# Preservers of the Rank of Matrices over a Field 

Józef Kalinowski<br>Uniwersytet Ślaski, Instytut Matematyki<br>ul. Bankowa 14, 40-007 Katowice, Poland<br>e-mail: kalinows@ux2.math.us.edu.pl


#### Abstract

In 2001, Li and Pierce characterized the linear operators that preserve the $g$ rank of real matrices. The present paper describes all rank preserving maps $F: M_{m, n}(K) \longrightarrow M_{m, n}(K)$ of the $m \times n$ matrices over an arbitrary field $K$ which are of the form $F\left(a_{i, j}\right)=\left(f_{i, j}\left(a_{i, j}\right)\right)$. The linearity of $F$ is not a priorily assumed, and it turns out that if $\min \{m, n\} \leq 2$, then nonlinear rank preserving maps indeed exist. MSC2000: 15A03 Keywords: preservers, rank of matrices


In [7] Pap introduced the so-called $g$-calculus. Marková [6] observed that functions preserving the rank of matrices play a fundamental role in this calculus. The problem of rank preservation was studied in [3] and [4]. This note generalizes the results of [3] and [4] as well as of [2] and [5] and it may also be viewed as an extension of the results of [1], which concern linear or additive preserver problems.

Let $K$ be a field. Let $M_{m, n}(K)$ denote the set of $m \times n$ matrices over $K$ and put $M_{n}(K)=M_{n, n}(K)$. Throughout what follows we assume that $F: M_{m, n}(K) \longrightarrow$ $M_{m, n}(K)$ is a map of the form

$$
F\left(a_{i, j}\right)_{i=1, j=1}^{m, n}=\left(f_{i, j}\left(a_{i, j}\right)\right)_{i=1, j=1}^{m, n}
$$

with maps $f_{i, j}: K \longrightarrow K$. We say that $F$ is rank preserving if $\operatorname{rank} F(A)=\operatorname{rank} A$ for all $A \in M_{m, n}(K)$. It is easily seen that if $\min \{m, n\}=1$, then $F$ is rank preserving if and only if $f_{i, j}(0)=0, f_{i, j}(x) \neq 0$ for all $i, j$ and all $x \neq 0$. Here is our result.

0138-4821/93 \$ 2.50 © 2009 Heldermann Verlag

## Theorem.

(a) If $\min \{m, n\}=2$, then $F$ is rank preserving on $M_{m, n}(K)$ if and only if there exist nonzero $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n} \in K$ and an injective function $g$ : $K \longrightarrow K$ satisfying $g(0)=0$ and $g(x y)=g(x) g(y)$ for all $x, y \in K$ such that $f_{i, j}(x)=u_{i} v_{j} g(x)$ for all $x \in K$.
(b) If $\min \{m, n\} \geq 3$, then $F$ preserves the rank on $M_{m, n}(K)$ if and only if there are nonzero $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n} \in K$ and an injective function $g: K \longrightarrow K$ satisfying $g(x y)=g(x) g(y)$ and $g(x+y)=g(x)+g(y)$ for all $x, y \in K$ such that $f_{i, j}(x)=u_{i} v_{j} g(x)$ for all $x \in K$.

Thus, for $\min \{m, n\} \geq 3$ the rank preserving maps $F$ on $M_{m, n}(K)$ may be written in the form $F(A)=U\left[g\left(a_{i, j}\right)\right] V$, where $U=\operatorname{diag}\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ and $V=\operatorname{diag}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ are invertible diagonal matrices and $g$ is an injective endomorphism of $K$. For $\min \{m, n\}=2$, the additivity of $g$ may even be relaxed to the sole requirement that $g(0)=0$. Note that the maps of part (a) may be nonlinear: for example, one can take $g(x)=x^{3}$.

Proof. Let $\min \{m, n\} \geq 2$ and suppose $F$ is rank preserving on $M_{m, n}(K)$. We denote by $E_{j, k}$ the matrix whose $j, k$ entry is 1 and the remaining entries of which are 0 . Since rank $F\left(x E_{i, j}\right)=\operatorname{rank} x E_{i, j}$, we see that $f_{i, j}(0)=0$ and $f_{i, j}(x) \neq 0$ for all $i, j$ and all $x \neq 0$. The matrix all entries of which are 1 has rank 1 , and since $F$ preserves the rank of this matrix, it follows that rank $\left(f_{i, j}(1)\right)=1$. This implies that there are $u_{i}, v_{j} \in K$ such that $f_{i, j}(1)=u_{i} v_{j}$ for all $i, j$. Because $f_{i, j}(1) \neq 0$, we obtain that $u_{i} \neq 0$ and $v_{j} \neq 0$ for all $i, j$. Put $g_{i, j}(x)=u_{i}^{-1} v_{j}^{-1} f_{i, j}(x)$. Clearly, $g_{i, j}(0)=0$ and $g_{i, j}(1)=1$ for all $i, j$.

For $1 \leq i \neq r \leq m$ and $1 \leq k \neq l \leq n$, let $A=E_{i, k}+x E_{i, l}+E_{r, k}+x E_{r, l}$. As $\operatorname{rank} F(A)=\operatorname{rank} A=1$, we get

$$
0=f_{i, k}(1) f_{r, l}(x)-f_{r, k}(1) f_{i, l}(x)=u_{i} v_{k} u_{r} v_{l} g_{r, l}(x)-u_{r} v_{k} u_{i} v_{l} g_{i, l}(x)
$$

that is, $g_{r, l}(x)=g_{i, l}(x)$ for all $x \in K$. Consequently, the matrix $G=\left(g_{i, j}\right)$ is constant along its column. Analogously one can show that $G$ is constant along the rows. This implies that all $g_{i, j}$ are one and the same function $g$ and that therefore $f_{i, j}(x)=u_{i} v_{j} g(x)$ for all $i, j$ and all $x$. Note that $g(0)=0$ and $g(1)=1$.

To prove that $g$ is injective, suppose $x \neq y$ and consider $B=E_{1,1}+E_{1,2}+$ $x E_{2,1}+y E_{2,2}$. We have rank $F(B)=\operatorname{rank} B=2$ and hence

$$
0 \neq f_{1,1}(1) f_{2,2}(y)-f_{1,2}(1) f_{2,1}(x)=u_{1} v_{1} u_{2} v_{2} g(y)-u_{1} v_{2} u_{2} v_{1} g(x)
$$

which implies that $g(x) \neq g(y)$, as desired.
To show that $g(x y)=g(x) g(y)$, take $C=E_{1,1}+x E_{1,2}+y E_{2,1}+x y E_{2,1}$. Since rank $F(C)=\operatorname{rank} C=1$, we obtain that

$$
0=f_{1,1}(1) f_{2,2}(x y)-f_{1,2}(x) f_{2,1}(y)=u_{1} v_{1} u_{2} v_{2} g(x y)-u_{1} v_{2} u_{2} v_{1} g(x) g(y)
$$

that is, we arrive at the equality $g(x y)=g(x) g(y)$.

At this point we have proved the "only if" part of (a). To get the "only if" part of (b), assume $\min \{m, n\} \geq 3$ and consider

$$
D=x E_{1,1}+E_{1,2}+y E_{2,1}+E_{2,3}+(x+y) E_{3,1}+E_{3,2}+E_{3,3} .
$$

As rank $D=2$, we conclude that the determinant of the upper-left $3 \times 3$ submatrix of $F(D)$ must be zero, which means that

$$
0=u_{1} u_{2} u_{3} v_{1} v_{2} v_{3}(-g(x)-g(y)+g(x y)) .
$$

Thus, $g(x+y)=g(x)+g(y)$. The proof of the "only if" part of (b) is also complete.
We now prove the "if" part of (a). Clearly, $F$ maps the zero matrix to itself. So assume rank $A \geq 1$. Let

$$
P=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

be any submatrix of order 2 of $A$. The determinant of the corresponding submatrix of $F(A)$ is

$$
\begin{aligned}
f_{i, r}(a) f_{k, l}(d)-f_{i, l}(b) f_{k, r}(c) & =u_{i} v_{r} u_{k} v_{l} g(a) g(d)-u_{i} v_{l} u_{k} v_{r} g(b) g(c) \\
& =u_{i} u_{k} v_{r} v_{l}(g(a d)-g(b c)) .
\end{aligned}
$$

Since $g$ is injective, we deduce that $\operatorname{det} P=a d-b c=0$ if and only if $g(a d)-g(b c)=$ 0 . This proves that $A$ and $F(A)$ have the same rank.
We finally prove the "if" part of (b). Let $A \in M_{m, n}(K)$, let $D=\left(d_{i, j}\right)_{i, j=1}^{k}$ be any submatrix of the order $k$, and put $R=\left(f_{i, j}\left(d_{i, j}\right)\right)_{i, j=1}^{k}$. The assertion will follow as soon as we have shown that $\operatorname{det} Q=0$ if and only if $\operatorname{det} R=0$. We have

$$
\begin{gathered}
\operatorname{det} R=\sum_{\pi \in S_{k}}(-1)^{\operatorname{sgn} \pi} \prod_{i=1}^{k} f_{i, \pi(i)}\left(d_{i, \pi(i)}\right)=\sum_{\pi \in S_{k}}(-1)^{\operatorname{sgn} \pi} \prod_{i=1}^{k} u_{i} v_{\pi(i)} g\left(d_{i, \pi(i)}\right)= \\
=\prod_{i=1}^{k}\left(u_{i} v_{i}\right) \sum_{\pi \in S_{k}}(-1)^{\operatorname{sgn} \pi} \prod_{i=1}^{k} g\left(d_{i, \pi(i)}\right)=\prod_{i=1}^{k}\left(u_{i} v_{i}\right) g\left(\sum_{\pi \in S_{k}}(-1)^{\operatorname{sgn} \pi} \prod_{i=1}^{k} d_{i, \pi(i)}\right)= \\
=c g(\operatorname{det} Q), \text { where } c:=\prod_{i=1}^{k}\left(u_{i} v_{i}\right) .
\end{gathered}
$$

Since $c \neq 0$ and since $g(x)=0$ if and only if $x=0$, we arrive at the desired conclusion that $\operatorname{det} R=0$ if and only if $\operatorname{det} Q=0$.

Acknowledgement. I would like to express my thanks to professor Roman Ger for his valuable suggestions and remarks. I am also grateful to the referee for the proposal of the final version of the paper.

## References

[1] Li, C.-K.; Pierce S.: Linear preserver problems. Am. Math. Mon. 108 (2001), 591-605.
[2] Hao, L. Z.; Zhang, X.: Functions preserving rank-k matrices of order n over fields. Miskolc Math. Notes 6 (2005), 197-200.

Zbl 1094.15001
[3] Kalinowski, J.: On rank equivalence and preserving rank operators. Novi Sad J. Math. 32(1) (2002), 133-139.
[4] Kalinowski, J.: On functions preserving rank of matrices. Miskolc Math. Notes 4 (2003), 35-37.

Zbl 1026.15001
[5] Kalinowski, J.: Rank of matrices and the Pexider equation. Beitr. Algebra Geom. 47(2) (2006), 519-526.

Zbl 1117.15002
[6] Marková, A.: Some remarks on the pseudo-linear algebra. Tatra Mt. Math. Publ. 6 (1995), 123-130.

Zbl 0860.15002
[7] Pap, E.: g-calculus. Zb. Rad., Prir.-Mat. Fak., Univ. Novom Sadu, Ser. Mat. 23 (1993), 145-156.

Zbl 0823.28011

Received December 13, 2007

