The Intersection of Convex Transversals is a Convex Polytope

Jim Lawrence Valeriu Soltan
Department of Mathematical Sciences, George Mason University
4400 University Drive, Fairfax, VA 22030, USA
e-mail: lawrence@gmu.edu e-mail: vsoltan@gmu.edu

Abstract

It is proven that the intersection of convex transversals of finitely many sets in \mathbb{R}^{n} is a convex polytope, possibly empty. Related results on support hyperplanes and complements of finite unions of convex sets are given.

MSC 2000: 52A20
Keywords: convex transversal, polytope, polyhedron, complement

Introduction

Geometric transversal theory mainly studies affine subspaces of some dimension $k, 0 \leq k \leq n-1$, that intersect every member of a given family of convex sets in \mathbb{R}^{n} (see, e.g., the handbook [2] for general references). Significantly less attention in the literature is given to more general, convex transversals, whose study is related to matroids and combinatorial optimization (see, for example, $[3],[5],[6])$. We recall that a set $X \subset \mathbb{R}^{n}$ is a transversal of a given family $\mathcal{F}=\left\{S_{1}, \ldots, S_{k}\right\}$ of nonempty sets provided $X \cap S_{i} \neq \varnothing$ for all $i=1, \ldots, k$. A transversal is called convex if it is a convex set.

Our interest in convex transversals is partly motivated by the paper [6], whose main geometric ingredient is the assertion that the intersection of all convex transversals of a given family of $n+1$ linear segments in \mathbb{R}^{n} is an n-simplex, provided that it has nonempty interior. The following theorem shows that the nature of this assertion is far more general.

Theorem 1. For any family $\mathcal{F}=\left\{S_{1}, \ldots, S_{k}\right\}$ of nonempty sets in \mathbb{R}^{n}, the intersection, $T(\mathcal{F})$, of convex transversals of \mathcal{F} is a convex polytope.

0138-4821/93 \$ 2.50 © 2009 Heldermann Verlag

Equivalently, Theorem 1 states that the intersection of convex polytopes of the form conv $\left\{x_{1}, \ldots, x_{k}\right\}$, where $x_{1} \in S_{1}, \ldots, x_{k} \in S_{k}$, is again a convex polytope. (See [10] for some other classes of convex polytopes whose intersections are again convex polytopes.) It would be interesting to establish an upper bound for the number of vertices (or j-faces) of the polytope $T(\mathcal{F})$ as a function of n and k. We will show that for $k=n+1$, the intersection of the convex transversals is a simplex provided it is n-dimensional. We would certainly like to be able to describe $T(\mathcal{F})$ as an intersection of closed halfspaces that support some subfamilies of \mathcal{F}. The difficulty of this problem, even when $T(\mathcal{F})$ is n-dimensional, is partly caused by lack of results on support hyperplanes of finite families of convex sets in \mathbb{R}^{n}. Using existing results on support properties of small families of convex bodies (see [8]), we are able to characterize the hyperplanes spanned by the facets of the simplex as those hyperplanes which support n of the sets S_{1}, \ldots, S_{n+1} and separate those n sets from the remaining one.

Theorem 2. Let $\mathcal{F}=\left\{S_{1}, \ldots, S_{n+1}\right\}$ be a family of nonempty sets in \mathbb{R}^{n} such that the intersection $T(\mathcal{F})$ of convex transversals of \mathcal{F} has dimension n. Then $T(\mathcal{F})$ is a simplex. If, in addition, the sets S_{i} are bounded, then this simplex is the intersection of $n+1$ closed halfspaces supporting, respectively, the subfamilies $\mathcal{F} \backslash\left\{S_{i}\right\}, i=1, \ldots, n+1$.

The proof of Theorem 1 is based on the following result of proper interest. In what follows, by polyhedron we mean a finite union of intersections of the form $\cap Q_{i}$, where each Q_{i} is either a closed or an open halfspace in \mathbb{R}^{n}. A convex polyhedron is a polyhedron which is a convex set. Finally, a convex polytope is the convex hull of finitely many points.

Theorem 3. If C_{1}, \ldots, C_{k} are any convex sets in \mathbb{R}^{n}, then the set

$$
S=\operatorname{conv}\left(\mathbb{R}^{n} \backslash\left(C_{1} \cup \cdots \cup C_{k}\right)\right)
$$

is a convex polyhedron.
In particular, if the complement of a convex set $C \subset \mathbb{R}^{n}$ is also convex, then both C and $\mathbb{R}^{n} \backslash C$ are convex polyhedra as defined above (see [4]).

We conclude this section with the list of necessary notation. In what follows, the usual abbreviations aff, bd, conv, dim, int, pos, and rint, are used for affine hull, boundary, convex hull, dimension, interior, positive hull, and relative interior (taken in the affine hull), respectively. The notations $[x, y],] x, y[,(x, y),[x, y)$ mean, respectively, closed line interval, open line interval, the line passing through different points x, y, and the closed halfline with apex x passing through the point y. For any vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{R}^{n}, the dot product $x \cdot y$ denotes the sum $x_{1} y_{1}+\cdots+x_{n} y_{n}$ (also called the scalar product of x and y). To distinguish similarly looking elements, we write 0 for number zero, and 0 for zero point (also called the origin) of $\mathbb{R}^{n}: 0=(0, \ldots, 0)$.

Proof of Theorem 1

Clearly,

$$
\begin{equation*}
T(\mathcal{F})=\cap\left\{\operatorname{conv}\left\{x_{1}, \ldots, x_{k}\right\} \mid x_{1} \in S_{1}, \ldots, x_{k} \in S_{k}\right\} \tag{1}
\end{equation*}
$$

Assuming that $T(\mathcal{F}) \neq \varnothing$, let \mathcal{H} be the collection of closed halfspaces of \mathbb{R}^{n} which are transversals of the family \mathcal{F}.

Lemma 1. The following equality holds:

$$
\begin{equation*}
T(\mathcal{F})=\cap\left\{X \subset \mathbb{R}^{n} \mid X \in \mathcal{H}\right\} \tag{2}
\end{equation*}
$$

Proof. Since the inclusion $\cap\left\{X \subset \mathbb{R}^{n} \mid X \in \mathcal{H}\right\} \subset T(\mathcal{F})$ trivially holds, it remains to establish the opposite inclusion. From (1) it follows that $T(\mathcal{F})$ is a compact convex set. If $x \notin T(\mathcal{F})$, then we may choose a closed halfspace $H \subset \mathbb{R}^{n}$ such that $x \notin H$ and $T(\mathcal{F}) \subset H$. Because H is a transversal of \mathcal{F}, we have $x \notin \cap\left\{X \subset \mathbb{R}^{n} \mid X \in \mathcal{H}\right\}$. Thus $T(\mathcal{F}) \subset \cap\left\{X \subset \mathbb{R}^{n} \mid X \in \mathcal{H}\right\}$.

In view of Lemma 1 , we may assume that S_{1}, \ldots, S_{k} are convex sets, because a closed halfspace is a transversal of \mathcal{F} if and only if it is a transversal of the family \{conv S_{1}, \ldots, conv $\left.S_{k}\right\}$. Also, we may assume that the sets S_{1}, \ldots, S_{k} are closed. Indeed, let H be a closed halfspace which is a transversal of $\left\{\operatorname{cl} S_{1}, \ldots, \operatorname{cl} S_{k}\right\}$. Expressing H as the intersection H_{α} of closed halfspaces properly containing H, we observe that each H_{α} is a transversal of \mathcal{F}.

Given a point $x \in \mathbb{R}^{n}$, let

$$
H_{x}=\left\{(u, t) \in \mathbb{R}^{n} \times \mathbb{R} \mid u \cdot x \leq t\right\}
$$

For $(u, t) \in \mathbb{R}^{n+1}$, with $u \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$, put

$$
G(u, t)=\left\{x \in \mathbb{R}^{n} \mid u \cdot x \leq t\right\} .
$$

Clearly,

$$
\begin{equation*}
x \in G(u, t) \text { if and only if }(u, t) \in H_{x} . \tag{3}
\end{equation*}
$$

Also, H_{x} is a closed halfspace of \mathbb{R}^{n+1}, and $G(u, t)$ is a closed halfspace of \mathbb{R}^{n} if $u \neq 0$. For every $i=1, \ldots, k$, let

$$
Y_{i}=\left\{(u, t) \in \mathbb{R}^{n+1} \mid G(u, t) \cap S_{i} \neq \varnothing\right\}
$$

From (3), it is clear that

$$
\begin{equation*}
Y_{i}=\cup\left\{H_{x} \mid x \in S_{i}\right\} . \tag{4}
\end{equation*}
$$

For $\lambda>0$ and $(u, t) \in Y_{i}$, we have $(\lambda u, \lambda t) \in Y_{i}$. Thus the sets Y_{1}, \ldots, Y_{k} are closed cones with common apex 0 .

Lemma 2. The sets

$$
\mathbb{R}^{n+1} \backslash Y_{i}=\cap\left\{\mathbb{R}^{n+1} \backslash H_{x} \mid x \in S_{i}\right\}, i=1, \ldots, k
$$

are convex.

Proof. That the equality holds is clear from (4). The set is convex, being an intersection of open halfspaces.

Put $Y=Y_{1} \cap \cdots \cap Y_{k}$. By the above, Y is a cone with apex 0 , and

$$
Y=\left\{(u, t) \in \mathbb{R}^{n+1} \mid G(u, t) \text { is a transversal of } \mathcal{F}\right\}
$$

which, together with Lemma 1, implies that

$$
\begin{equation*}
T(\mathcal{F})=\cap\{G(u, t) \mid(u, t) \in Y\} \tag{5}
\end{equation*}
$$

Lemma 3. The set $\mathbb{R}^{n+1} \backslash Y$ is the union of k convex sets.
Proof. It is clear that $\mathbb{R}^{n+1} \backslash Y$ coincides with

$$
\left(\mathbb{R}^{n+1} \backslash Y_{1}\right) \cup \cdots \cup\left(\mathbb{R}^{n+1} \backslash Y_{k}\right)
$$

and the convexity of these sets is given by Lemma 2 .
Lemma 3 shows that $\mathbb{R}^{n+1} \backslash Y$ is a union of k convex cones with common apex 0 , and Theorem 3 (see the proof below) implies that the set $Z=\mathrm{cl}$ conv Y is a closed convex polyhedral cone with apex 0 .

Lemma 4. We have

$$
T(\mathcal{F})=\cap\{G(u, t) \mid(u, t) \in Z\}
$$

Proof. By (5), since $Y \subset Z$, we obtain

$$
\cap\{G(u, t) \mid(u, t) \in Z\} \subset T(\mathcal{F})
$$

Assume for a moment the existence of a point

$$
x_{0} \in T(\mathcal{F}) \backslash \cap\{G(u, t) \mid(u, t) \in Z\} .
$$

Then there is a point $\left(u_{0}, t_{0}\right) \in Z$ such that $x_{0} \in T(\mathcal{F}) \backslash G\left(u_{0}, t_{0}\right)$, which implies the inequality $u_{0} \cdot x_{0}>t_{0}$. Since $\mathbb{R}^{n} \backslash G\left(u_{0}, t_{0}\right)$ is an open halfspace, there is a point $\left(u_{0}^{\prime}, t_{0}^{\prime}\right) \in \operatorname{conv} Y$ such that $x_{0} \in \mathbb{R}^{n} \backslash G\left(u_{0}^{\prime}, t_{0}^{\prime}\right)$; that is, $u_{0}^{\prime} \cdot x_{0}>t_{0}^{\prime}$. Write

$$
\left(u_{0}^{\prime}, t_{0}^{\prime}\right)=\lambda_{1}\left(u_{1}, t_{1}\right)+\cdots+\lambda_{k}\left(u_{k}, t_{k}\right)
$$

as a convex combination of some points $\left(u_{i}, t_{i}\right) \in Y_{i}, i=1, \ldots, k$. Then there is an index $j \in\{1, \ldots, k\}$ such that $u_{j} \cdot x_{0}>t_{j}$. Indeed, otherwise we would have

$$
u_{0}^{\prime} \cdot x_{0}=\left(\lambda_{1} u_{1}+\cdots+\lambda_{k} u_{k}\right) \cdot x_{0} \leq \lambda_{1} t_{1}+\cdots+\lambda_{k} t_{k}=t_{0}^{\prime},
$$

a contradiction. Thus $x_{0} \in T(\mathcal{F}) \backslash G\left(u_{j}, t_{j}\right)$, which is impossible by the definition of Y_{j}. Hence the statement holds.

Since Z is a closed convex polyhedral cone, there is a finite set $W \subset Z$ such that $Z=\operatorname{pos} W$.

Lemma 5. We have

$$
T(\mathcal{F})=\cap\{G(u, t) \mid(u, t) \in W\}
$$

Proof. Indeed, $T(\mathcal{F}) \subset \cap\{G(u, t) \mid(u, t) \in W\}$ because of $W \subset Z$. Assume for a moment the existence of a point

$$
x_{0} \in \cap\{G(u, t) \mid(u, t) \in W\} \backslash T(\mathcal{F}) .
$$

By Lemma 4 , there is a point $\left(u_{0}, t_{0}\right) \in Z$ such that $x_{0} \notin G\left(u_{0}, t_{0}\right)$, which implies the inequality $u_{0} \cdot x_{0}>t_{0}$. Write

$$
\left(u_{0}^{\prime}, t_{0}^{\prime}\right)=\mu_{1}\left(u_{1}, t_{1}\right)+\cdots+\mu_{m}\left(u_{m}, t_{m}\right)
$$

as a positive combination of points $\left(u_{i}, t_{i}\right) \in W, i=1, \ldots, m$. Put

$$
\mu=\mu_{1}+\cdots+\mu_{m}, \quad\left(u_{i}^{\prime}, t_{i}^{\prime}\right)=\mu_{i}\left(u_{i}, t_{i}\right), \quad \lambda_{i}=\mu_{i} / \mu, \quad i=1, \ldots, m .
$$

Then $\left(u_{0}^{\prime}, t_{0}^{\prime}\right)$ is a convex combination of the points $\left(u_{i}^{\prime}, t_{i}^{\prime}\right), i=1, \ldots, m$:

$$
\left(u_{0}^{\prime}, t_{0}^{\prime}\right)=\lambda_{1}\left(u_{1}^{\prime}, t_{1}^{\prime}\right)+\cdots+\lambda_{m}\left(u_{m}^{\prime}, t_{m}^{\prime}\right) .
$$

Since

$$
x_{0} \in G\left(u_{i}, t_{i}\right)=G\left(\mu_{i} u_{i}, \mu_{i} t_{i}\right)=G\left(u_{i}^{\prime}, t_{i}^{\prime}\right),
$$

we have $u_{i}^{\prime} \cdot x_{0} \leq t_{0}^{\prime}$ for all $i=1, \ldots, m$. Hence

$$
x_{0} \cdot u_{0}=\left(\lambda_{1} u_{1}^{\prime}+\cdots+\lambda_{k} u_{k}^{\prime}\right) \cdot x_{0} \leq \lambda_{1} t_{1}^{\prime}+\cdots+\lambda_{k} t_{k}^{\prime}=t_{0}
$$

a contradiction. Thus the equality holds.
To finalize the proof of Theorem 1, we observe that $T(\mathcal{F})$ is a convex polytope as a compact convex set which is an intersection of finitely many closed halfspaces (see Lemma 5).

Proof of Theorem 2

Suppose now that $k=n+1$, so that $\mathcal{F}=\left\{S_{1}, \ldots, S_{n+1}\right\}$. By the remarks that follow Lemma 1, the sets S_{1}, \ldots, S_{k+1} are assumed to be closed and convex. Since $\operatorname{dim} T(\mathcal{F})=n$, any transversal of \mathcal{F} is n-dimensional. Put

$$
\widetilde{T}=\cap\{\operatorname{int} C \mid C \text { is a convex transversal of } \mathcal{F}\} .
$$

Clearly $\widetilde{T} \subset T(\mathcal{F})$. Since each convex transversal C of \mathcal{F} satisfies the inclusion $\operatorname{int} T(\mathcal{F}) \subset \operatorname{int} C$, we have $\operatorname{int} T(\mathcal{F}) \subset \widetilde{T}$ and $T(\mathcal{F})=\operatorname{cl} \widetilde{T}$. Let

$$
Z=\operatorname{conv}\left(S_{1} \cup \cdots \cup S_{n+1}\right)
$$

and

$$
Z_{j}=\operatorname{conv}\left(S_{1} \cup \cdots S_{j-1} \cup S_{j+1} \cdots \cup S_{n+1}\right), \quad j=1, \ldots, n+1
$$

Lemma 6. We have

$$
\widetilde{T}=Z \backslash\left(Z_{1} \cup \cdots \cup Z_{n+1}\right)
$$

Proof. Let $x \in \widetilde{T}$. Choosing any points $p_{1} \in S_{1}, \ldots, p_{n+1} \in S_{m+1}$, we have $x \in \operatorname{int} \operatorname{conv}\left\{p_{1}, \ldots, p_{n+1}\right\} \subset Z$. Hence $\widetilde{T} \subset Z$. Suppose, for contradiction, that $x \in Z_{j}$ for some index $j \in\{1, \ldots, n+1\}$. Then there are some points

$$
u_{i} \in S_{i}, i=1, \ldots, n+1, \quad i \neq j
$$

such that $x \in \operatorname{conv} U$, where

$$
U=\left\{u_{1}, \ldots, u_{j-1}, u_{j+1}, \ldots, u_{n+1}\right\} .
$$

Since $|U| \leq n$, there is a hyperplane H containing U. Then one of the two closed halfspaces bounded by H, say P, is a transversal of \mathcal{F}. Then $x \in H=\operatorname{bd} P$ in contradiction with the assumption $x \in \widetilde{T}$. It follows that

$$
\widetilde{T} \subset Z \backslash\left(Z_{1} \cup \cdots \cup Z_{n+1}\right)
$$

To prove the opposite inclusion, choose any point $x \notin \widetilde{T}$. We are going to show that $x \notin Z \backslash\left(Z_{1} \cup \cdots \cup Z_{n+1}\right)$. Assume that this is not the case, so that $x \in Z \backslash\left(Z_{1} \cup\right.$ $\left.\cdots \cup Z_{n+1}\right)$. The inclusion $x \in Z=\operatorname{conv}\left(S_{1} \cup \cdots \cup S_{n+1}\right)$ and Carathéodory's theorem (see [1]) imply the existence of a set $Q \subset S_{1} \cup \cdots \cup S_{n+1}$ such that $|Q| \leq n+1$ and $x \in \operatorname{conv} Q$. Since $x \notin Z_{1} \cup \cdots \cup Z_{n+1}$, it follows that $|Q|=n+1$ and x lies in the convex hull of no proper subset of Q. Thus Q is contained in no hyperplane. Furthermore, $\left|Q \cap S_{i}\right|=1$ for all $i=1, \ldots, n+1$. Hence conv Q, being of dimension n, is an n-simplex.

Since $x \notin \widetilde{T}$, there exists a convex polytope

$$
P=\operatorname{conv}\left\{p_{1}, \ldots, p_{n+1}\right\}, \quad p_{1} \in S_{1}, \ldots, p_{n+1} \in S_{n+1},
$$

such that $x \notin \operatorname{int} P$. Then $x \notin P$ because of $P \subset \operatorname{int} P \cup Z_{1} \cup \cdots \cup Z_{n+1}$. By Radon's theorem (see [9]), there is a partition of $\left\{p_{1}, \ldots, p_{n+1}\right\}$ into disjoint subsets, say $\{A, B\}$, such that conv $(x \cup A) \cap \operatorname{conv} B \neq \varnothing$. Choose a point

$$
y \in \operatorname{conv}(x \cup A) \cap \operatorname{conv} B .
$$

We observe that $x \neq y$ because of $y \in \operatorname{conv} B \subset P$. Since $x \in \operatorname{conv} Q$ and $x \neq y$, there is a point $z \in \operatorname{bd} \operatorname{conv} Q$ such that $x \in[y, z]$. Let $w \in \operatorname{conv} A$ be such that $y \in[x, w]$. Let $k \in\{1, \ldots, n+1\}$ be an index such that $z \in Z_{k}$. If $p_{k} \in A$, then $y \in Z_{k}$ because of $y \in \operatorname{conv} B$, and if $p_{k} \in B$, then $w \in Z_{k}$ because of $w \in \operatorname{conv} A$. It follows that $x \in[y, z] \cap[w, z] \subset Z_{k}$, contradicting the assumption $x \in Z \backslash\left(Z_{1} \cup \cdots \cup Z_{n+1}\right)$.

Lemma 7. If $T(\mathcal{F})$ has nonempty interior, then $T(\mathcal{F})$ is an n-simplex. Furthermore, $T(\mathcal{F})$ can be expressed as the intersection of $n+1$ closed halfspaces H_{1}, \ldots, H_{n+1} such that each H_{i} is the (unique) closed halfspace whose boundary hyperplane supports Z_{i} and separates Z_{i} from T. Finally,

$$
S_{i} \subset \mathbb{R}^{n} \backslash\left(\cup\left\{\operatorname{int} H_{j} \mid i=1, \ldots, n+1, j \neq i\right\}\right), \quad i=1, \ldots, n+1
$$

Proof. As it is shown in the proof of Lemma 6, \widetilde{T} and Z_{j} are disjoint convex sets. Choose a closed halfspace H_{j} that contains \widetilde{T} such that $Z_{j} \subset \mathbb{R}^{n} \backslash \operatorname{int} H_{i}$, $j=1, \ldots, n+1$. Hence

$$
\begin{aligned}
& S_{i} \subset \cap\left\{Z_{j} \mid i=1, \ldots, n+1, j \neq i\right\} \\
& \quad \subset \mathbb{R}^{n} \backslash\left(\cup\left\{\operatorname{int} H_{j} \mid i=1, \ldots, n+1, j \neq i\right\}\right), i=1, \ldots, n+1 .
\end{aligned}
$$

Since every halfspace $H_{i}, i=1, \ldots, n+1$, contains \widetilde{T}, we have

$$
T(\mathcal{F})=\operatorname{cl} \widetilde{T} \subset H_{1} \cap \cdots \cap H_{n+1} .
$$

To prove the opposite inclusion, choose any points $x \notin T(\mathcal{F})$ and $u \in \operatorname{int} T \subset \widetilde{T}$. Then the halfline $[u, x)$ intersects the boundary of $T(\mathcal{F})$, which lies in $\mathrm{cl}\left(Z_{1} \cup\right.$ $\left.\cdots \cup Z_{n+1}\right)$. Then there is an index $k \in\{1, \ldots, n+1\}$ such that $[u, x)$ intersects cl Z_{k} at some point w. In this case, $u \in \operatorname{int} T \subset \operatorname{int} H_{k}$ and $w \in \mathbb{R}^{n} \backslash \operatorname{int} H_{k}$, which implies that $x \notin H_{k}$. Hence

$$
T(\mathcal{F})=H_{1} \cap \cdots \cap H_{n+1} .
$$

Since $\operatorname{int} T(\mathcal{F}) \neq \varnothing$, we conclude that $T(\mathcal{F})$ is an n-simplex and the halfspaces H_{1}, \ldots, H_{n+1} are uniquely determined.

To complete the proof of Theorem 2, it remains to consider the case when the sets S_{1}, \ldots, S_{n+1} are compact. We will say that a closed halfspace $Q \subset \mathbb{R}^{n}$ supports a set C provided cl C has nonempty intersection with Q but not with the interior of Q. Furthermore, a closed halfspace Q supports a family of sets provided each of the sets is supported by Q. The next lemma is a particular case of a result on supporting hyperplanes of a family of n convex bodies in \mathbb{R}^{n} proved in [8].

Lemma 8. Let $\mathcal{K}=\left\{K_{1}, \ldots, K_{n}\right\}$ be a family of n compact convex sets in \mathbb{R}^{n} having no convex transversal of dimension less than $n-1$. Then there are exactly two closed halfspaces each supporting \mathcal{K}.

Lemma 9. For every $i=1, \ldots, n+1$ there is a unique closed halfspace P_{i} containing S_{i} and supporting the family $\mathcal{F} \backslash\left\{S_{i}\right\}$.

Proof. Let, for example, $i=n+1$. If $S_{1} \cup \cdots \cup S_{n}$ lies in a hyperplane H, then the closed halfspace P_{n+1} bounded by H and containing S_{n+1} satisfies the conclusion. Hence we may assume, in what follows, that $S_{1} \cup \cdots \cup S_{n}$ does not lie in a hyperplane.

By Lemma 8, there are two closed halfspaces, P^{\prime} and $P^{\prime \prime}$, both supporting the family $\mathcal{F} \backslash\left\{S_{n+1}\right\}$. Since int $T(\mathcal{F}) \neq \varnothing$, the set S_{n+1} is disjoint from bd $P^{\prime} \cup b d P^{\prime \prime}$. We claim that S_{n+1} lies in the interior of one of the halfspaces $P^{\prime}, P^{\prime \prime}$. Indeed, assume for a moment that $S_{n+1} \subset \mathbb{R}^{n} \backslash\left(\right.$ int $P^{\prime} \cup$ int $\left.P^{\prime \prime}\right)$. Since $S_{n+1} \cap\left(\mathrm{bd} P^{\prime} \cup\right.$ bd $\left.P^{\prime \prime}\right)=\varnothing$, we have $S_{n+1} \subset \mathbb{R}^{n} \backslash\left(P^{\prime} \cup P^{\prime \prime}\right)$. Choose a point $x_{n+1} \in S_{n+1}$ and denote by H the hyperplane through x_{n+1} such that:
(a) H is parallel to $\mathrm{bd} P^{\prime}$ if $\operatorname{bd} P^{\prime}$ and bd $P^{\prime \prime}$ are parallel,
(b) H contains bd $P^{\prime} \cap \mathrm{bd} P^{\prime \prime}$ if bd P^{\prime} and bd $P^{\prime \prime}$ are not parallel.

Because the family $\mathcal{F} \backslash\left\{S_{n+1}\right\}$ is supported by both bd P^{\prime} and $\operatorname{bd} P^{\prime \prime}$, the hyperplane H intersects every set of this family. Hence H is a transversal of \mathcal{F}, contradicting $\operatorname{int} T(\mathcal{F}) \neq \varnothing$. The obtained contradiction shows that S_{n+1} lies in the interior of (exactly) one of the halfspaces $P^{\prime}, P^{\prime \prime}$.

Lemma 10. If P_{1}, \ldots, P_{n+1} are the halfspaces determined by Lemma 9, then $T(\mathcal{F})=P_{1} \cap \cdots \cap P_{n+1}$.

Proof. Let $Q=P_{1} \cap \cdots \cap P_{n+1}$. Since each of P_{1}, \ldots, P_{n+1} is a transversal of \mathcal{F}, we have $T(\mathcal{F}) \subset Q$. Therefore Q is a closed convex polyhedron with nonempty interior.

To prove the opposite inclusion $Q \subset T(\mathcal{F})$, choose any points $z_{1} \in S_{1}, \ldots$, $z_{n+1} \in S_{n+1}$. Clearly, z_{1}, \ldots, z_{n+1} are affinely independent and their convex hull $C=\operatorname{conv}\left\{z_{1}, \ldots, z_{n+1}\right\}$ is an n-simplex. As it is shown in the proof of Lemma 9, the halfspace P_{i} contains z_{i} in its interior, and the ($n-1$)-face

$$
F_{i}=\operatorname{conv}\left\{z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{n+1}\right\}
$$

of C has empty intersection with int $P_{i}, i=1, \ldots, n+1$. This implies the inclusion, $Q \subset C$. Since $T(\mathcal{F})$ is the intersection of the simplices conv $\left\{x_{1}, \ldots, x_{n+1}\right\}$ with an arbitrary choice of points $x_{1} \in S_{1}, \ldots, x_{n+1} \in S_{n+1}$, we have $Q \subset T(\mathcal{F})$.

Proof of Theorem 3

We study the convex hull of the complement of the convex sets C_{1}, \ldots, C_{k}. Given a point $x \in \mathbb{R}^{n}$, put

$$
\lambda(x)=\left\{i \in\{1, \ldots, k\} \mid x \in C_{i}\right\} .
$$

We begin with the special case in which the sets C_{i} are assumed to be closed.
Lemma 11. Let $C_{1}, \ldots, C_{k} \subset \mathbb{R}^{n}$ be closed convex sets such that the set

$$
S=\operatorname{conv}\left(\mathbb{R}^{n} \backslash\left(C_{1} \cup \cdots \cup C_{k}\right)\right)
$$

is nonempty and bounded. If y and z are distinct exposed point of the set $P=\operatorname{cl} S$, then $\lambda(y) \not \subset \lambda(z)$.

Proof. The statement is trivial for $n=1$, so we may put $n \geq 2$. Assume, for contradiction, that $\lambda(y) \subset \lambda(z)$ for a pair of distinct exposed points y and z of P. Let $H \subset \mathbb{R}^{n}$ be a closed halfspace with the properties $P \subset H$ and $P \cap$ bd $H=\{y\}$. Choose an open ball U centered at y such that $U \cap C_{i}=\varnothing$ for all $i \notin \lambda(z)$.

Put $T=\operatorname{conv}(\{z\} \cup(U \backslash H))$. We claim that $T \backslash\{z\} \subset C_{1} \cup \cdots \cup C_{k}$. Indeed, let $w \in T \backslash\{z\}$. Then there is a point $u \in U \backslash H$ such that $w \in[u, z]$, and we may assume (since $U \backslash H$ is open) that $u \neq w$. Because $u \notin P$, there is an index $j \in\{1, \ldots, k\}$ such that $u \in C_{j}$. Thus $j \in \lambda(y)$ by the choice of U. From $\lambda(y) \subset \lambda(z)$ we conclude that $z \in C_{j}$. Hence $w \in[u, z] \subset C_{j} \subset C_{1} \cup \cdots \cup C_{k}$.

Since $T \backslash\{z\} \subset C_{1} \cup \cdots \cup C_{k}$ and the union $C_{1} \cup \cdots \cup C_{k}$ is a closed set, we have $T \subset \operatorname{cl}(T \backslash\{z\}) \subset C_{1} \cup \cdots \cup C_{k}$. Furthermore, $z \in \operatorname{int} H$ because $z \in P \backslash\{y\}$. Then $y \in \operatorname{int} T \subset \operatorname{int}\left(C_{1} \cup \cdots \cup C_{k}\right)$. In this case, y cannot be an exposed point of P, a contradiction.

Lemma 12. There exists a function $\alpha(k)$ such that, whenever $C_{1}, \ldots, C_{k} \subset \mathbb{R}^{n}$ are closed convex sets for which the set

$$
S=\operatorname{conv}\left(\mathbb{R}^{n} \backslash\left(C_{1} \cup \cdots \cup C_{k}\right)\right)
$$

is bounded, the set $P=\operatorname{cl} S$ is a convex polytope with $\alpha(k)$ or fewer vertices.
Proof. This is an immediate corollary of the preceding lemma. Using Sperner's Lemma, we may put $\alpha(k)=\binom{k}{\left\lfloor\frac{k}{2}\right\rfloor}$.

Lemma 13. There exists a function $\beta(m)$ for which the following holds. Let X_{1}, \ldots, X_{m} be convex sets such that $\mathrm{cl} X_{1} \cup \cdots \cup \mathrm{cl} X_{m}=\mathbb{R}^{n}$. Then there exists a family of $\beta(m)$ or fewer proper affine subspaces of \mathbb{R}^{n} whose union covers $\mathbb{R}^{n} \backslash$ $\left(X_{1} \cup \cdots \cup X_{m}\right)$.

Proof. We show that $\beta(m)=2^{m}-1$ is such a function. For each nonempty set $\Omega \subset\{1, \ldots, m\}$, denote by A_{Ω} the affine hull of the convex set $Y_{\Omega}=\cap\left\{\operatorname{cl} X_{i} \mid i \in\right.$ $\Omega\}$ (so that $A_{\Omega}=\varnothing$ if $Y_{\Omega}=\varnothing$). Let

$$
\mathcal{H}=\left\{\Omega \subset\{1, \ldots, m\} \mid \varnothing \neq A_{\Omega} \neq \mathbb{R}^{n}\right\}
$$

We claim that

$$
\begin{equation*}
\mathbb{R}^{n} \backslash\left(X_{1} \cup \cdots \cup X_{m}\right) \subset \cup\left\{A_{\Omega} \mid \Omega \in \mathcal{H}\right\} \tag{6}
\end{equation*}
$$

Indeed, choose a point $x \in \mathbb{R}^{n} \backslash\left(X_{1} \cup \cdots \cup X_{m}\right)$ and put

$$
\Omega^{\prime}=\left\{i \in\{1, \ldots, m\} \mid x \in \operatorname{cl} X_{i}\right\}
$$

Clearly, $\Omega^{\prime} \neq \varnothing$ and $x \in Y_{\Omega^{\prime}} \subset A_{\Omega^{\prime}}$. We are going to show that $A_{\Omega^{\prime}} \neq \mathbb{R}^{n}$. For this, it is sufficient to verify that int $Y_{\Omega^{\prime}}=\varnothing$. Suppose this is not the case and choose a point $y \in \operatorname{int} Y_{\Omega^{\prime}}$. Let U be an open ball centered at x and disjoint from $\cup\left\{\operatorname{cl} X_{i} \mid i \notin \Omega^{\prime}\right\}$.

Choose a point $z \in U$ such that $x \in\left[y, z\left[\right.\right.$. Clearly, $z \notin \cup\left\{\operatorname{cl} X_{i} \mid i \notin \Omega^{\prime}\right\}$ by the choice of U. If there existed an index $i \in \Omega^{\prime}$ with $z \in \operatorname{cl} X_{i}$, then $x \in\left[y, z\left[\subset \operatorname{int} X_{i}\right.\right.$ due to $y \in \operatorname{int} Y_{\Omega^{\prime}} \subset \operatorname{int} X_{i}$. But the inclusion $x \in \operatorname{int} X_{i}$ is impossible due to the assumption $x \in \mathbb{R}^{n} \backslash\left(X_{1} \cup \cdots \cup X_{m}\right)$. Hence $z \notin \cup\left\{\operatorname{cl} X_{i} \mid i \in \Omega^{\prime}\right\}$. Summing up, $z \in \mathbb{R}^{n} \backslash\left(\operatorname{cl} X_{1} \cup \cdots \cup \operatorname{cl} X_{m}\right)$, which contradicts the hypothesis $\operatorname{cl} X_{1} \cup \cdots \cup \operatorname{cl} X_{m}=\mathbb{R}^{n}$. Thus $A_{\Omega^{\prime}} \neq \mathbb{R}^{n}$ and (6) holds.

Since there are fewer than 2^{m} nonempty subsets of $\{1, \ldots, m\}$, the family \mathcal{H} has fewer than 2^{m} elements.

Using Sperner's Lemma, it is easy to show that the function $\beta(m)$ above may be taken to be $\binom{k}{\left\lfloor\frac{k}{2}\right\rfloor}$.

Lemma 14. Let $C_{1}, \ldots, C_{k} \subset \mathbb{R}^{n}$ be convex sets such that the set

$$
S=\operatorname{conv}\left(\mathbb{R}^{n} \backslash\left(C_{1} \cup \cdots \cup C_{k}\right)\right)
$$

is bounded. Then the set $P=\mathrm{cl} S$ is a convex polytope. Furthermore, there exists a function $\eta(n, k)$ such that the number of vertices of P is bounded by $\eta(n, k)$.

Proof. We proceed by induction on n. The statement is clearly true for $n=1$. Suppose that $n>1$ and that the result holds for $n-1$. Let $\eta=\eta(n-1, k)$ be a bound on the number of vertices of P in the lower-dimensional case. Put

$$
Y_{0}=\operatorname{conv}\left(\mathbb{R}^{n} \backslash\left(\operatorname{cl} C_{1} \cup \cdots \cup \operatorname{cl} C_{k}\right)\right)
$$

Lemma 12 implies that $\mathrm{cl} Y_{0}$ is a convex polytope with $\alpha(k)$ or fewer vertices. Obviously, $Y_{0} \subset P$ and $\mathrm{cl} Y_{0} \cup \mathrm{cl} C_{1} \cup \cdots \cup \mathrm{cl} C_{k}=\mathbb{R}^{n}$. By Lemma 13, there are proper affine subspaces $A_{1}, \ldots, A_{m} \subset \mathbb{R}^{n}, m \leq \beta(k)$, such that

$$
\mathbb{R}^{n} \backslash\left(Y_{0} \cup C_{1} \cup \cdots \cup C_{k}\right) \subset A_{1} \cup \cdots \cup A_{m}
$$

Without loss of generality, we may assume that all A_{1}, \ldots, A_{m} are hyperplanes. Put

$$
Y_{i}=\operatorname{conv}\left(A_{i} \backslash\left(C_{1} \cup \cdots \cup C_{k}\right)\right), i=1, \ldots, m
$$

By the inductive assumption, each set $\mathrm{cl} Y_{i}, i=1, \ldots, m$, is a convex polytope with $\eta(n-1, k)$ or fewer vertices. Hence the set

$$
Q=\operatorname{cl} \operatorname{conv}\left(Y_{0} \cup Y_{1} \cup \cdots \cup Y_{m}\right)=\operatorname{conv}\left(\operatorname{cl} Y_{0} \cup \operatorname{cl} Y_{1} \cup \cdots \cup \operatorname{cl} Y_{m}\right)
$$

is a convex polytope with at most $\alpha(k)+\beta(k) \eta(n-1, k)$ vertices.
Put $\eta(n, k)=\alpha(k)+\beta(k) \eta(n-1, k)$. To complete the proof, we show that $P=Q$. Indeed, since $Y_{i} \subset P$ for all $i=0,1, \ldots, m$, we have $Q \subset P$. Conversely, let $x \in \mathbb{R}^{n} \backslash\left(C_{1} \cup \cdots \cup C_{k}\right)$. Then either $x \in Y_{0}$, or there is an index $i \in\{1, \ldots, m\}$ such that $x \in Y_{i}$. Hence

$$
\mathbb{R}^{n} \backslash\left(C_{1} \cup \cdots \cup C_{k}\right) \subset Y_{0} \cup Y_{1} \cup \cdots \cup Y_{m}
$$

and $P=\mathrm{cl} \operatorname{conv}\left(\mathbb{R}^{n} \backslash\left(C_{1} \cup \cdots \cup C_{k}\right)\right) \subset \operatorname{cl} \operatorname{conv}\left(Y_{0} \cup Y_{1} \cup \cdots \cup Y_{m}\right)=Q$.

Lemma 15. Let $Q_{1} \subset Q_{2} \subset \cdots$ be an ascending sequence of convex polytopes in \mathbb{R}^{n}, each with m or fewer facets. Then $Q=\operatorname{cl}\left(Q_{1} \cup Q_{2} \cup \cdots\right)$ is a closed convex polyhedron with m or fewer facets.

Proof. \quad Since $\operatorname{dim} Q_{1} \leq \operatorname{dim} Q_{2} \leq \cdots \leq n$, we may assume, without loss of generality, that all polytopes Q_{1}, Q_{2}, \ldots have dimension n. Assume also that the origin 0 of \mathbb{R}^{n} lies in int Q_{1}. Then the polar polytopes form a descending sequence, $Q_{1}^{\circ} \supset Q_{2}^{\circ} \supset \cdots$, each of them having m or fewer vertices. Clearly, $Q^{\circ}=Q_{1}^{\circ} \cap Q_{2}^{\circ} \cap \cdots$. Hence Q° is compact.

Assuming, for contradiction, the existence of $m+1$ distinct exposed points of Q°, we can choose $m+1$ pairwise disjoint neighborhoods U_{1}, \ldots, U_{m+1} of these
points. Then there should be an index i_{0} such that any polytope $Q_{i}^{\circ}, i \geq i_{0}$, has an exposed point in each of the sets U_{1}, \ldots, U_{m+1}, which is impossible by the above. Hence Q° is a convex polytope with m or fewer exposed points. So Q° is a convex polytope with m or fewer vertices, and Q is a convex polyhedron with m or fewer facets.

Lemma 16. For any convex sets $C_{1}, \ldots, C_{k} \subset \mathbb{R}^{n}$ the set

$$
P=\mathrm{cl} \operatorname{conv}\left(\mathbb{R}^{n} \backslash\left(C_{1} \cup \cdots \cup C_{k}\right)\right)
$$

is a convex polyhedron.
Proof. Choose an ascending sequence of simplices $T_{1} \subset T_{2} \subset \cdots$ whose union is \mathbb{R}^{n}. Express every simplex $T_{i}, i=1,2, \ldots$, as the intersection of $n+1$ closed halfspaces $H_{i, 1}, \ldots, H_{i, n+1}$. By Lemma 14, the sets

$$
P_{i}=\mathrm{cl} \text { conv }\left(\mathbb{R}^{n} \backslash\left(C_{1} \cup \cdots \cup C_{k} \cup H_{i, 1} \cup \cdots \cup H_{i, n+1}\right)\right), i=1,2, \ldots,
$$

are convex polytopes, and there is a common bound $\eta(n, k)$ on the number of vertices of every P_{i}. The same is true for the numbers of facets of the P_{i} 's, albeit with a different upper bound. Since $P_{1} \subset P_{2} \subset \cdots$ and $P=\operatorname{cl}\left(P_{1} \cup P_{2} \cup \cdots\right)$, Lemma 15 implies that P is a convex polyhedron.

Lemma 17. For any convex sets $C_{1}, \ldots, C_{k} \subset \mathbb{R}^{n}$ the set

$$
S=\operatorname{conv}\left(\mathbb{R}^{n} \backslash\left(C_{1} \cup \cdots \cup C_{k}\right)\right)
$$

is a convex polyhedron.
Proof. We proceed by induction on the dimension of S. The statement is trivial when $\operatorname{dim} S=0$. Suppose that $\operatorname{dim} S>0$ and that the result holds in all smallerdimensional cases. By Lemma 16, $\operatorname{cl} S$ is a convex polyhedron. Since S is convex, its relative interior coincides with that of $\mathrm{cl} S$. Clearly, S is the union of its relative interior and the sets $A \cap S$, where A is an affine subspace spanned by one of the finitely-many facets of $\mathrm{cl} S$. For any such affine subspace A, we have

$$
A \cap S=\operatorname{conv}\left(A \backslash\left(A \cap C_{1}\right) \cup \cdots \cup\left(A \cap C_{k}\right)\right)
$$

so, by the inductive assumption, $A \cap S$ is a finite union of relatively open convex polyhedra. Thus S is a convex polyhedron.

Notes

Several combinatorial questions are raised but not treated in the foregoing. In particular, we note the problems of finding the best (smallest) functions α, β, and η from Lemmas 12-14. The paper [7] contains some material related to this. In particular, it can be seen that, unlike the situation for α and β, the dependence of η upon the dimension is necessary, for, in each dimension $n \geq 1$, it is possible to find three convex sets in \mathbb{R}^{n} such that the complement of their union is the set of vertices of an n-simplex.

Acknowledgment. The authors would like to thank the referee for many helpful comments on an earlier draft of this paper.

References

[1] Carathéodory, C.: Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo 32 (1911), 193-217.
[2] Goodman, J. E., O'Rourke, J. (eds.): Handbook of discrete and computational geometry. Second edition, Discrete Mathematics and its Applications, Chapman \& Hall, Boca Raton, FL, $2004 . \quad$ Zbl 1056.52001
[3] Khachiyan, L.: Transversal hypergraphs and families of polyhedral cones. In: Hadjisavvas, N. (ed.) et al.: Advances in convex analysis and global optimization, Nonconvex Optim. Appl. 54, 105-118, Kluwer Academic Publishers, Dordrecht 2001.

Zbl 0989.68059
[4] Lassak, M.: Convex half-spaces. Fundam. Math. 120 (1984), 7-13.
Zbl 0517.52004
[5] Lawrence, J.: Valuations and polarity. Discrete Comput. Geom. 3 (1988), 307-324.

Zbl 0646.52003
[6] Morris, W.; Lawrence, J.: Geometric properties of hidden Minkowski matrices. SIAM J. Matrix Anal. Appl. 10 (1989), 229-232. Zbl 0677.15008
[7] Lawrence, J.; Morris, W.: Finite sets as complements of unions of convex sets. (in preparation).
[8] Lewis, T.; von Hohenbalken, B.; Klee, V.: Common supports as fixed points. Geom. Dedicata 60 (1996), 277-281.

Zbl 0849.52006
[9] Radon, J.: Mengen konvexer Körper, die einen gemeinsamen Punkt enhalten. Math. Ann. 83 (1921), 113-115.

JFM 48.0834.04
[10] Soltan, V.: Choquet simplexes in finite dimension - a survey. Expo. Math. 22(4) (2004), 301-315.

Zbl 1080.52004

Received January 16, 2008

