z] + a2b2

4α2 [R(X, u)R(Y, u)Z

−R(Y, u)R(X, u)Z + R(X, u)R(Z, u)Y −R(Y, u)R(Z, u)X]

+ad(α−b2)
4α2 [g(Z, u)R(X, Y )u + g(Y, u)R(X, u)Z − g(X, u)R(Y, u)Z]

+ ab2

2α2

[
− ad+b2

a+c+d
g(R(Y, u)Z, u) +d g(Y, u)g(Z, u)] RuX

− ab2

2α2

[
− ad+b2

a+c+d
g(R(X, u)Z, u) + d g(X, u)g(Z, u)

]
RuY

+ d
4α

[
− 2b2

a+c+d
g(R(Y, u)Z, u) + d g(Y, u)g(Z, u)

]
X

− d
4α

[
− 2b2

a+c+d
g(R(X, u)Z, u) + d g(X, u)g(Z, u)

]
Y

+ d
4α(a+c+d)

{−4abg((∇uR)(X, Y )Z, u) + a2 [g(R(Y, Z)u, R(X, u)u)

−g(R(X, Z)u, R(Y, u)u)− 2g(R(X, Y )u, R(Z, u)u)] + a2b2

α
[g(R(Y, u)Z

+R(Z, u)Y,R(X, u)u)− g(R(X, u)Z + R(Z, u)X, R(Y, u)u)]

−
[

ad(b2−α)
α

+ 2b2d(φ+2b2)
φ(a+c+d)

+ 4b2α
φ

]
[g(X, u)g(R(Y, u)Z, u)

−g(Y, u)g(R(X, u)Z, u)]− 3a(a + c) g(R(X, Y )Z, u)

+(a + c)d [g(X, u)g(Y, Z)− g(Y, u)g(X, Z)]}u}h

+
{
− b2

α
(∇uR)(X,Y )Z + a(a+c)

2α
(∇ZR)(X, Y )u − ab

4α
[R(R(Y, Z)u, u)X

−R(R(X,Z)u, u)Y − 2R(R(X,Y )u, u)Z −R(X, R(Y, u)Z)u

−R(X, R(Z, u)Y )u + R(Y, R(X, u)Z)u + R(Y,R(Z, u)X)u]

− ab3

4α2 [R(X, u)R(Y, u)Z −R(Y, u)R(X, u)Z + R(X, u)R(Z, u)Y

−R(Y, u)R(Z, u)X]− bd(3α−b2)
4α2 [g(Z, u)R(X, Y )u + g(Y, u)R(X, u)Z

−g(X, u)R(Y, u)Z] + b(b2−α)
2α2

[
ad+b2

a+c+d
g(R(Y, u)Z, u)

−d g(Y, u)g(Z, u)] RuX − b(b2−α)
2α2

[
ad+b2

a+c+d
g(R(X, u)Z, u)− d g(X, u)g(Z, u)

]
RuY + (a+c)bd

2α(a+c+d)
[g(R(Y, u)Z, u)X − g(R(X, u)Z, u)Y ]

}tG
,

(ii)

R̃(Xh, Y tG)Zh

=
{
− a2

2α
(∇XR)(Y, u)Z + ab

2α
[R(X, Y )Z + R(Z, Y )X]

+ a3b
4α2 [R(X, u)R(Y, u)Z −R(Y, u)R(X, u)Z −R(Y, u)R(Z, u)X]

+a2bd
4α2 [g(X, u)R(Y, u)Z − g(Z, u)R(X,Y )u]

− ab
4α2(a+c+d)

[a(ad + b2) g(R(Y, u)Z, u) + αd g(Y, Z)]RuX

+ a2b
2α2

[
ad+b2

a+c+d
g(R(X, u)Z, u)− d g(X, u)g(Z, u)

]
RuY

− bd
4α(a+c+d)

[a g(R(Y, u)Z, u) + (2(a + c) + d) g(Y, Z)]X

+ b
α

[
− ad+b2

2(a+c+d)
g(R(X, u)Z, u) + d g(X, u)g(Z, u)

]
Y
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− bd
2α

g(X, Y )Z + d
4α(a+c+d)

{
2a2 g((∇XR)(Y, u)Z, u)

+a3b
α

[g(R(Y, u)Z,R(X, u)u)− g(R(X, u)Z + R(Z, u)X, R(Y, u)u)]

+ab
[
−α+φ

α
+ d

a+c+d

]
g(X, u)g(R(Y, u)Z, u)

−2ab [2g(R(X, Y )Z, u) + g(R(Z, Y )X, u)]

+bd
[(

3− d
a+c+d

)
g(X, u)g(Y, Z) + 2 g(Z, u)g(X, Y )

]}
u
}h

+
{

ab
2α

(∇XR)(Y, u)Z + a2

4α
R(X, R(Y, u)Z)u − a2b2

4α2 [R(X, u)R(Y, u)Z

−R(Y, u)R(X, u)Z −R(Y, u)R(Z, u)X]− b2

α
R(X, Y )Z + a(a+c)

2α
R(X, Z)Y

+ad(α−b2)
4α2 [g(X, u)R(Y, u)Z − g(Z, u)R(X, Y )u]

− α−b2

4α2(a+c+d)
[a(ad + b2) g(R(Y, u)Z, u) + αd g(Y, Z)]RuX

+ ab2

2α2

[
− ad+b2

a+c+d
g(R(X, u)Z, u) + d g(X, u)g(Z, u)

]
RuY

+ (a+c)d
4α(a+c+d)

[a g(R(Y, u)Z, u) + (2(a + c) + d) g(Y, Z)]X

+ 1
4α

[
2b2

(
2− d

a+c+d

)
g(R(X, u)Z, u) − d(4(a + c) + d) g(X, u)g(Z, u) ]Y

+ (a+c)d
2α

g(X, Y )Z
}tG

,

(iii)

R̃(X tG , Y tG)ZtG = 1
2α(a+c+d)

{{
a2b [g(Y, Z)RuX − g(X,Z)RuY ]

− b(α + φ)[g(Y, Z)X − g(X,Z)Y ]
}h

+
{
−ab2 [g(Y, Z)RuX − g(X, Z)RuY ]

+[(a + c)(α + φ) + αd] [g(Y, Z)X − g(X,Z)Y ]
}

tG
}

,

for all x ∈ M , (x, u) ∈ T1M and all arbitrary vectors X, Y, Z ∈ Mx satisfying
Convention 2, where RuX = R(X, u)u denotes the Jacobi operator associated
to u.

3. Curvature of g-natural contact metric structures

We briefly recall that a contact manifold is a (2n − 1)-dimensional manifold M̄
admitting a global 1-form η (a contact form) such that η∧(dη)n−1 6= 0 everywhere
on M̄ . Given η, there exists a unique vector field ξ, called the characteristic vector
field, such that η(ξ) = 1 and dη(ξ, ·) = 0. Furthermore, a Riemannian metric g is
said to be an associated metric if there exists a tensor ϕ, of type (1,1), such that

η = g(ξ, ·) , dη = g(·, ϕ·) , ϕ2 = −I + η ⊗ ξ . (3.1)

(η, g, ξ, ϕ), or (η, g), is called a contact metric structure and (M̄, η, g) a contact
metric manifold.

Sasakian contact metric structures are characterized by the property that the
covariant derivative of its tensor ϕ satisfies

(∇Zϕ)W = ḡ(Z,W )ξ − η(W )Z, (3.2)

for all Z,W vector fields on M̄ . A K-contact manifold is a contact metric manifold
(M̄, η, ḡ) whose characteristic vector field ξ is a Killing vector field with respect
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to ḡ. Any Sasakian manifold is K-contact and the converse also holds for three-
dimensional spaces. The tensor h = 1

2
Lξϕ, where L denotes the Lie derivative,

plays a very important role in describing the geometry of a contact metric manifold
(M̄, η, g). K-contact spaces are characterized by equation h = 0. h is symmetric
and satisfies

∇ξ = −ϕ− ϕh, hϕ = −ϕh, hξ = 0. (3.3)

In [1], we investigated under which conditions a Riemannian g-natural metric on
T1M may be seen as a Riemannian metric associated to a very “natural” contact

form. Given an arbitrary Riemannian g-natural metric G̃ = a.g̃s+b.g̃h+c.g̃v+d.k̃v

over T1M , the unit vector field NG
(x,u) = 1√

(a+c+d)φ
[−b.uh + (a + c + d).uv], for all

(x, u) ∈ TM , is normal to T1M at any point (cf. Section 2). The tangent space
to T1M at (x, u) splits as

(T1M)(x,u) = Span(ξ̃)⊕ {Xh|X ⊥ u} ⊕ {X tG|X ⊥ u},

where we put
ξ̃(x,u) = ruh, (3.4)

r being a positive constant. It should be noted the special role played by uh in
the decomposition of (T1M)(x,u), and its geometrical meaning: for any vector u =∑

i u
i(∂/∂xi)x ∈ Mx, we have uh

(x,u) =
∑

i u
i(∂/∂xi)h

(x,u), that is, uh is the geodesic
flow on TM . Henceforth, it is a “natural” choice to assume a vector parallel to
uh, as the characteristic vector field of a suitable contact metric structure. We
consider the triple (η̃, ϕ̃, ξ̃), where ξ̃ is defined as in (3.4), η̃ is the 1-form dual to
ξ̃ through G̃, and ϕ̃ is completely determined by G̃(Z, ϕ̃W ) = (dη̃)(Z,W ), for all
Z,W vector fields on T1M . Then, simply calculations show that

η̃(Xh) = 1
r
g(X, u),

η̃(X tG) = brg(X, u)

}
(3.5)

and
ϕ̃(Xh) = 1

2rα

[
−bXh + (a + c)X tG + bd

a+c+d
g(X, u)uh

]
,

ϕ̃(X tG) = 1
2rα

[
−aXh + bX tG + φ

a+c+d
g(X, u)uh

]
,

}
(3.6)

for all X ∈ Mx. If (and only if)

1

r2
= 4α = a + c + d (3.7)

holds, then η̃ is well-defined and it is a contact form on T1M , homothetic – with
homothety factor r – to the classical contact form on T1M (see, for example, [7]
for a definition).

From (1.1) and (3.7) it follows d = (a+c)(4a−1)−4b2. So, among Riemannian
g-natural metrics on T1M , the ones satisfying (3.7) are contact metrics associated
to the contact structures described by (3.4)–(3.6). In this way, we have proved
the following:
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Theorem 6. [1] The set (G̃, η̃, ϕ̃, ξ̃), described by (3.4) – (3.7), is a family of con-
tact metric structures over T1M , depending on three real parameters a, b and c.

More details can be found in [1], where we also proved that the class of g-natural
contact metric structures on T1M is invariant under D-homothetic deformations.

At any point (x, u) of the contact metric manifold (T1M, η̃, G̃), the tensor
h̃ = 1

2
Lξ̃ϕ̃ is described as follows:

h̃(Xh) = 1
4α

[
−(a + c)(X − g(X, u)u)h + a(RuX)h − 2b(RuX)tG

]
,

h̃(X tG) = 1
4α

[
−2bXh + b

(
1 + d

a+c+d

)
g(X, u)uh + (a + c)X tG − a(RuX)tG

]
,

}
(3.8)

for all X ∈ Mx, where RuX = R(X, u)u denotes the Jacobi operator associated
to u.

Remark 1. Some contact metric properties of (T1M, η̃, G̃) turn out to be related
to the base manifold being an Osserman space. We briefly recall here that a
Riemannian manifold (M, g) is called globally Osserman if the eigenvalues of the
Jacobi operator Ru are independent of both the unit tangent vector u ∈ Mx and
the point x ∈ M . The well-known Osserman conjecture states that any globally
Osserman manifold is locally isometric to a two-point homogeneous space, that
is, either a flat space or a rank-one symmetric space. The complete list of rank-
one symmetric spaces is formed by RPn, Sn, CPn, HPn, CayP2 and their non-
compact duals. Actually, the Osserman conjecture has been proved to be true for
all manifolds of dimension n 6= 16 ([15], [20], [21]). Moreover, also in dimension
16, if (M, g) is a Riemannian manifold such that Ru admits at most two distinct
eigenvalues (besides 0), then it is locally isometric to a two-point homogeneous
space [22].

3.1. g-natural contact structures of constant ξ-sectional curvature

Let (M̄, η, ḡ) be a contact metric manifold. The sectional curvature of plane
sections containing the characteristic vector field ξ, is called ξ-sectional curvature
(see Section 11.1 of [7]). Clearly, if π is a plane section containing ξ, we can
determine the sectional curvature of π at a point x ∈ M̄ as K(Z, ξx), where Z
is a vector of πx, orthogonal to ξx. As it was proved in [19] (see also Theorem
7.2 of [7]), a contact metric manifold is K-contact if and only if it has constant
ξ-sectional curvature equal to 1.

Proof of Theorem 1. We first suppose that (T1M, η̃, G̃) has constant ξ-sectional

curvature K̃. Let (x, u) be a point of T1M and Y a unit vector orthogonal to u.
From (i) of Proposition 1, we get

R̃(ξ̃(x,u), Y
h)ξ̃(x,u) = r2

{
− ab

2α
(∇uR)(Y, u)u + 3a2

4α
R2

uY − (1 + ad
2α

)RuY − d2

4α
Y

}h

+r2
{

b2−α
2α

(∇uR)(Y, u)u− ab
R

2

u
Y + bd

α
RuY

}tG
.
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Therefore, taking into account (2.6), the sectional curvature of the plane spanned
by ξ̃(x,u) and Y h is given by

K̃(ξ̃(x,u), Y
h) = r2

a+c

{
bg((∇uR)(Y, u)u, Y ) + a(b2−3α)

4α
g(R2

uY, Y )

+
[(

1 + ad
2α

)
(a + c)− b2d

α

]
g(RuY, Y ) + (a+c)d2)

4α

}
.

(3.9)

In the same way, from (ii) of Proposition 1 and taking into account (2.6), we find
that the sectional curvature of the plane spanned by ξ̃(x,u) and Y tG is given by

K̃(ξ̃(x,u), Y
tG) = r2

a

{
a3

4α
g(R2

uY, Y )− a2d
2α

g(RuY, Y ) +
(
d + ad2

4α

)}
. (3.10)

Since (T1M, η̃, G̃) has constant ξ-sectional curvature K̃, from (3.9) and (3.10) we
then have

bg((∇uR)(Y, u)u, Y ) + a(b2−3α)
4α

g(R2
uY, Y )

+
[(

1 + ad
2α

)
(a + c)− b2d

α

]
ag(RuY, Y ) + (a+c)d2

4α
= 4α(a + c)K̃,

a3

4α
g(R2

uY, Y )− a2d
2α

g(RuY, Y ) +
(
d + ad2

4α

)
= 4αaK̃,

 (3.11)

for all orthogonal unit vectors u and Y . In particular, if Y is an eigenvector for
the Jacobi operator Ru, then RuY = λY and the second equation of (3.11) gives

a3λ2 − 2a2dλ + d(4α + ad) = 16α2aK̃, (3.12)

from which it follows that Ru has constant eigenvalues, both independent of u
and the point x at M . Therefore, (M, g) is a globally Osserman space. Moreover,
(3.12) also implies that Ru has at most two distinct eigenvalues and so, (M, g)
is locally isometric to a two-point homogeneous space [22]. In particular, (M, g)
is locally symmetric. So, from (3.11) we get that the eigenvalues λ of Ru must
satisfy

a(b2 − 3α)λ2 + 2 [(2α + ad)(a + c)− 4b2] λ + (a + c)d2 = 16α2(a + c)K̃,

a3λ− 2a2dλ + d(4α + ad) = 16α2aK̃.

}
(3.13)

Taking into account (1.1), we can calculate K̃ from both equations of (3.13) and
compare these two expressions. In this way, we easily find

a2λ2 − a(a + c + d)λ + d(a + c) = 0,

which implies that the only possible values for λ are λ1 = a+c
a

and λ2 = d
a
.

If λ1 (respectively, λ2) is the only nontrivial eigenvalue of the Jacobi operator
Ru, then (M, g) has constant sectional curvature equal to λ1 (respectively, λ2).
On the other hand, when Ru admits both eigenvalues λ1 and λ2, then for λ = a+c

a
,

(3.12) gives 4αaK̃ = d+ a(a+c−d)
4α

, while for λ = d
a
, (3.12) implies 4αaK̃ = d. Since

the value of K̃ is uniquely determined, we necessarily have a + c− d = 0, that is,
d = a + c and so, λ1 = λ2 and (M, g) has again constant sectional curvature.
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Conversely, assume that (M, g) has constant sectional curvature equal to d
a

(re-

spectively, a+c
a

). Then, (3.9) and (3.10) imply at once that (T1M, η̃, G̃) has con-

stant ξ-sectional curvature K̃ = d
4aα

(respectively, K̃ = d
4aα

+ (a+c−d)2

16α2 ). �

In [26], D. Perrone investigated three-dimensional contact metric manifolds (M3,
η, ḡ) of constant ξ-sectional curvature. In particular, he characterized such spaces
as contact metric manifolds of constant scalar torsion ||τ || satisfying ∇ξτ = 0
[26], where the torsion τ := Lξḡ is the Lie derivative of ḡ in the direction of the
characteristic vector field ξ.

It is also interesting to remark that, among three-dimensional contact metric
manifolds satisfying ∇ξτ = 2τϕ, K-contact spaces are the only ones having con-
stant ξ-sectional curvature ([26], Corollary 4.6). When M is compact, ∇ξτ = 2τϕ
is a necessary and sufficient condition for an associated metric g ∈ A, in order to
be a critical point for the functional

L(g) =

∫
M̄

Ric(ξ)dV,

where Ric(ξ) = %(ξ, ξ) and % is the Ricci tensor of M̄ [23]. On any contact
metric manifold (M, η, ḡ), the torsion τ is related to the tensor h by the formula
τ = 2ḡ(hϕ·, ·), from which it follows

∇ξτ = 2ḡ((∇ξh)ϕ·, ·),

and so, equations above can be expressed in terms of the tensor h. g-natural
contact metric structures on T1M satisfying these equations were classified in [1].
Taking into account Theorems 7 and 8 of [1] and Theorem 1 above, the following
results follow easily.

Proposition 2. If (T1M, η̃, G̃) has constant ξ-sectional curvature, then ∇̃ξ̃h̃ = 0.

Corollary 1. Let G̃ be a Riemannian g-natural metric on T1M , such that ∇̃ξ̃h̃ =

2h̃ϕ̃. Then, (T1M, η̃, G̃) has constant ξ-sectional curvature if and only if it is K-
contact.

3.2. g-natural contact structures of constant ϕ-sectional curvature

Let (M̄, η, ḡ, ξ, ϕ) be a contact metric manifold and Z ∈ ker η. The ϕ-sectional
curvature determined by Z is the sectional curvature K(Z,ϕZ) along the plane
spanned by Z and ϕZ. The ϕ-sectional curvature of a Sasakian manifold deter-
mines the curvature completely. A Sasakian space form is a Sasakian manifold of
constant ϕ-sectional curvature. We refer to Section 7.3 of [7] for further details
and results.

As concerns the standard contact metric structure of the unit tangent sphere
bundle, the following result holds:

Theorem 7. [17] If (M, g) has constant sectional curvature c̄ and dim M ≥ 3,
the standard contact metric structure of T1M has constant ϕ-sectional curvature
(equal to (2±

√
5)2) if and only if c̄ = 2±

√
5.
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Theorem 7 has been generalized for g-natural contact metric structures by The-
orem 3. Before proving Theorems 2 and 3, we need to calculate the ϕ-sectional
curvature of (T1M, η̃, G̃). Note first that, when X is a tangent vector orthogonal
to u, then, by (3.5), both Xh and X tG belong to ker η̃. We have the following

Lemma 1. Let (η̃, G̃) be a g-natural contact metric structure on T1M , (x, u) a
point of T1M and X a unit vector tangent to M , orthogonal to u. Then,

K(Xh, ϕ̃Xh) = K(X tG , ϕ̃X tG)

= − d

α

[
1− d

4(a + c + d)

]
− 1

2α

[
ad + 2b2

a + c + d
+

b4

α(a + c + d)

]
g(RXu, u)

+
a3

4α2
g(R2

Xu, u)− a2(ad + b2)

4α2(a + c + d)
[g(RXu, u)]2 ,

(3.14)

where RXu = R(u, X)X.

Proof of Lemma 1. Since X is orthogonal to u, from (3.6) we have

ϕ̃(Xh) = 1
2rα

[
−bXh + (a + c)X tG

]
, ϕ̃(X tG) = 1

2rα

[
−aXh + bX tG

]
. (3.15)

Using (3.15), and taking into account that X is a unit vector, we get

K(Xh, ϕ̃Xh) = K(X tG , ϕ̃X tG) = − 1
α
G̃(R̃(Xh, X tG)Xh, X tG). (3.16)

Since X and u are orthogonal, we get R̃(Xh, X tG)Xh = Y h + W tG , where we put

Y =− a2

2α
(∇XR)(X, u)X − a3b

4α2
R(X, u)RX5u

+
ab

4α2(a + c + d)
[a(ad + b2)g(RXu, u)− αd]RuX

− bd

4α(a + c + d)
[ag(RXu, u) + 2(a + c) + d] X

− b(ad + b2)

2α(a + c + d)
g(RXu, u)X − bd

2α
X

+
a2d

4α2(a + c + d)
[2αg((∇XR)(X, u)X, u)− abg(RXu, RuX)] u,

W =
ab

2α
(∇XR)(X, u)X +

a2

4α
R(X, RXu)u (3.17)

+
ab

4α2(a + c + d)
[a(ad + b2)g(RXu, u)− αd]RuX

+
a2b2

4α2
R(X, u)RXu

+
b2 − α

4α2(a + c + d)

[
a(ad + b2)g(RXu, u) + αd

]
RuX
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− ab2(ad + b2)

2α2(a + c + d)
g(RXu, u)RuX

+
(a + c)d

4α(a + c + d)
[ag(RXu, u) + 2(a + c) + d]X

+
b2

2α

(
2− d

a + c + d

)
g(RXu, u)X +

(a + c)d

2α
X.

Taking into account (2.6) and Proposition 1, we have

G̃(R̃(Xh, X tG)Xh, X tG) = G̃(Y h + W tG , gX tG) = bg(Y,X) + ag(W, X).

After some lengthy but very standard calculations, from (3.2) we then obtain

G̃(R̃(Xh, X tG)Xh, X tG) = d

[
1− d

4(a + c + d)

]
+

(
ad + 2b2

2(a + c + d)
+

b4

2α(a + c + d)

)
g(RXu, u)

− a3

4α
g(R2

Xu, u) +
a2(ad + b2)

4α(a + c + d)
[g(RXu, u)]2 .

(3.18)

(3.14) now follows at once from (3.16) and (3.18), which completes the proof of
Lemma 1. �

Proof of Theorem 2. Suppose that (T1M, η̃, G̃) has constant ϕ-sectional curvature

K̃. Note that (3.14) holds for any orthogonal unit vectors u and X. We now use
(3.14) in the special case when u is an eigenvector of RX , that is, RXu = λu. We
get

d
(
1− d

4(a+c+d)

)
+ (ad+2b2)α+b4

2α(a+c+d)
λ + a2

4(a+c+d)
λ2 = −αK̃

and so, using (3.7),

αa2λ2 + 2
[
α(ad + b2) + b4

]
λ + [αd(4a + 4c− 3d) + 4α2(a + c + d)K̃] = 0. (3.19)

Hence, for any unit vector X tangent to M at a point p, the eigenvalues λ of RX

satisfy the second order equation (3.19), having constant coefficients independent
from the point. Therefore, (M, g) is a globally Osserman space. Moreover, the
Jacobi operator RX has at most two (constant) nontrivial eigenvalues and so,
(M, g) is locally isometric to a two-point homogeneous space. This completes the
proof of Theorem 2. �

Note that the converse of Theorem 2 would provide an interesting characterization
of two-point homogeneous spaces in terms of their unit tangent sphere bundles.
However, the calculations involved are really hard. A partial result, which anyway
extends Theorem 7 to an arbitrary g-natural contact metric structure, is given by
Theorem 3.

Proof of Theorem 3. Using the fact that (M, g) has constant sectional curvature c̄,
very long calculations lead to conclude that, for an arbitrary unit vector u tangent
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to M at x and an arbitrary unit vector Z = Xh + Y tG of the contact distribution
ker η̃ at (x, u) ∈ T1M , the ϕ-sectional curvature of the plane generated by Z and
ϕ̃Z, is given by

K(Z, ϕ̃Z) =
1

(2rα)2

{
A1[(a + c)gx(X, X)− 1]gx(X, X) + A2gx(X, Y )2

+A3gx(X, X)gx(X, Y ) + A4gx(X, Y )

+

[
a2

4(a + c + d)
c̄2 +

1

a + c + d

(
ad + 2b2 +

b4

α

)
c̄

−d

(
1− d

4(a + c + d)

)]}
,

(3.20)

where

A1 = aα
a+c+c

c̄2 + 1
2a(a+c+d)

(
−8α2 − 4adα− a2(a + c)d

+2b4
(
1− b2

α

))
c̄− (a+c)α

a

(
1 + d

a+c+d

)
,

A2 = a3
(
1− 3b2

2α

)
c̄2 + 2a

(
2− d

a+c+d

)
(b2 − α)c̄

+(a + c)α
(
1 + d

a+c+d

)
,

A3 = 2abα
a+c+d

c̄2 − b
a(a+c+d)

(
6α2 + α(a(a + c) + 4ad) + 2 b6

α

)
c̄

−2(a+c)bα
a

(
1 + d

a+c+d

)
,

A4 = a2(ad+b2)b
2(a+c+d)α

c̄2 − bφ
a+c+d

c̄.



(3.21)

Suppose now that T1M has constant ϕ-sectional curvature K̃ and so, the value of
K(Z, ϕ̃Z) is the same for all the unit tangent vectors Z = Xh +Y tG . Therefore, in
(3.21) we must have Ai = 0 for all i, since they are coefficients of terms depending
on X and Y . By (3.21) we then have

2a2c̄2 +

(
−8α2 − 4adα− a2(a + c)d + 2b4

(
1− b2

α

))
c̄

−2(a + c)α (a + c + 2d) = 0,

a3

(
1− 3b2

2α

)
c̄2 + 2a

(
2− d

a + c + d

)
(b2 − α)c̄

+(a + c)α

(
1 +

d

a + c + d

)
= 0,

b

{
2a2αc̄2 − 2

(
6α2 + α(a(a + c) + 4ad) + 2

b6

α

)
c̄

−4(a + c)α (a + c + 2d)

}
= 0,

bc̄
{
a2(ad + b2)c̄− 2αφ

}
= 0.



(3.22)
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From the last equation in (3.22), it follows that one of the following cases must
occur:

a) c̄ = 0. Taking into account a + c > 0 and α > 0, in this case (3.22) reduces to

a + c + 2d = 0.

Hence, we have d = −a+c
2

and, by (3.7), b = ±
√

(a + c)(a− 1
8
). Note that

there exists a two-parameters family of g-natural contact structures on the unit
tangent sphere bundle of a Euclidean space, for which the ϕ-sectional curvature

is a constant K̃. Taking into account d = −a+c
2

and b = ±
√

(a + c)(a− 1
8
), it

follows directly from (3.20) that K̃ = 5.

b) c̄ 6= 0. Suppose first that b = 0. Then, (3.22) becomes

2a2c̄2 +
(
−8α2 − 4adα− a2(a + c)d

)
c̄− 2(a + c)α (a + c + 2d) = 0,

a3

(
1− 3b2

2α

)
c̄2 − 2aα

(
2− d

a + c + d

)
c̄

+(a + c)α

(
1 +

d

a + c + d

)
= 0.


(3.23)

Since, by (3.7), a + c + d = 4α, we can rewrite (3.23) in the following way:

a

4
c̄2 −

(
a + c +

5

8
d

)
c̄− (a + c)2

(
a + c + 2d

4α

)
= 0,

a2c̄2 − (a + c− d) c̄− (a + c)2(
a + c + 2d

4α

)
= 0.


(3.24)

Subtracting the two equations in (3.24), we then get

a(a− 1
4
)c̄2 − 13

8
dc̄ = 0,

that is, since c̄ 6= 0, either a = 1
4

and d = 0, or c̄ = 13
2a(4a−1)

.

If a = 1
4

and d = 0 (which also includes the case of the standard contact metric

structure of T1M), then, by (3.24) we find K̃ = (2±
√

5)2. On the other hand, if
a 6= 1

4
, we get a contradiction. In fact, using c̄ = 13

2a(4a−1)
in the first equation of

(3.24), we find a = −53
57

< 0, which can not occur.
Next, we shall assume b 6= 0. Through some very long calculations, we even-

tually find that this case does not occur. In fact, the fourth equation in (3.22)
implies a2(ad + b2)c̄ = 2αφ. Note that ad + b2 6= 0, because αφ > 0 by (1.1).
Therefore, we obtain

c̄ =
2αφ

a2(ad + b2)
. (3.25)
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We use (3.25) in the first and third equations of (3.22) and we get

α2φ2

a3(ad+b2)2
− φ

4a3(ad+b2)

[
8α2+4adα+ a2(a+c)d−2b4

(
1− b2

α

)]
− (a + c)α

a

(
1 +

d

4α

)
= 0,

α2φ2

a3(ad + b2)2
− φ

4a3(ad + b2)

[
6α2 + aα(a + c + 4d)g +

2b6

α

]
− (a + c)α

a

(
1 +

d

4α

)
= 0,


(3.26)

so that, subtracting the second equation of (3.26) from the first one, we easily
obtain

φ = 2b2. (3.27)

Therefore, taking into account (3.7), (3.25) and (3.26), we find

b2 = 4a2(a+c)
3+4a

, d = (a+c)(12a2+8a−3)
3+4a

,

α = 3a(a+c)
3+4a

, c̄ = 16(a+c)
(4a+3)(4a2+4a−1)

.
(3.28)

Next, comparing the first two equations in (3.22), we find(
a2

4
− a3 +

3a3b2

2α

)
c̄2 =

1

8α

[
8α2 + 4adα + a2(a + c)d− 2b4

(
1− b2

α

)
+4a (8α− 2d) (b2 − α)

]
c̄.

(3.29)

Taking into account (3.28), after some calculations (3.29) becomes

a2
(
2a2 − a + 1

4

)
c̄ = a(a+c)

72(4a+3)
(−2176a3 + 5172a2 + 1416a− 333) , (3.30)

where we also used the fact that c̄ 6= 0. Since
(
2a2 − a + 1

4

)
6= 0, starting from

(3.28) and (3.30) we eventually get

−8706a5 + 11984a4 + 28528a3 − 3144a2 − 1596a + 45 = 0. (3.31)

Next, using (3.28) and (3.31), from the first equation of (3.26) we obtain

22079868576000a4 + 28745654903552a3 − 3956388519552a2

− 1621058224320a− 70597445616 = 0.
(3.32)

Applying the Descartes rule for the sign of the roots of the polynomials in (3.31)
and (3.32), we can deduce that the polynomial in (3.31) admits at most three
positive roots, while the one in (3.32) admits at most one positive root. We
checked that positive solutions of (3.31) belong to ]0, 1

10
[ ∪ ] 7

24
, 1

3
[ ∪ ]2, +∞[, while

the positive solution of (3.32) belongs to ]1
4
, 7

24
[. Therefore, (3.31) and (3.32) are

never satisfied simultaneously and so, this case can not occur �
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3.3. g-natural contact structures of T1M whose tensor l annihilates the
vertical distribution

The (1, 1)-tensor field l on M̄ , defined by l(X) = R(X, ξ, ξ) for all X ∈ X(M),
naturally appears in the study of the geometry of (M̄, η, g). For example, K-
contact spaces are characterized by the equation l = −ϕ2. If l = 0, then sectional
curvatures of all planes containing ξ are equal to zero. We may refer to [24] for
these and further results on l. Note that there are many contact metric manifolds
satisfying l = 0 ([7], p. 153).

D. Blair [5] proved that T1M , equipped with its standard contact metric struc-
ture (η, ḡ), satisfies lU = 0 for all vertical vector field U on T1M if and only if
the base manifold (M, g) is flat. Moreover, in this case ξ is a nullity vector field,
that is, R(Z,W )ξ = 0 for all Z,W ∈ X(T1M). We extend these results to any
g-natural contact metric structure (η̃, G̃) over T1M , proving the following

Theorem 8. Let G̃ be a Riemannian g-natural metric on T1M . (T1M, η̃, G̃) sat-
isfies lU = R̃(U, ξ̃)ξ̃ = 0 for all vertical vector fields U on T1M if and only if
d = 0 and the base manifold (M, g) is flat. Moreover, in this case R̃(Z,W )ξ̃ = 0
for all vector fields Z,W on T1M .

Proof. Assume first that (T1M, η̃, G̃) satisfies lU = 0 for all vertical vector fields
U on T1M . Then, in particular,

R̃(Y tG , ξ̃(x,u))ξ̃(x,u) = 0, (3.33)

for all Y orthogonal to u, at any point (x, u) ∈ T1M . Using formula (ii) of
Proposition 1 to express R̃(Y tG , ξ̃(x,u))ξ̃(x,u), (3.33) implies{

− a2

2α
(∇uR)(Y, u)u− ab

2α
RuY + bd

2α
Y

}h

+
{

ab
2α

(∇uR)(Y, u)u− a2

4α
R2

uY + ad+2b2

2α
RuY − d(4(a+c)+d)

4α
Y

}tG
= 0.

(3.34)

In (3.34), the tangential part is the tangential lift of a vector Z orthogonal to u.
Hence, ZtG = Zv and the horizontal and vertical parts of (3.34) both vanish. So,
we get

− a2

2α
(∇uR)(Y, u)u− ab

2α
RuY + bd

2α
Y = 0,

ab
2α

(∇uR)(Y, u)u− a2

4α
R2

uY + ad+2b2

2α
RuY − d(4(a+c)+d)

4α
Y = 0.

}
(3.35)

From the first formula in (3.35), taking into account a > 0, we obtain

(∇uR)(Y, u)u = 2b
a2 (dY − aRuY ). (3.36)

Using (3.36) in the second formula of (3.35), we easily get

a3R2
uY − 2a2dRuY + d(ad + 4α)Y = 0, (3.37)
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for all Y orthogonal to u. (3.37) implies at once that Ru has at most two distinct
(constant) eigenvalues. Therefore, (M, g) is globally Osserman and, since there
are at most two distinct eigenvalues for Ru, (M, g) is locally isometric to a two-
point homogeneous space [22]. In particular, (M, g) is locally symmetric. So,
∇R = 0 and (3.36) implies either b = 0 or RuY = d

a
Y , for all Y orthogonal to u.

We treat these two cases separately.
If RuY = d

a
Y for all Y orthogonal to u, then (M, g) has constant sectional

curvature c̃ = d
a
. From (3.37) we then get at once 4αd = 0. By (1.1), α > 0 and

so, d = 0. Moreover, (M, g) has constant sectional curvature c̃ = d
a

= 0, that is,
it is flat.

Next, assume b = 0. If (M, g) has constant sectional curvature, we find a
special case of the previous one. In fact, we find at once that d = 0 and (M, g)
is flat. Thus, in the sequel we assume (M, g) is locally isometric to a two-point
homogeneous space of non-constant sectional curvature, and we prove that this
case can not occur. Since b = 0, by (1.1) we have α = a(a+c) and (3.37) becomes

a2R2
uY − 2adRuY + d(d + 4(a + c))Y = 0,

for all Y orthogonal to u. Hence, the eigenvalues λ of Ru satisfy

a2λ2 − 2adλ + d(d + 4(a + c)) = 0. (3.38)

Since (M, g) is locally isometric to a two-point homogeneous space of non-constant
sectional curvature, Ru has two (constant) eigenvalues λ1, λ2 with λ2 = 4λ1 or
conversely [15]. We now calculate the eigenvalues of Ru from (3.38) and we obtain

λ1 =
d−2
√
−d(a+c)

a
, λ2 =

d+2
√
−d(a+c)

a
. (3.39)

Imposing that λ2 = 4λ1 or conversely, we easily find that either d = 0 or d =
−100

9
(a + c). If d = 0, then (3.39) implies λ1 = λ2 = 0, that is, (M, g) is flat,

against the assumption that (M, g) has not constant sectional curvature. On the
other hand, if d = −100

9
(a + c), then (3.7) gives 1

r2 = a + c + d = −91
9
(a + c) < 0,

which is a contradiction.

Conversely, assume now that d = 0 and (M, g) is flat. Then, (3.34) gives at once
that R̃(ξ̃, Y tG)ξ̃ = 0 for all Y orthogonal to u, that is, lU = 0 for any vertical
vector U .

Finally, we assume d = 0 and (M, g) is flat and use Proposition 1 to calculate
R̃(Z,W )ξ̃ for any vector fields Z,W on T1M . Because of (3.4), equations (i)
and (ii) in Proposition 1 give at once R̃(Xh, Y h)ξ̃ = R̃(Xh, Y tG)ξ̃ = 0 for all X
and Y ∈ X(M) (satisfying Convention 1). Next, by equations (ii) and (iii) in
Proposition 1, we find

G̃(R̃(X tG , Y tG)ξ̃, Zh) = −G̃(X tG , R̃(ξ̃, Y tG)Zh) = 0,

G̃(R̃(X tG , Y tG)ξ̃, ZtG) = −G̃(ξ̃, R̃(X tG , Y tG)ZtG) = 0,

for all X,Y, Z vector fields on T1M (satisfying Convention 1).
Therefore, R̃(Z,W )ξ̃ = 0 for all Z,W ∈ X(T1M) �
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3.4. g-natural contact structures for which T1M is a (k, µ)-space

A (k, µ)-space (M̄, η, ḡ) is a contact metric manifold whose characteristic vector
field ξ belongs to the so-called (k, µ)-nullity distribution, that is, satisfies

R(Z,W )ξ = k(η(W )Z − η(Z)W ) + µ(η(W )hZ − η(Z)hW ), (3.40)

for some real constants k and µ and for all vector fields Z,W on M̄ . We can
refer to [7] for a survey on (k, µ)-spaces. Here we just recall that they generalize
Sasakian manifolds, and that non-Sasakian (k, µ)-spaces have been completely
classified [9]. Note that on any (k, µ)-space we have k ≤ 1, and k = 1 if and only
if (M̄, η, ḡ) is Sasakian. Moreover, any (k, µ)-space is a strongly pseudo-convex
CR-manifold [7]. Recall that a strongly pseudo-convex CR-structure on a manifold
M̄ is a contact form η together with an integrable complex structure J on the
contact subbundle D := ker η (i.e., a bundle map J : D → D such that J2 = −I),
such that the associated Levi form Lη, defined by

Lη(X, Y ) = −dη(X, JY ), X, Y ∈ D,

is definite positive. In this case, (M̄, η, J) is called a strongly pseudo-convex man-
ifold.

The following result was proved in [1]:

Theorem 9. [1] Let G̃ be a Riemannian g-natural metric on T1M . (T1M, η̃, G̃)
gives rise to a strongly pseudo-convex CR-structure if and only if the base manifold
(M, g) has constant sectional curvature.

It was proved in [8] that T1M , equipped with its standard contact metric struc-
ture (η, ḡ), is a (k, µ)-space if and only if the base manifold (M, g) has constant
curvature c̄. In this case, k = c̄(2− c̄) and µ = −2c̄.

Proof of Theorem 4. Assume first that (T1M, η̃, G̃) is a (k, µ)-space. Then,
(T1M, η̃, G̃) gives rise to a strongly pseudo-convex CR-structure and so, by The-
orem 9, the base manifold (M, g) has constant sectional curvature c̄.

To prove the converse, we use Proposition 1 to calculate R̃(Xh, Y h)ξ̃(x,u),

R̃(Xh, Y tG)ξ̃(x,u) and R̃(X tG , Y tG)ξ̃(x,u) for all (x, u) ∈ T1M and X,Y ∈ Mx, and
we see if there exist some values of k and µ for which (3.40) is satisfied. When both
X and Y are orthogonal to u, standard calculations show that R̃(Xh, Y h)ξ(x,u) =

R̃(Xh, Y tG)ξ(x,u) = R̃(X tG , Y tG)ξ(x,u) = 0 and so, (3.40) is trivially satisfied. Since
we only need to consider tangential lifts of vectors orthogonal to u (see Convention
2), it will be enough to consider R̃(Xh, ξ̃)ξ̃ and R̃(X tG , ξ̃)ξ̃. Moreover, because of
the symmetries of the curvature tensor, we clearly can assume Xh orthogonal to
ξ̃(x,u), that is, X orthogonal to u.

From (i) of Proposition 1, taking into account (3.4) and the fact that (M, g)
has constant sectional curvature c̄, we have

R̃(Xh, ξ̃(x,u))ξ̃(x,u) =
r2

4α

[
−3a2c̄2 + (4α + 2ad)c̄ + d2

]
Xh

+
r2

α

[
abc̄2 − bdc̄

]
X tG

(3.41)
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for any vector X orthogonal to u. On the other hand, from (3.8) we get at once

k[η̃(ξ̃(x,u))X
h − η̃(Xh)ξ̃(x,u)]+µ[η̃(ξ̃(x,u))hXh − η̃(Xh)hξ̃(x,u)]

=

[
k +

ac̄− (a + c)

4α
µ

]
Xh − bc̄

2α
µX tG .

(3.42)

Comparing (3.41) with (3.42) and taking into account (3.7), we get

1
16α2 {−3a2c̄2 + (4α + 2ad)c̄ + d2 − 16α2k − 4α[ac̄− (a + c)]µ}Xh

+ 1
4α2 (abc̄2 − bdc̄ + 2bc̄µ) X tG = 0.

(3.43)

Since X is orthogonal to u, X tG = Xv and so, the horizontal and vertical parts of
(3.43) both vanish, that is,

−3a2c̄2 + (4α + 2ad)c̄ + d2 = 16α2k + 4α[ac̄− (a + c)]µ,

5abc̄2 − bdc̄ = −2αbc̄µ.

}
. (3.44)

In the same way, from (ii) of Proposition 1 and from (3.8), we respectively get

R̃(X tG , ξ̃(x,u))ξ̃(x,u) =
r2

α
[abc̄− bd] Xh

+
r2

4α

[
a2c̄2 − 2(ad + 2b2)c̄ + d(4(a + c) + d)

]
X tG

(3.45)

and

k[η̃(ξ̃(x,u))X
tG − η̃(X tG)ξ̃(x,u)]+µ[η̃(ξ̃(x,u))hX tG − η̃(X tG)hξ̃(x,u)]

=− b

2α
µXh +

[
k − ac̄− (a + c)

4α
µ

]
X tG .

(3.46)

Comparing (3.45) and (3.46), taking into account (3.7) we find

abc̄− bd = −2αbµ,

a2c̄2 − 2(2b2 − ad)c̄ + d[4(a + c) + d] = 16α2k − 4α[ac̄− (a + c)]µ.

 (3.47)

Therefore, (T1M, η̃, G̃) is a (k, µ)-space if both (3.44) and (3.47) hold. The first
equation of (3.47) implies that either b = 0 or µ = 1

2α
(d−ac̄). When µ = 1

2α
(d−ac̄),

from (3.47) we also get

k = 1
16α2 [−a2c̄2 + 2(α− b2)c̄ + d(2(a + c) + d)]

and so, (1.2) is satisfied. If b = 0, from (3.44) and (3.47) we find again (1.2),
unless ac̄ − (a + c) = 0, that is, c̄ = a+c

a
. In this last case, k = 1 and µ is

undetermined. In fact, by Theorem 2 of [1], we have that b = 0 and c̄ = a+c
a

if

and only if (T1M, η̃, G̃) is Sasakian. �



M. T. K. Abbassi, G. Calvaruso: Curvature Properties of g-natural . . . 175

In [9], E. Boeckx showed that non-Sasakian (k, µ)-spaces are determined, up to
isometries, by the value of the invariant

I(k,µ) =
1− µ/2√

1− k2
.

Using (1.2), we can determine I(k,µ) for all g-natural contact metric structures
corresponding to non-Sasakian (k, µ)-spaces. Taking into account Theorem 4,
standard calculations lead to the following

Theorem 10. Let (M, g) be a Riemannian manifold of constant sectional curva-
ture c̄, and (k, µ) any real pair with k < 1. There exists a g-natural contact metric
structure (η̃, G̃) such that (T1M, η̃, G̃) is a (k, µ)-space if and only if

(i) either I(k,µ) > −1 and (I2
(k,µ) − 1)c̄ > 0, or

(ii) I(k,µ) = 1 and c̄ = 0.

In particular, all non-Sasakian (k, µ)-spaces such that I(k,µ) > −1, can be real-
ized as g-natural contact metric structures on a Riemannian manifold (M, g) of
(suitable) constant sectional curvature.

3.5. Locally symmetric g-natural contact structures

Locally symmetric spaces are one of the main topics in Riemannian geometry. In
the framework of contact metric geometry, local symmetry has been extensively
investigated, obtaining many rigidity results. As concerns the unit tangent sphere
bundle, Blair proved the following

Theorem 11. [6] (T1M, η, ḡ) is locally symmetric if and only if either (M, g) is
flat or it is a surface of constant sectional curvature 1.

Theorem 11 has been extended by replacing local symmetry by semi-symmetry
([10], [14]). Recently, Boeckx and Cho [11] showed definitively the rigidity of the
hypothesis of local symmetry in contact Riemannian geometry, by proving the
following

Theorem 12. [11] A locally symmetric contact metric space is either Sasakian
and of constant curvature 1, or locally isometric to the unit tangent sphere bundle
of a Euclidean space with its standard contact metric structure.

Proof of Theorem 5. Because of Theorem 12, it is enough to show that (T1M, η̃, G̃)
can not be a Sasakian space of constant curvature 1. As the authors proved in [1],
(T1M, η̃, G̃) is Sasakian if and only if b = 0 and (M, g) has constant sectional cur-
vature c̄ = a+c

a
> 0. Moreover, (T1M, η̃, G̃) has now constant sectional curvature

1 and so,
R̃(V, W )Z = G̃(W, Z)V − G̃(V, Z)W, (3.48)

for all V, W, Z tangent vectors to T1M at the same point of T1M . Consider now a
point (x, u) of T1M and two unit vectors X, Y orthogonal to u and to each other.
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We calculate R̃(X tG , Y tG)Y tG both using (3.48) and formula (iii) of Proposition
1, and we easily obtain

aX tG = R̃(X tG , Y tG)Y tG =
(a + c)(α + φ) + αd

2α(a + c + d)
, (3.49)

where we used the fact that b = 0. Taking into account (3.7), from (3.49) we
obtain a = 1 and so, again by (3.7), d = 3(c + 1).

Next, from (3.48) and (ii) of Proposition 1 we also get

0 = R̃(Xh, X tG)Y h =

{
a2

4α
R(X,R(X, u)Y )u +

a(a + c)

2α
R(X, Y )X

+
(a + c)d

2α
Y − a2d

4α(a + c + d)
g(R(X, u)Y, u)RuX

+
ad(a + c)

4α(a + c + d)
g(R(X, u)Y, u)X

}tG

.

(3.50)

Since (M, g) has constant sectional curvature c̄, (3.50) easily yields

(a + c)(d− a− c)

2α
Y tG = 0, (3.51)

for any Y (orthogonal to u and X). Therefore, since a + c > 0, we necessarily
have d − a − c = 0, that is, d = a + c = 1 + c. On the other hand, we already
found d = 3(c + 1) and so, a + c = 1 + c = 0, which contradicts (1.1). �

D. Perrone [25] proved that a locally symmetric contact metric manifold (M̄, η, g,
ξ, ϕ) satisfies ∇ξh = 0. g-natural contact metric structures satisfying ∇̃ξ̃h̃ = 0
have been classified in [1]. Taking into account the proof of Theorem 8 of [1] and
Theorem 5 above, we prove the following

Corollary 2. A g-natural contact metric structure (η̃, G̃) on T1M satisfies ∇̃ξ̃h̃ =
0 but is not locally symmetric if and only if

• either (M, g) is flat and d = 0 but G̃ 6= ḡ, or

• (M, g) has constant curvature c̄ > 0 and G̃ = a.g̃s+(c̄−1)a.g̃v+c̄a(4a−1).k̃v,
or

• (M, g) is locally isometric to a compact rank-one symmetric space (of non-
constant sectional curvature and Jacobi eigenvalues (p, 4p) with p > 0), and

either G̃ = a.g̃s + (p− 1)a.g̃v4pa.k̃v or G̃ = a.g̃s + (4p− 1)a.g̃v + pa.k̃v.
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