A Characterization of $L_{2}\left(2^{f}\right)$ in Terms of the Number of Character Zeros*

Guohua Qian Wujie Shi
Department of Mathematics, Changshu Institute of Technology
Changshu, Jiangsu, 215500, P. R. China
e-mail: ghqian2000@yahoo.com.cn
School of Mathematics, Suzhou University
Suzhou, Jiangsu, 215006, P. R. China
e-mail:wjshi@suda.edu.cn

Abstract

The aim of this paper is to show that $L_{2}\left(2^{f}\right)$ are the only nonsolvable groups in which every irreducible character of even degree vanishes on just one conjugacy class. MSC 2000: 20C15 Keywords: finite group, character

1. Introduction

For an irreducible character χ of a finite group G, we know that $v(\chi):=\{g \in$ $G \mid \chi(g)=0\}$ is a union of some conjugacy classes of G. An old theorem of Burnside asserts that $v(\chi)$ is not empty for any nonlinear $\chi \in \operatorname{Irr}(G)$. It is natural to consider the structure of a finite group provided that the number of character zeros in its character table is very small (see [1], [11], [12] for a few examples). In Berkovich and Kazarin's paper [1], they posed the following question.

Question. Is it true that $L_{2}\left(2^{f}\right), f \geq 2$ are the only nonabelian simple groups in which every irreducible character of even degree vanishes on just one conjugacy class?

[^0]0138-4821/93 \$ 2.50 © 2009 Heldermann Verlag

Our answer to the question is affirmative.
Theorem A. Let G be a finite group. If every $\chi \in \operatorname{Irr}(G)$ of even degree vanishes on just one conjugacy class, then G is just one of the following groups:
(1) G possesses a normal and abelian Sylow 2-subgroup.
(2) G is a Frobenius group with a complement of order 2 .
(3) $G \cong S L(2,3)$.
(4) $G \cong L_{2}\left(2^{f}\right), f \geq 2$.

In particular, $L_{2}\left(2^{f}\right)(f \geq 2)$ are the only nonsolvable groups, and therefore the only nonabelian simple groups satisfying the hypothesis.

Instead of proving Theorem A directly, we will study the finite nonsolvable groups G satisfying the following property
$(*)$ every nonlinear $\chi \in \operatorname{Irr}(G)$ of even degree vanishes on at most two conjugacy classes of G.

Theorem B. If G is a finite nonsolvable group with no nontrivial solvable normal subgroup, then G has the property $(*)$ if and only if $G \cong L_{2}(7)$ or $L_{2}\left(2^{f}\right)$ where $f \geq 2$.

In this paper, G always denotes a finite group, a class always means a conjugacy class. We denote by x^{G} the conjugacy class of G in which x lies. For a subset A of G, let $k_{G}(A)$ be the minimal integer l such that A is a subset of a union of l conjugacy classes of G. For $N \triangleleft G$, we put $\operatorname{Irr}(G \mid N)=\operatorname{Irr}(G)-\operatorname{Irr}(G / N)$; and for $\lambda \in \operatorname{Irr}(N)$, the inertia subgroup of λ in G is denoted by $\mathrm{I}_{G}(\lambda)$.

Let $\operatorname{Irr}_{2}(G)$ be the set of irreducible characters of G with even degree. Our proof depends on the classification theorem of finite simple groups.

2. Theorem B

We begin to list some easy results which will be used later.
Lemma 2.1. Let $N \triangleleft G$ and set $\bar{G}=G / N$. Then the following results are true.
(1) For any $x \in G, \bar{x}^{\bar{G}}$, viewed as a subset of G, is a union of some classes of G; furthermore, $k_{G}\left(\bar{x}^{\bar{G}}\right)=1$ if and only if $\chi(x)=0$ for any $\chi \in \operatorname{Irr}(G \mid N)$.
(2) If G has the property $(*)$, then so has G / N.

Proof. (1) See [11, Lemma 3(1)].
(2) The result follows directly from (1).

Lemma 2.2. For any nonlinear $\chi \in \operatorname{Irr}(G)$, we have:
(1) If G is nonsolvable and $k_{G}(v(\chi)) \leq 2$, then $\chi_{G^{\prime}}$ is irreducible.
(2) If $v(\chi) \subset N$ for some $N \triangleleft G$, then $\operatorname{gcd}(\chi(1),|G / N|)=1$. In particular, χ_{N} is irreducible.

Proof. (1) Suppose that $\chi_{G^{\prime}}$ is reducible. By [7, Theorem 6.28], we can find a normal subgroup M of G with $G^{\prime} \leq M<G$ and an irreducible character ψ of M such that $\chi=\psi^{G}$. It follows that χ vanishes on $G-M$, and thus $k_{G}(G-M) \leq 2$. By [13, Theorem 2.2] G is solvable, a contradiction.
(2) See [12, Lemma 2.2].

Next, we need the following Lemma 2.3. An irreducible character χ of G is called p-defect zero for some prime p if $\chi(1)_{p}=|G|_{p}$, that is, the p-part of the degree $\chi(1)$ equals the p-part of the order of G. It is well-known that if $\chi \in \operatorname{Irr}(G)$ is p-defect zero then $\chi(x)=0$ whenever $x \in G$ is of order a multiple of p.

Lemma 2.3. Let G be a nonabelian simple group. Then there exists $\chi \in \operatorname{Irr}_{2}(G)$ such that χ is of p-defect zero for some prime divisor p of $|G|$.

Proof. It suffices to consider the nonabelian simple group G with no irreducible character of 2-defect zero. By [15, Corollary], we may assume $G \cong A_{n}$ or $G \cong M_{12}$, $M_{22}, M_{24}, J_{2}, H S, S u z, R u, C o_{1}, C o_{3}$, or B. Suppose that G is isomorphic to $A_{n}, n \leq 8$ or one of the above sporadic simple groups. Then the result follows by [2]. Suppose that $G \cong A_{n}, n \geq 9$. By [9, Proposition], there is $\chi \in \operatorname{Irr}(G)$ such that $2 p \mid \chi(1)$, where p is the maximal prime not exceeding n. Clearly, χ is of p-defect zero since $|G|_{p}=p$.

Now we are ready to prove Theorem B.
Proof of Theorem B. Let N be a minimal normal subgroup of G. Since G has no nontrivial solvable normal subgroup, N is nonsolvable.

Step 1. G is almost simple, that is, N is a nonabelian simple group with $N \leq$ $G \leq \operatorname{Aut}(N)$.
Clearly $N=N_{1} \times \cdots \times N_{s}$ is a direct product of isomorphic simple groups $N_{i}, 1 \leq$ $i \leq s$. Suppose that $s \geq 2$. Let $\theta_{i} \in \operatorname{Irr}_{2}\left(N_{i}\right)$ be of p-defect zero (Lemma 2.3), and set $\theta=\theta_{1} \times \cdots \times \theta_{s}$. Then θ is an irreducible character of N, also $\theta^{g} \in \operatorname{Irr}(N)$ is of p-defect zero for any $g \in G$. Let χ_{0} be an irreducible constituent of θ^{G}, let $x_{1} \in N_{1}, x_{2} \in N_{2}$ be of order p, and $y_{2} \in N_{2}$ be of a prime order $q(q \neq p)$. Now for any $g \in G$, we have

$$
\theta^{g}\left(x_{1}\right)=\theta^{g}\left(x_{1} x_{2}\right)=\theta^{g}\left(x_{1} y_{2}\right)=0,
$$

and this implies that $\chi_{0}\left(x_{1}\right)=\chi_{0}\left(x_{1} x_{2}\right)=\chi_{0}\left(x_{1} y_{2}\right)=0$. Since $x_{1}, x_{1} x_{2}, x_{1} y_{2}$ lie in distinct conjugacy classes, we obtain a contradiction. Thus N is simple.

Suppose that $C_{G}(N)>1$. Then $C_{G}(N)$ contains a minimal normal subgroup M of G. Set $T=M \times N$. Arguing on $M \times N$ as in the above paragraph, we conclude that M, N are nonabelian simple groups, and we can find $\psi \in \operatorname{Irr}_{2}(M)$, $\theta \in \operatorname{Irr}_{2}(N)$ so that ψ is of q-defect zero, and θ is of p-defect zero, where q, p are prime divisors of $|M|$ and $|N|$ respectively. Let $x \in M, y \in N$ be of order q, p respectively. Then for any irreducible constituent χ of $(\psi \times \theta)^{G}$, we see
that $\chi(x)=\chi(y)=\chi(x y)=0$. Clearly, $x, y, x y$ lie in distinct classes of G, a contradiction. Thus $C_{G}(N)=1$, so $N \leq G \leq \operatorname{Aut}(N)$, and then G is an almost simple group.
Step 2. N is a simple group of Lie type.
Suppose that $N \cong A_{n}$ for some $n \geq 8$. Let π be the permutation character of N, and δ be the mapping of N into $\{0,1,2, \cdots\}$ such that $\delta(g)$ is the number of 2 -cycles in the standard composition of g. Set

$$
\lambda=\frac{(\pi-1)(\pi-2)}{2}-\delta, \rho=\frac{\pi(\pi-3)}{2}+\delta .
$$

By [5, V, Theorem 20.6], both λ and ρ are irreducible characters of N. Observe that either $\lambda(1)=(n-1)(n-2) / 2$ or $\rho(1)=n(n-3) / 2$ is even. Let χ_{0} be an irreducible constituent of τ^{G}, where $\tau \in\{\lambda, \rho\}$ is of even degree. Since $G / N \leq$ $\operatorname{Out}(N)=\operatorname{Out}\left(A_{n}\right)=Z_{2}\left(n \geq 8\right.$, see [2]), it follows that $N=G^{\prime}$. Now Lemma 2.2 (1) implies that $\left(\chi_{0}\right)_{N}=\tau$.

For even n, set

$$
\begin{aligned}
& a_{1}=(1, \ldots, n-1), a_{2}=(1, \ldots, n-2)(n-1, n), \\
& a_{3}=(1, \ldots, n-5)(n-4, n-3, n-2) ; \\
& b_{1}=(1, \ldots, n-3), b_{2}=(1,2, \ldots n-3)(n-2, n-1, n), \\
& b_{3}=(1, \ldots, n-4)(n-3, n-2) .
\end{aligned}
$$

For odd n, set
$a_{1}=(1, \ldots, n-2), a_{2}=(1, \ldots, n-4)(n-3, n-2, n-1)$,
$a_{3}=(1, \ldots, n-5)(n-4, n-3)$;
$b_{1}=(1, \ldots, n), b_{2}=(1, \ldots, n-3)(n-2, n-1)$,
$b_{3}=(1, \ldots, n-6)(n-5, n-4, n-3)$.
We see that $\lambda\left(a_{i}\right)=0=\rho\left(b_{i}\right)$ for any $i=1,2,3$. Therefore, either $\chi_{0}\left(a_{1}\right)=$ $\chi_{0}\left(a_{2}\right)=\chi_{0}\left(a_{3}\right)=0$ or $\chi_{0}\left(b_{1}\right)=\chi_{0}\left(b_{2}\right)=\chi_{0}\left(b_{3}\right)=0$. Clearly a_{1}, a_{2}, a_{3} (or $\left.b_{1}, b_{2}, b_{3}\right)$ lie in distinct classes of G. We obtain a contradiction.

Suppose that N is isomorphic to A_{7} or one of the sporadic simple groups. Assume $G=N$. We obtain a contradiction by [2]. Assume $G>N$. Since G has no nontrivial solvable normal subgroup, $G \leq \operatorname{Aut}(N)$. It follows by [2] that $|\operatorname{Out}(N)| \leq 2$, and so $|G / N|=2$ and $N=G^{\prime}$. By Lemma 2.2 , every $\theta \in \operatorname{Irr}_{2}(N)$ is extendable to $\chi \in \operatorname{Irr}(G)$, and that $k_{G}(v(\theta))=k_{G}(v(\chi) \cap N) \leq 1$. By [2], we also get a contradiction. .

Note that $A_{5} \cong L_{2}(4) \cong L_{2}(5), A_{6} \cong L_{2}(9)$. By the classification theorem of finite simple groups, N must be a simple group of Lie type.

Remarks and notation: Since N is one of the simple groups of Lie type, by [15] N has an irreducible character χ_{0} of 2-defect zero. Let σ_{0} be an irreducible constituent of χ_{0}^{G}. Observe that $\chi_{0}^{g}(x)=0$ for any $g \in G$ and any $x \in N$ of even order. It follows that $\sigma_{0}(x)=0$ whenever $x \in N$ is of even order.

Let $P \in \operatorname{Syl}_{2}(N)$, and $\Delta=\cup_{g \in G}\left(P^{g}-\{1\}\right)$. We have

$$
\Delta \subseteq v\left(\sigma_{0}\right), \text { and so } k_{G}(\Delta) \leq 2
$$

Step 3. If $G=N \cong L_{2}(q)$ for some odd $q=p^{f}>5$, then $G \cong L_{2}(7)$.
Note that all irreducible characters of $L_{2}(q)$ are listed in [6, XI, Theorem 5.5, $5.6,5.7]$. Let $\eta \in \operatorname{Irr}_{2}(G)$ be of degree $p^{f}+1$, and C be a Singer cycle of G, and $\Xi=\cup_{g \in G}\left(C^{g}-1\right)$. For any $v \in \Xi$, if p is a prime divisor of element order $o(v)$, then either σ_{0} or η is p-defect zero, and so either $\sigma_{0}(v)=0$ or $\eta(v)=0$. This implies that $k_{G}(\Xi) \leq 4$. Since $k_{G}(\Xi)=(q-1) / 4$ (see [5, II, Theorem 8.5]), we have that $q=7,9,11,13,17$. By [2], we conclude that $q=7$ and $G \cong L_{2}(7)$.
Step 4. If a Sylow 2-subgroup P of N is nonabelian, then $G \cong L_{2}(7)$.
In this case, since P has an element of order 4 , we conclude that $v\left(\sigma_{0}\right)=\Delta \subset$ N and $k_{G}\left(v\left(\sigma_{0}\right)\right)=2$. By Lemma $2.2(2),|G / N|$ is odd and $\left(\sigma_{0}\right)_{N}=\chi_{0}$. Therefore σ_{0} is of 2-defect zero, and $\sigma_{0}(x)=0$ for any $x \in G$ of even order. This implies that all elements of even order are contained in Δ, thus $C_{G}(t)$ is a 2-group for any involution t of G. Since P is nonabelian, by [14, III, Theorem 5] we conclude that G is isomorphic to one of the following groups: $S z(q), q=2^{2 m+1}, L_{2}(q)$ where q is a Fermat prime or Mersenne prime, $L_{3}(4), L_{2}(9), M_{10}$.

By [2], neither M_{10} nor $L_{3}(4)$ nor $L_{2}(9)$ has the property $(*)$. Note that all elements of order 4 in $S z\left(2^{2 m+1}\right)$ constitute two conjugacy classes, which can be easily verified by [6, XI, Theorem 3.10]. Therefore $G \cong S z\left(2^{2 m+1}\right)$ is not the case. Now by step 3 , we conclude that $G \cong L_{2}(7)$.
Step 5. If a Sylow 2-subgroup P of N is abelian, then $G \cong L_{2}\left(2^{f}\right), f \geq 2$.
Since P is abelian, by [6, XI, Theorem 13.7], N is one of the following groups: $L_{2}\left(2^{f}\right) ; L_{2}(q)$ where $q=3,5(\bmod 8) ;{ }^{2} G_{2}(q), q=3^{2 m+1}$. Recall that $\sigma_{0}(x)=0$ whenever $x \in N$ is of even order.

Suppose that $N \cong{ }^{2} G_{2}(q)$. Then all elements of even order in N lie in at least three classes of G (see [6, XI, Theorem 13.4]), a contradiction.

Therefore $N \cong L_{2}(q)$, where $q=2^{f}$ or $q=3,5(\bmod 8)$. Then $\operatorname{Aut}(N)=$ $N\langle\phi, \delta\rangle$, where $\langle\phi\rangle$ is the group of field automorphisms of $N,\langle\delta\rangle$ is the group of diagonal automorphisms of N.
Case 1. Suppose that $N=L_{2}(q)$ where $q>5, q=3,5(\bmod 8)$.
In this case, we have $|N|_{2}=4$. Since ϕ and δ commute modulo $\operatorname{Inn}(N)$, we have $N=G^{\prime}$. Let $\theta \in \operatorname{Irr}_{2}(N)$ be such that if $q=3(\bmod 8)$ then $\theta(1)=q+1$, and if $q=5(\bmod 8)$ then $\theta(1)=q-1$. By Lemma $2.2(1), \theta$ is extendable to an irreducible character μ of G.

Observe that $\theta(1)=4 k$ for some odd $k>1$, and that θ is of r-defect zero for any prime divisor r of $\theta(1)$. Let $x=x_{1} x_{2} \in N$ be of order $2 k$, where $o\left(x_{1}\right)=$ $2, o\left(x_{2}\right)=k$. We have that $\theta\left(x_{1}\right)=\theta\left(x_{2}\right)=\theta(x)=0$, and so $\mu\left(x_{1}\right)=\mu\left(x_{2}\right)=$ $\mu(x)=0$, a contradiction.
Case 2. Suppose that $N \cong L_{2}\left(2^{f}\right), f \geq 2$.
In this case, $\operatorname{Out}(N)=\langle\phi\rangle$. We need to prove that $G=N$. Observe that if $N \cong L_{2}(4)\left(\cong L_{2}(5)\right)$, then $G=N$ by [2]. Thus we may assume that $f \geq 3$. Suppose that $G>N$. Then $G=G \cap N\langle\phi\rangle$. Following [3, §38] and using the notation of that table for the characters of $L_{2}(q)$, we may take $\theta_{1} \in \operatorname{Irr}(N)$ of degree $2^{f}-1$ such that the stabilizer of θ in $\operatorname{Aut}(N)$ is N. Thus θ_{1} induces to an irreducible character of G. This implies by Lemma 2.2 that θ_{1}^{G} is of odd degree.

In particular, G / N is a cyclic group of odd order.
Recall that $\chi_{0} \in \operatorname{Irr}(N)$ is of degree 2^{f}, and σ_{0} is an extension of χ_{0} to G. Since $\Delta=\cup_{g \in G}\left(P^{g}-1\right)$ is a class of N, it forces Δ to be also a class of G. This implies that $\left|C_{G}(t)\right|=|G / N||P|$ for any $t \in P-\{1\}$, and so that $C_{G}(t)=P A$, where $A \cap N=1, A \cong G / N$. Observe that $\sigma_{0}(g)=0$ whenever $g \in G$ is of even order and that G / N is a cyclic group of odd order. Suppose that there are primes r_{1}, r_{2} such that $r_{1} r_{2}$ divides $|A|$. We can find $x_{1}, x_{2} \in C_{G}(t)=P A$ of order $2 r_{1}, 2 r_{1} r_{2}$ respectively, and then $\sigma_{0}(t)=\sigma\left(x_{1}\right)=\sigma\left(x_{2}\right)=0$. However, t, x_{1}, x_{2} lie in distinct classes of G, a contradiction. Hence $|G / N|$ is an odd prime q. Also, we see that Θ, the set of elements of order $2 q$, forms a class of G. Let $w \in A$ be of order q, and $y=w t$. Since Θ is a class of G, all cyclic subgroups of order $2 q$ are conjugate to $\langle y\rangle$. Note that distinct subgroups of order $2 q$ have no common element of order $2 q$, it follows that

$$
|\Theta|=\left|G: N_{G}(\langle y\rangle)\right|(q-1) .
$$

As $N_{G}(\langle w\rangle)=\langle w\rangle N_{N}(\langle w\rangle)=\langle w\rangle \times\left(N_{G}(\langle w\rangle) \cap N\right)=C_{G}(w)$, we have

$$
N_{G}(\langle y\rangle)=N_{G}(\langle w\rangle) \cap N_{G}(\langle t\rangle)=C_{G}(w) \cap C_{G}(t)=C_{G}(y) .
$$

Then

$$
\left|G: C_{G}(y)\right|(q-1)=\left|G: N_{G}(\langle y\rangle)\right|(q-1)=|\Theta|=\left|y^{G}\right|=\left|G: C_{G}(y)\right|,
$$

a contradiction. Thus $G=N=L_{2}\left(2^{f}\right)$ as desired.

3. Theorem A

Lemma 3.1. Let $N \triangleleft G$ and H / N be a Hall π-subgroup of G / N. If $\eta \in \operatorname{Irr}(H)$ induces to an irreducible character χ of G, then $\chi(x)=0$ for any π^{\prime}-element $x \in G-N$.

Proof. It follows directly from the definition of induced character.
Lemma 3.2. Let $G \cong L_{2}\left(2^{f}\right), f \geq 3$ and $P \in \operatorname{Syl}_{2}(G)$. If H is a proper subgroup of G with $P \leq H$, then $H \leq N_{G}(P)$.

Proof. It is enough to investigate the maximal subgroups of $L_{2}\left(2^{f}\right)$ (see [5, II, Theorem 8.27]).

Proof of Theorem A. We need only to prove that if every member of $\operatorname{Irr}_{2}(G)$ has just one class of zeros, then G is one of the types listed in the theorem. Suppose that $\operatorname{Irr}_{2}(G)$ is empty. By a well-known theorem of Ito and Michler, G possesses a normal abelian Sylow 2-subgroup. In what follows, we assume that $\operatorname{Irr}_{2}(G)$ is not empty.
Case 1. Suppose that G is nonsolvable.
By Theorem B, there exists a normal solvable subgroup N of G such that $G / N \cong L_{2}(7)$ or $L_{2}\left(2^{f}\right)$. Clearly $G / N \cong L_{2}(7)$ is not the case, and so $G / N \cong$
$L_{2}\left(2^{f}\right)$. Suppose that $N>1$. To reach a contradiction, we may assume that N is a minimal normal subgroup of G, and thus N is an elementary abelian q-group for some prime q. Let $\chi_{0} \in \operatorname{Irr}(G / N)$ be of degree 2^{f}. Let $P \leq G$ be such that $P / N \in \operatorname{Syl}_{2}(G / N)$, and $\Delta=\cup_{g \in G}\left(P^{g}-N\right)$. Then

$$
\Delta=v\left(\chi_{0}\right), \quad k_{G}(\Delta)=1
$$

For any $\chi \in \operatorname{Irr}(G \mid N)$, by Lemma 2.1 we conclude that χ vanishes on Δ, and then by [13, Lemma 1.1] we see that $\chi(1)$ is even. Let us consider the subgroup P. For any $t \in P-N$, we have

$$
\left|C_{G}(t)\right|=\left|C_{G / N}(t N)\right|=|P / N| .
$$

If q is odd, then the above equation yields that P is a Frobenius group with N as its kernel, and this leads to the contradiction that P / N, as an abelian Frobenius complement is cyclic. Thus N is a 2 -group. Since N is a nontrivial normal subgroup of the 2-group P, we can take a non-principal $\lambda_{0} \in \operatorname{Irr}\left(N / N_{1}\right) \subseteq \operatorname{Irr}(N)$, where N / N_{1} is a chief factor of P. Clearly λ_{0} is P-invariant. Note that if χ is an irreducible constituent of λ_{0}^{G}, then $\chi \in \operatorname{Irr}(G \mid N)$ and then $\chi(1)$ is even.

Assume that $\mathrm{I}_{G}\left(\lambda_{0}\right)=G$. Observe that N can be viewed as an irreducible G-module over a field F_{2} of 2 elements. Then $\operatorname{Irr}(N)$ has a natural G-module structure induced by the conjugate action of G on N, and since N is irreducible, $\operatorname{Irr}(N)$ is also an irreducible G-module (see Section 1.6 of [8]). Let W be the set of all G-invariant linear character of N. Then W is a nontrivial G-submodule of $\operatorname{Irr}(N)$, and this implies that $W=\operatorname{Irr}(N)$. Now applying [7, Theorem 6.32] we conclude that $N \leq Z(G)$. By [2, Page xvi, Table 5], we have either $G \cong L_{2}\left(2^{f}\right) \times N$ or $G \cong S L(2,5)$. If $G \cong L_{2}\left(2^{f}\right) \times N$, then $\left|C_{G}(t)\right|>|P / N|$ for any $t \in P-N$, a contradiction. If $G \cong S L(2,5)$, then we also obtain a contradiction by [2].

Assume that $\mathrm{I}_{G}\left(\lambda_{0}\right)<G$. By Lemma 3.2, we have that $P \leq \mathrm{I}_{G}\left(\lambda_{0}\right) \leq H$, where $H / N=N_{G / N}(P / N)$. Let ψ_{0} be an irreducible constituent of λ_{0}^{H}. By Clifford theorem, ψ_{0} induces to an irreducible character η_{0} of G. Observe that $\eta_{0} \in \operatorname{Irr}(G \mid N)$ vanishes on Δ and is of even degree. Since H / N is a Hall subgroup of G / N, it follows by Lemma 3.1 that $\eta_{0}=\psi_{0}^{G}$ vanishes on some element outside Δ. Thus η_{0} vanishes on at least two classes of G, a contradiction.
Case 2. Suppose that G is solvable.
Assume first that there is some $\chi \in \operatorname{Irr}_{2}(G)$ such that $\chi_{G^{\prime}}$ is reducible. By [7, Theorem 6.22], there exist a subgroup H with $G^{\prime} \leq H<G$ and an irreducible character λ of H so that $\chi=\lambda^{G}$. This implies that χ vanishes on $G-H$, and so $k_{G}(G-H)=1$. Now it is easy to verify in this case that G is a Frobenius group with a complement of order 2 (see [11, Lemma 2(2)]).

In what follows, we assume that $\chi_{G^{\prime}}$ is irreducible for any $\chi \in \operatorname{Irr}_{2}(G)$, and we will show in this case that $G \cong S L(2,3)$. Since $\chi_{G^{\prime}}$ is irreducible, χ vanishes at some element of G^{\prime}, and consequently $v(\chi) \subset G^{\prime}$ because $k_{G}(v(\chi))=1$. It follows by Lemma $2.2(2)$ that $\operatorname{gcd}\left(\chi(1),\left|G / G^{\prime}\right|\right)=1$ for any $\chi \in \operatorname{Irr}_{2}(G)$. In particular, $\left|G / G^{\prime}\right|$ is odd.

Let $E \triangleleft G$ maximal be such that G / E is nonabelian. By [7, Lemma 12.3] G / E is a p-group or a Frobenius group. Suppose that G / E is a p-group and let ψ be
a nonlinear irreducible character of G / E. Being a prime divisor of $\left|G / G^{\prime}\right|, p$ is coprime to $\chi(1)$ for any $\chi \in \operatorname{Irr}_{2}(G)$. Then $\chi_{0} \psi \in \operatorname{Irr}_{2}(G)$ for some $\chi_{0} \in \operatorname{Irr}_{2}(G)$, and p is a common divisor of $\left|G / G^{\prime}\right|$ and $\left(\chi_{0} \psi\right)(1)$, a contradiction. Therefore G / E is a Frobenius group with a kernel N / E and a cyclic complement.

For any $\tau_{0} \in \operatorname{Irr}_{2}(N)$, by Frobenius reciprocity τ_{0} is extendible to some $\chi_{0} \in$ $\operatorname{Irr}_{2}(G)$, and thus [7, Theorem 12.4] implies that both χ_{0} and τ_{0} vanish on $N-E$, then

$$
k_{G}(N-E)=1,
$$

and so

$$
k_{G / E}(N / E-E / E)=1 .
$$

This implies that

$$
|N / E|=1+|G / N|
$$

Since $|G / N|$ is odd, N / E is an elementary abelian 2-group. Set $|N / E|=2^{r}$ and let $t \in N-E$. We have

$$
2^{r}=\left|C_{G}(t)\right|=\left|C_{N}(t)\right|=|N / E|+\sum_{\eta \in \operatorname{Irr}(N \mid E)}|\eta(t)|^{2} .
$$

This implies that $N^{\prime}=E$, and that for any $\eta \in \operatorname{Irr}(N \mid E)$ (that is, for any nonlinear $\eta \in \operatorname{Irr}(N)), \eta$ must vanish on $N-E$, so $\eta(1)$ is even (see [13, Lemma 1.1]), and hence η is extendible to G.

Clearly $E>1$. Let E / F be a chief factor of G. If E / F is of odd order, then the above fact implies that N / F is a Frobenius group with the kernel E / F, and then being a Frobenius complement, the elementary abelian 2-group N / E is of order 2 , which is impossible. Thus E / F is a 2 -group. Let us investigate the quotient group G / F and let $K \cong G / N$ be a Hall 2^{\prime}-subgroup of G / F. Since every nonlinear irreducible character of N / F is of even degree, K acts nontrivially on N / F and fixes every nonlinear irreducible character of N / F. By [10, Lemma 19.2], we conclude that $N^{\prime} / F=E / F \leq Z(G / F)$. Since $N / E, E / F$ are chief factors of G, it is easy to see that

$$
E / F=N^{\prime} / F=Z(N / F)=Z(G / F)=\Phi(N / F) .
$$

Thus $|E / F|=2$ and N / F is an extraspecial 2-group. Now [4, Ch.5, Theorem 6.5] implies that $2^{r}-1=|G / N|$ divides $2^{e}+1$ for some integer $e \leq r / 2$. This yields that $2^{r}=4$, and so $G / F \cong S L(2,3)$.

To finish the proof of Theorem A, it suffices to show that $F=1$. Suppose that $F>1$. Towards a contradiction we may assume that F is a minimal normal subgroup of G. Assume that F is a 2-group. Since $\left|C_{G}(t)\right|=4$ for any $t \in N-E$, there is $x \in N-E$ of order $|N| / 2 \geq 8$ ([13, Lemma 1.3]), which leads to the contradiction that $\left|C_{G}(x)\right| \geq 8>4$. Assume that F is a q-group for some odd prime q and set $P \in \operatorname{Syl}_{2}(N)$. Since $\left|C_{G}(t)\right|=|N / E|=4$ for any $t \in N-E$, we see that $C_{P}(x) \leq P^{\prime}$ for any $1 \neq x \in F$. It follows by [10, Lemma 19.1] that $N=P F$ is a Frobenius group with a complement P and that P is either cyclic or isomorphic to Q_{8}. Then we can find some $\theta_{0} \in \operatorname{Irr}(N)$ of degree 8 . Let χ_{0} be an extension of θ_{0} to G. We have $N-F \subseteq v\left(\chi_{0}\right)$, a contradiction. Thus $F=1$, and the proof of Theorem A is complete.

References

[1] Berkovich, Y.; Kazarin, L.: Finite groups in which the zeros of every nonlinear irreducible character are conjugate modulo its kernel. Houston J. Math. 24(4) (1998), 619-630.

Zbl 0969.20004
[2] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A.: Atlas of Finite Groups. Oxford University Press (Clarendon), Oxford and New York 1985.

Zbl 0568.20001
[3] Dornhoff, L.: Group representation theory, Part A: Ordinary representation theory. Dekker, New York 1971.

Zbl 0227.20002
[4] Gorenstein, D.: Finite Groups. Harper and Row, New York, Evanston, London 1968.

Zbl 0185.05701
[5] Huppert, B.: Endliche Gruppen I. Springer-Verlag, Berlin 1967.
Zbl 0217.07201
[6] Huppert, B.; Blackburn, N.: Finite Groups III. Springer-Verlag, Berlin, Heidelberg and New York 1982.

Zbl 0514.20002
[7] Isaacs, I. M.: Character Theory of Finite Groups. Academic Press, New York 1976.

Zbl 0337.20005
[8] Landrock, P.: Finite group algebras and their modules. Cambridge University Press, 1983.

Zbl 0523.20001
[9] Manz, O.; Staszewski, R. S.; Willems, W.: On the number of components of a graph related to character degrees. Proc. Am. Math. Soc. 103(1) (1988), 31-37.

Zbl 0645.20005
[10] Manz, O.; Wolf, T. R.: Representations of Solvable Groups. Cambridge University Press, Cambridge 1993.

Zbl 0928.20008
[11] Qian, G.: Bounding the Fitting height of a solvable group by the number of zeros in a character table. Proc. Am. Math. Soc. 130 (2002), 3171-3176.

Zbl 1007.20008
[12] Qian, G.: Finite solvable groups with an irreducible character vanishing on just one class of elements. Commun. Algebra 35(7) (2007), 2235-2240.

Zbl 1127.20008
[13] Qian, G.; Shi, W.; You, X.: Conjugacy classes outside a normal subgroup. Commun. Algebra 32(12) (2004), 4809-4820.

Zbl 1094.20013
[14] Suzuki, M.: Finite groups with nilpotent centralizers. Trans. Am. Math. Soc. 99(3) (1961), 425-470.

Zbl 0101.01604
[15] Willems, W.: Blocks of defect zero in finite simple groups of Lie type. J. Algebra 113 (1988), 511-522.

Zbl 0653.20014

[^0]: *Project supported by the NNSF of China (10571128) and the NSF of Jiangsu Educational Committee (05KJB110002).

