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1. Introduction

For an irreducible character χ of a finite group G, we know that v(χ) := {g ∈
G | χ(g) = 0} is a union of some conjugacy classes of G. An old theorem of
Burnside asserts that v(χ) is not empty for any nonlinear χ ∈ Irr(G). It is natural
to consider the structure of a finite group provided that the number of character
zeros in its character table is very small (see [1], [11], [12] for a few examples). In
Berkovich and Kazarin’s paper [1], they posed the following question.

Question. Is it true that L2(2
f ), f ≥ 2 are the only nonabelian simple groups in

which every irreducible character of even degree vanishes on just one conjugacy
class?
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Our answer to the question is affirmative.

Theorem A. Let G be a finite group. If every χ ∈ Irr(G) of even degree vanishes
on just one conjugacy class, then G is just one of the following groups:

(1) G possesses a normal and abelian Sylow 2-subgroup.

(2) G is a Frobenius group with a complement of order 2.

(3) G ∼= SL(2, 3).

(4) G ∼= L2(2
f ), f ≥ 2.

In particular, L2(2
f ) (f ≥ 2) are the only nonsolvable groups, and therefore the

only nonabelian simple groups satisfying the hypothesis.

Instead of proving Theorem A directly, we will study the finite nonsolvable groups
G satisfying the following property

(∗) every nonlinear χ ∈ Irr(G) of even degree vanishes on at most two conjugacy
classes of G.

Theorem B. If G is a finite nonsolvable group with no nontrivial solvable normal
subgroup, then G has the property (∗) if and only if G ∼= L2(7) or L2(2

f ) where
f ≥ 2.

In this paper, G always denotes a finite group, a class always means a conjugacy
class. We denote by xG the conjugacy class of G in which x lies. For a subset A
of G, let kG(A) be the minimal integer l such that A is a subset of a union of l
conjugacy classes of G. For N /G, we put Irr(G|N) = Irr(G)− Irr(G/N); and for
λ ∈ Irr(N), the inertia subgroup of λ in G is denoted by IG(λ).

Let Irr2(G) be the set of irreducible characters of G with even degree. Our
proof depends on the classification theorem of finite simple groups.

2. Theorem B

We begin to list some easy results which will be used later.

Lemma 2.1. Let N / G and set G = G/N . Then the following results are true.

(1) For any x ∈ G, xG, viewed as a subset of G, is a union of some classes of

G; furthermore, kG(xG) = 1 if and only if χ(x) = 0 for any χ ∈ Irr(G|N).

(2) If G has the property (∗), then so has G/N .

Proof. (1) See [11, Lemma 3(1)].

(2) The result follows directly from (1). �

Lemma 2.2. For any nonlinear χ ∈ Irr(G), we have:

(1) If G is nonsolvable and kG(v(χ)) ≤ 2, then χ
G′ is irreducible.

(2) If v(χ) ⊂ N for some N / G, then gcd(χ(1), |G/N |) = 1. In particular, χN

is irreducible.
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Proof. (1) Suppose that χ
G′ is reducible. By [7, Theorem 6.28], we can find a

normal subgroup M of G with G′ ≤M < G and an irreducible character ψ of M
such that χ = ψG. It follows that χ vanishes on G−M , and thus kG(G−M) ≤ 2.
By [13, Theorem 2.2] G is solvable, a contradiction.

(2) See [12, Lemma 2.2]. �

Next, we need the following Lemma 2.3. An irreducible character χ of G is called
p-defect zero for some prime p if χ(1)p = |G|p, that is, the p-part of the degree
χ(1) equals the p-part of the order of G. It is well-known that if χ ∈ Irr(G) is
p-defect zero then χ(x) = 0 whenever x ∈ G is of order a multiple of p.

Lemma 2.3. Let G be a nonabelian simple group. Then there exists χ ∈ Irr2(G)
such that χ is of p-defect zero for some prime divisor p of |G|.

Proof. It suffices to consider the nonabelian simple group G with no irreducible
character of 2-defect zero. By [15, Corollary], we may assume G ∼= An or G ∼= M12,
M22, M24, J2, HS, Suz, Ru, Co1, Co3, or B. Suppose that G is isomorphic to
An, n ≤ 8 or one of the above sporadic simple groups. Then the result follows
by [2]. Suppose that G ∼= An, n ≥ 9. By [9, Proposition], there is χ ∈ Irr(G)
such that 2p|χ(1), where p is the maximal prime not exceeding n. Clearly, χ is of
p-defect zero since |G|p = p. �

Now we are ready to prove Theorem B.

Proof of Theorem B. Let N be a minimal normal subgroup of G. Since G has no
nontrivial solvable normal subgroup, N is nonsolvable.

Step 1. G is almost simple, that is, N is a nonabelian simple group with N ≤
G ≤ Aut(N).

Clearly N = N1×· · ·×Ns is a direct product of isomorphic simple groups Ni, 1 ≤
i ≤ s. Suppose that s ≥ 2. Let θi ∈ Irr2(Ni) be of p-defect zero (Lemma 2.3), and
set θ = θ1 × · · · × θs. Then θ is an irreducible character of N , also θg ∈ Irr(N)
is of p-defect zero for any g ∈ G. Let χ0 be an irreducible constituent of θG, let
x1 ∈ N1, x2 ∈ N2 be of order p, and y2 ∈ N2 be of a prime order q (q 6= p). Now
for any g ∈ G, we have

θg(x1) = θg(x1x2) = θg(x1y2) = 0,

and this implies that χ0(x1) = χ0(x1x2) = χ0(x1y2) = 0. Since x1, x1x2, x1y2 lie
in distinct conjugacy classes, we obtain a contradiction. Thus N is simple.

Suppose that CG(N) > 1. Then CG(N) contains a minimal normal subgroup
M of G. Set T = M × N . Arguing on M × N as in the above paragraph, we
conclude that M,N are nonabelian simple groups, and we can find ψ ∈ Irr2(M),
θ ∈ Irr2(N) so that ψ is of q-defect zero, and θ is of p-defect zero, where q, p
are prime divisors of |M | and |N | respectively. Let x ∈ M , y ∈ N be of order
q, p respectively. Then for any irreducible constituent χ of (ψ × θ)G, we see
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that χ(x) = χ(y) = χ(xy) = 0. Clearly, x, y, xy lie in distinct classes of G, a
contradiction. Thus CG(N) = 1, so N ≤ G ≤ Aut(N), and then G is an almost
simple group.

Step 2. N is a simple group of Lie type.
Suppose that N ∼= An for some n ≥ 8. Let π be the permutation character of

N , and δ be the mapping of N into {0, 1, 2, · · ·} such that δ(g) is the number of
2-cycles in the standard composition of g. Set

λ =
(π − 1)(π − 2)

2
− δ, ρ =

π(π − 3)

2
+ δ.

By [5, V, Theorem 20.6], both λ and ρ are irreducible characters of N . Observe
that either λ(1) = (n − 1)(n − 2)/2 or ρ(1) = n(n − 3)/2 is even. Let χ0 be an
irreducible constituent of τG, where τ ∈ {λ, ρ} is of even degree. Since G/N ≤
Out(N) = Out(An) = Z2 (n ≥ 8, see [2]), it follows that N = G′. Now Lemma
2.2 (1) implies that (χ0)N

= τ .

For even n, set
a1 = (1, . . . , n− 1), a2 = (1, . . . , n− 2)(n− 1, n),
a3 = (1, . . . , n− 5)(n− 4, n− 3, n− 2);
b1 = (1, . . . , n− 3), b2 = (1, 2, . . . n− 3)(n− 2, n− 1, n),
b3 = (1, . . . , n− 4)(n− 3, n− 2).

For odd n, set
a1 = (1, . . . , n− 2), a2 = (1, . . . , n− 4)(n− 3, n− 2, n− 1),
a3 = (1, . . . , n− 5)(n− 4, n− 3);
b1 = (1, . . . , n), b2 = (1, . . . , n− 3)(n− 2, n− 1),
b3 = (1, . . . , n− 6)(n− 5, n− 4, n− 3).

We see that λ(ai) = 0 = ρ(bi) for any i = 1, 2, 3. Therefore, either χ0(a1) =
χ0(a2) = χ0(a3) = 0 or χ0(b1) = χ0(b2) = χ0(b3) = 0. Clearly a1, a2, a3 (or
b1, b2, b3) lie in distinct classes of G. We obtain a contradiction.

Suppose that N is isomorphic to A7 or one of the sporadic simple groups.
Assume G = N . We obtain a contradiction by [2]. Assume G > N . Since G
has no nontrivial solvable normal subgroup, G ≤ Aut(N). It follows by [2] that
|Out(N)| ≤ 2, and so |G/N | = 2 and N = G′. By Lemma 2.2, every θ ∈ Irr2(N)
is extendable to χ ∈ Irr(G), and that kG(v(θ)) = kG(v(χ) ∩ N) ≤ 1. By [2], we
also get a contradiction. .

Note that A5
∼= L2(4) ∼= L2(5), A6

∼= L2(9). By the classification theorem of
finite simple groups, N must be a simple group of Lie type.

Remarks and notation: Since N is one of the simple groups of Lie type, by [15]
N has an irreducible character χ0 of 2-defect zero. Let σ0 be an irreducible
constituent of χG

0 . Observe that χg
0(x) = 0 for any g ∈ G and any x ∈ N of even

order. It follows that σ0(x) = 0 whenever x ∈ N is of even order.
Let P ∈ Syl2(N), and ∆ = ∪g∈G(P g − {1}). We have

∆ ⊆ v(σ0), and so kG(∆) ≤ 2.
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Step 3. If G = N ∼= L2(q) for some odd q = pf > 5, then G ∼= L2(7).
Note that all irreducible characters of L2(q) are listed in [6, XI, Theorem 5.5,

5.6, 5.7]. Let η ∈ Irr2(G) be of degree pf + 1, and C be a Singer cycle of G, and
Ξ = ∪g∈G(Cg − 1). For any v ∈ Ξ, if p is a prime divisor of element order o(v),
then either σ0 or η is p-defect zero, and so either σ0(v) = 0 or η(v) = 0. This
implies that kG(Ξ) ≤ 4. Since kG(Ξ) = (q − 1)/4 (see [5, II, Theorem 8.5]), we
have that q = 7, 9, 11, 13, 17. By [2], we conclude that q = 7 and G ∼= L2(7).

Step 4. If a Sylow 2-subgroup P of N is nonabelian, then G ∼= L2(7).
In this case, since P has an element of order 4, we conclude that v(σ0) = ∆ ⊂

N and kG(v(σ0)) = 2. By Lemma 2.2 (2), |G/N | is odd and (σ0)N
= χ0. Therefore

σ0 is of 2-defect zero, and σ0(x) = 0 for any x ∈ G of even order. This implies
that all elements of even order are contained in ∆, thus CG(t) is a 2-group for any
involution t of G. Since P is nonabelian, by [14, III, Theorem 5] we conclude that
G is isomorphic to one of the following groups: Sz(q), q = 22m+1, L2(q) where q
is a Fermat prime or Mersenne prime, L3(4), L2(9), M10.

By [2], neither M10 nor L3(4) nor L2(9) has the property (∗). Note that all
elements of order 4 in Sz(22m+1) constitute two conjugacy classes , which can be
easily verified by [6, XI, Theorem 3.10]. Therefore G ∼= Sz(22m+1) is not the case.
Now by step 3, we conclude that G ∼= L2(7).

Step 5. If a Sylow 2-subgroup P of N is abelian, then G ∼= L2(2
f ), f ≥ 2.

Since P is abelian, by [6, XI, Theorem 13.7], N is one of the following groups:
L2(2

f ); L2(q) where q = 3, 5 (mod 8); 2G2(q), q = 32m+1. Recall that σ0(x) = 0
whenever x ∈ N is of even order.

Suppose that N ∼= 2G2(q). Then all elements of even order in N lie in at
least three classes of G (see [6, XI, Theorem 13.4]), a contradiction.

Therefore N ∼= L2(q), where q = 2f or q = 3, 5 (mod 8). Then Aut(N) =
N〈φ, δ〉, where 〈φ〉 is the group of field automorphisms of N , 〈δ〉 is the group of
diagonal automorphisms of N .

Case 1. Suppose that N = L2(q) where q > 5, q = 3, 5 (mod 8).
In this case, we have |N |2 = 4. Since φ and δ commute modulo Inn(N), we

have N = G′. Let θ ∈ Irr2(N) be such that if q = 3 (mod 8) then θ(1) = q + 1,
and if q = 5 (mod 8) then θ(1) = q − 1. By Lemma 2.2 (1), θ is extendable to an
irreducible character µ of G.

Observe that θ(1) = 4k for some odd k > 1, and that θ is of r-defect zero for
any prime divisor r of θ(1). Let x = x1x2 ∈ N be of order 2k, where o(x1) =
2, o(x2) = k. We have that θ(x1) = θ(x2) = θ(x) = 0, and so µ(x1) = µ(x2) =
µ(x) = 0, a contradiction.

Case 2. Suppose that N ∼= L2(2
f ), f ≥ 2.

In this case, Out(N) = 〈φ〉. We need to prove that G = N . Observe that
if N ∼= L2(4)(∼= L2(5)), then G = N by [2]. Thus we may assume that f ≥ 3.
Suppose that G > N . Then G = G ∩ N〈φ〉. Following [3, §38] and using the
notation of that table for the characters of L2(q), we may take θ1 ∈ Irr(N) of
degree 2f − 1 such that the stabilizer of θ in Aut(N) is N . Thus θ1 induces to an
irreducible character of G. This implies by Lemma 2.2 that θG

1 is of odd degree.
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In particular, G/N is a cyclic group of odd order.
Recall that χ0 ∈ Irr(N) is of degree 2f , and σ0 is an extension of χ0 to G.

Since ∆ = ∪g∈G(P g − 1) is a class of N , it forces ∆ to be also a class of G. This
implies that |CG(t)| = |G/N ||P | for any t ∈ P − {1}, and so that CG(t) = PA,
where A ∩ N = 1, A ∼= G/N . Observe that σ0(g) = 0 whenever g ∈ G is of
even order and that G/N is a cyclic group of odd order. Suppose that there are
primes r1, r2 such that r1r2 divides |A|. We can find x1, x2 ∈ CG(t) = PA of order
2r1, 2r1r2 respectively, and then σ0(t) = σ(x1) = σ(x2) = 0. However, t, x1, x2 lie
in distinct classes of G, a contradiction. Hence |G/N | is an odd prime q. Also,
we see that Θ, the set of elements of order 2q, forms a class of G. Let w ∈ A be
of order q, and y = wt. Since Θ is a class of G, all cyclic subgroups of order 2q
are conjugate to 〈y〉. Note that distinct subgroups of order 2q have no common
element of order 2q, it follows that

|Θ| = |G : NG(〈y〉)|(q − 1).

As NG(〈w〉) = 〈w〉NN(〈w〉) = 〈w〉 × (NG(〈w〉) ∩N) = CG(w), we have

NG(〈y〉) = NG(〈w〉) ∩NG(〈t〉) = CG(w) ∩ CG(t) = CG(y).

Then

|G : CG(y)|(q − 1) = |G : NG(〈y〉)|(q − 1) = |Θ| = |yG| = |G : CG(y)|,

a contradiction. Thus G = N = L2(2
f ) as desired. �

3. Theorem A

Lemma 3.1. Let N / G and H/N be a Hall π-subgroup of G/N . If η ∈ Irr(H)
induces to an irreducible character χ of G, then χ(x) = 0 for any π′-element
x ∈ G−N .

Proof. It follows directly from the definition of induced character. �

Lemma 3.2. Let G ∼= L2(2
f ), f ≥ 3 and P ∈ Syl2(G). If H is a proper subgroup

of G with P ≤ H, then H ≤ NG(P ).

Proof. It is enough to investigate the maximal subgroups of L2(2
f ) (see [5, II,

Theorem 8.27]). �

Proof of Theorem A. We need only to prove that if every member of Irr2(G) has
just one class of zeros, then G is one of the types listed in the theorem. Suppose
that Irr2(G) is empty. By a well-known theorem of Ito and Michler, G possesses
a normal abelian Sylow 2-subgroup. In what follows, we assume that Irr2(G) is
not empty.

Case 1. Suppose that G is nonsolvable.
By Theorem B, there exists a normal solvable subgroup N of G such that

G/N ∼= L2(7) or L2(2
f ). Clearly G/N ∼= L2(7) is not the case, and so G/N ∼=
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L2(2
f ). Suppose that N > 1. To reach a contradiction, we may assume that N

is a minimal normal subgroup of G, and thus N is an elementary abelian q-group
for some prime q. Let χ0 ∈ Irr(G/N) be of degree 2f . Let P ≤ G be such that
P/N ∈ Syl2(G/N), and ∆ = ∪g∈G(P g −N). Then

∆ = v(χ0), kG(∆) = 1.

For any χ ∈ Irr(G|N), by Lemma 2.1 we conclude that χ vanishes on ∆, and then
by [13, Lemma 1.1] we see that χ(1) is even. Let us consider the subgroup P . For
any t ∈ P −N , we have

|CG(t)| = |CG/N(tN)| = |P/N |.

If q is odd, then the above equation yields that P is a Frobenius group with N as
its kernel, and this leads to the contradiction that P/N , as an abelian Frobenius
complement is cyclic. Thus N is a 2-group. Since N is a nontrivial normal
subgroup of the 2-group P , we can take a non-principal λ0 ∈ Irr(N/N1) ⊆ Irr(N),
where N/N1 is a chief factor of P . Clearly λ0 is P -invariant. Note that if χ is an
irreducible constituent of λG

0 , then χ ∈ Irr(G|N) and then χ(1) is even.
Assume that IG(λ0) = G. Observe that N can be viewed as an irreducible

G-module over a field F2 of 2 elements. Then Irr(N) has a natural G-module
structure induced by the conjugate action of G on N , and since N is irreducible,
Irr(N) is also an irreducible G-module (see Section 1.6 of [8]). Let W be the set
of all G-invariant linear character of N . Then W is a nontrivial G-submodule of
Irr(N), and this implies that W = Irr(N). Now applying [7, Theorem 6.32] we
conclude thatN ≤ Z(G). By [2, Page xvi, Table 5], we have eitherG ∼= L2(2

f )×N
or G ∼= SL(2, 5). If G ∼= L2(2

f )×N , then |CG(t)| > |P/N | for any t ∈ P −N , a
contradiction. If G ∼= SL(2, 5), then we also obtain a contradiction by [2].

Assume that IG(λ0) < G. By Lemma 3.2, we have that P ≤ IG(λ0) ≤ H,
where H/N = NG/N(P/N). Let ψ0 be an irreducible constituent of λH

0 . By
Clifford theorem, ψ0 induces to an irreducible character η0 of G. Observe that
η0 ∈ Irr(G|N) vanishes on ∆ and is of even degree. Since H/N is a Hall subgroup
of G/N , it follows by Lemma 3.1 that η0 = ψG

0 vanishes on some element outside
∆. Thus η0 vanishes on at least two classes of G, a contradiction.

Case 2. Suppose that G is solvable.
Assume first that there is some χ ∈ Irr2(G) such that χ

G′ is reducible. By [7,
Theorem 6.22], there exist a subgroup H with G′ ≤ H < G and an irreducible
character λ of H so that χ = λG. This implies that χ vanishes on G−H, and so
kG(G−H) = 1. Now it is easy to verify in this case that G is a Frobenius group
with a complement of order 2 (see [11, Lemma 2(2)]).

In what follows, we assume that χ
G′ is irreducible for any χ ∈ Irr2(G), and we

will show in this case that G ∼= SL(2, 3). Since χ
G′ is irreducible, χ vanishes at

some element of G′, and consequently v(χ) ⊂ G′ because kG(v(χ)) = 1. It follows
by Lemma 2.2 (2) that gcd(χ(1), |G/G′|) = 1 for any χ ∈ Irr2(G). In particular,
|G/G′| is odd.

Let E /G maximal be such that G/E is nonabelian. By [7, Lemma 12.3] G/E
is a p-group or a Frobenius group. Suppose that G/E is a p-group and let ψ be
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a nonlinear irreducible character of G/E. Being a prime divisor of |G/G′|, p is
coprime to χ(1) for any χ ∈ Irr2(G). Then χ0ψ ∈ Irr2(G) for some χ0 ∈ Irr2(G),
and p is a common divisor of |G/G′| and (χ0ψ)(1), a contradiction. Therefore
G/E is a Frobenius group with a kernel N/E and a cyclic complement.

For any τ0 ∈ Irr2(N), by Frobenius reciprocity τ0 is extendible to some χ0 ∈
Irr2(G), and thus [7, Theorem 12.4] implies that both χ0 and τ0 vanish on N −E,
then

kG(N − E) = 1,

and so
kG/E(N/E − E/E) = 1.

This implies that
|N/E| = 1 + |G/N |.

Since |G/N | is odd, N/E is an elementary abelian 2-group. Set |N/E| = 2r and
let t ∈ N − E. We have

2r = |CG(t)| = |CN(t)| = |N/E|+
∑

η∈Irr(N |E)

|η(t)|2.

This implies thatN ′ = E, and that for any η ∈ Irr(N |E) (that is, for any nonlinear
η ∈ Irr(N)), η must vanish on N −E , so η(1) is even (see [13, Lemma 1.1]), and
hence η is extendible to G.

Clearly E > 1. Let E/F be a chief factor of G. If E/F is of odd order,
then the above fact implies that N/F is a Frobenius group with the kernel E/F ,
and then being a Frobenius complement, the elementary abelian 2-group N/E is
of order 2, which is impossible. Thus E/F is a 2-group. Let us investigate the
quotient group G/F and let K ∼= G/N be a Hall 2′-subgroup of G/F . Since every
nonlinear irreducible character of N/F is of even degree, K acts nontrivially on
N/F and fixes every nonlinear irreducible character of N/F . By [10, Lemma 19.2],
we conclude that N ′/F = E/F ≤ Z(G/F ). Since N/E,E/F are chief factors of
G, it is easy to see that

E/F = N ′/F = Z(N/F ) = Z(G/F ) = Φ(N/F ).

Thus |E/F | = 2 and N/F is an extraspecial 2-group. Now [4, Ch.5, Theorem 6.5]
implies that 2r − 1 = |G/N | divides 2e + 1 for some integer e ≤ r/2. This yields
that 2r = 4, and so G/F ∼= SL(2, 3).

To finish the proof of Theorem A, it suffices to show that F = 1. Suppose
that F > 1. Towards a contradiction we may assume that F is a minimal normal
subgroup of G. Assume that F is a 2-group. Since |CG(t)| = 4 for any t ∈ N −E,
there is x ∈ N − E of order |N |/2 ≥ 8 ([13, Lemma 1.3]), which leads to the
contradiction that |CG(x)| ≥ 8 > 4. Assume that F is a q-group for some odd
prime q and set P ∈ Syl2(N). Since |CG(t)| = |N/E| = 4 for any t ∈ N − E,
we see that CP (x) ≤ P ′ for any 1 6= x ∈ F . It follows by [10, Lemma 19.1] that
N = PF is a Frobenius group with a complement P and that P is either cyclic
or isomorphic to Q8. Then we can find some θ0 ∈ Irr(N) of degree 8. Let χ0 be
an extension of θ0 to G. We have N − F ⊆ v(χ0), a contradiction. Thus F = 1,
and the proof of Theorem A is complete.
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