Certain Equalities and Inequalities concerning Polygons in \mathbb{R}^{2}

Mirko Radić
University of Rijeka, Department of Mathematics
51000 Rijeka, Omladinska 14, Croatia
e-mail: mradic@ffri.hr

Abstract

This article can be considered as an appendix to the article [3]. Here we mainly deal with k-outscribed polygons, where we use the definition of such polygons as it is given in [3]. The aim and purpose of the article is to find and investigate certain equalities and inequalities concerning k-outscribed polygons.

MSC 2000: 51E12, 51M04
Keywords: determinant of rectangular matrix, polygon, equality, inequality, area of polygon

1. Introduction

The definition of the determinant of a rectangular matrix has been introduced in the article [1]. The determinant of an $m \times n$ matrix $A, m \leq n$, with columns A_{1}, \ldots, A_{n} is the sum

$$
\sum_{1 \leq j_{1}<j_{2}<\cdots<j_{m} \leq n}(-1)^{r+s}\left|A_{j_{1}}, \ldots, A_{j_{m}}\right|
$$

where $r=1+\cdots+m, s=j_{1}+\cdots+j_{m}$.
It is clear that every real $m \times n$ matrix $A=\left[A_{1}, \ldots, A_{n}\right]$ determines a polygon in \mathbb{R}^{m} (the columns of the matrix correspond to the vertices of the polygons) and vice versa. The polygon which corresponds to the given matrix $\left[A_{1}, \ldots, A_{n}\right]$ will be denoted by $A_{1} \ldots A_{n}$.

0138-4821/93 \$ 2.50 © 2009 Heldermann Verlag

Here, and in what follows, a special case of the above definition will be used when $m=2$, that is,

$$
\left|\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n} \tag{1.1}\\
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right|=\sum_{1 \leq i<j \leq n}(-1)^{1+2+(i+j)}\left|\begin{array}{ll}
a_{i} & a_{j} \\
b_{i} & b_{j}
\end{array}\right| .
$$

Also, we will make use of some results given in [2] and [3]. First, we list those given in [2], keeping back the same numeration of cited results as there.

Theorem 3. Let $A_{1} \ldots A_{n}$ be a polygon in \mathbb{R}^{2}. Then

$$
\begin{equation*}
2 \text { area of } A_{1} \ldots A_{n}=\left|A_{1}+A_{2}, A_{2}+A_{3}, \ldots, A_{n-1}+A_{n}, A_{n}+A_{1}\right| \text {. } \tag{1.2}
\end{equation*}
$$

Corollary 6.1. If n is odd, then for every point X in \mathbb{R}^{2}, we have

$$
\begin{equation*}
\left|A_{1}+X, \ldots, A_{n}+X\right|=\left|A_{1}, \ldots, A_{n}\right| . \tag{1.3}
\end{equation*}
$$

Theorem 7. Let $A_{1} \ldots A_{n}$ be a polygon in \mathbb{R}^{2} and let n be an even integer. Then, for every point X in \mathbb{R}^{2}, it follows that

$$
\begin{equation*}
\left|A_{1}+X, \ldots, A_{n}+X\right|=\left|A_{1}, \ldots, A_{n}\right| \tag{1.4}
\end{equation*}
$$

when $\sum_{i=1}^{n}(-1)^{i} A_{i}=0$.
Theorem 8. Let $A_{1} \ldots A_{n}$ be a polygon in \mathbb{R}^{2} and let $\sum_{i=1}^{n}(-1)^{i} A_{i}=0$. Then

$$
\begin{equation*}
\left|A_{1}, \ldots, A_{n}\right|=\left|A_{1}, \ldots, A_{n-1}\right| . \tag{1.5}
\end{equation*}
$$

Corollary 10.1. For n odd, for each $i \in\{1, \ldots, n\}$ we have the cyclic permutation property

$$
\begin{equation*}
\left|A_{i}, \ldots, A_{n}, A_{1}, \ldots, A_{i-1}\right|=\left|A_{1}, \ldots, A_{n}\right| . \tag{1.6}
\end{equation*}
$$

Moreover, for n even and $\sum_{i=1}^{n}(-1)^{i} A_{i}=0$, (1.6) remains valid.
We will apply the following results from [3], keeping back the original numeration.
Theorem 1. Let $A_{1} \ldots A_{n}$ be a given polygon in \mathbb{R}^{2} and let k be a positive integer such that $k<n$ and $G C D(k, n)=1$. Then, there exists a unique k-outscribed polygon $P_{1} \ldots P_{n}$ to the polygon $A_{1} \ldots A_{n}$ such that

$$
\begin{equation*}
2 \text { area of } P_{1} \cdots P_{n}=k^{2}\left|B_{1}+B_{2}, B_{2}+B_{3}, \ldots, B_{n}+B_{1}\right| \text {, } \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{i}=A_{i}+A_{i+k}+\cdots+A_{i+\left(x_{k}-1\right) k} \quad(i=1, \ldots, n) \tag{1.8}
\end{equation*}
$$

and x_{k} is the least positive integer x satisfying

$$
\begin{equation*}
k x=1(\bmod n) . \tag{1.9}
\end{equation*}
$$

Theorem 4. Let $A_{1} \ldots A_{n}$ be a polygon in \mathbb{R}^{2} and let k be an integer such that $1<k<n$ and $\operatorname{GCD}(k, n)=d>1$. Then, only one of the following two assertions is true:
(i) There is no k-outscribed polygon to the polygon $A_{1} \ldots A_{n}$.
(ii) There are infinitely many k-outscribed polygons to the polygon $A_{1} \ldots A_{n}$.

The second statement (ii) appears only if for each $i=1, \ldots, d$ there holds $\left(E_{k}\right)$ (existence for k-outscribed)

$$
\begin{equation*}
A_{1}+A_{1+k}+\cdots+A_{1+(\hat{x}-1) k}=A_{i}+A_{i+k}+\cdots+A_{i+(\hat{x}-1) k} \tag{k}
\end{equation*}
$$

where \hat{x} is the least positive integer solution of the equation

$$
\begin{equation*}
k x=0(\bmod n) . \tag{1.10}
\end{equation*}
$$

Theorem 10. Let $\left[A_{1}, \ldots, A_{n}\right]$ be any given real $2 \times n$ matrix. Then

$$
\begin{align*}
\left|A_{1}, \ldots, A_{n}\right|= & \left|A_{1}, A_{2}, A_{3}\right|+\left|A_{1}-A_{2}+A_{3}, A_{4}, A_{5}\right|+ \\
& \left|A_{1}-A_{2}+A_{3}-A_{4}+A_{5}, A_{6}, A_{7}\right|+\cdots+L, \tag{1.11}
\end{align*}
$$

where

$$
L= \begin{cases}\left|\sum_{i=1}^{n-2}(-1)^{i+1} A_{i}, A_{n-1}, A_{n}\right| & n \text { odd } \\ \left|\sum_{i=1}^{n-1}(-1)^{i+1} A_{i}, A_{n}\right| & n \text { even }\end{cases}
$$

2. Certain equalities and inequalities concerning some polygons in \mathbb{R}^{2}

Theorem 1. Let $A_{1} \ldots A_{n}$ be a polygon i3n \mathbb{R}^{2} and let k be an integer $1<k<n$. Let $G C D(k, n)=d>1$ and let $\left(\mathrm{E}_{k}\right)$ be fulfilled, that is

$$
\begin{equation*}
A_{i}+A_{i+k}+A_{i+2 k}+\cdot+A_{i+(\hat{x}-1) k}=\frac{S}{d}, \quad(i=1, \ldots, d) \tag{k}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{x}=\frac{n}{d}, \quad S=\sum_{i=1}^{n} A_{i} . \tag{2.1}
\end{equation*}
$$

Then for arbitrary points P_{1}, \ldots, P_{d-1} from \mathbb{R}^{2} there exists k-outscribed polygon $P_{1} \ldots P_{n}$ to the polygon $A_{1} \ldots A_{n}$ such that

$$
\begin{align*}
& \frac{n}{d} P_{d}=S-\frac{n}{d}\left(P_{1}+\cdots+P_{d-1}\right)-\sum_{i=1}^{d}\left[S_{i+k}+\cdots+S_{i+(\hat{x}-1) k}\right], \tag{2.2}\\
& P_{i+j k}=P_{i}+S_{i+j k}, \quad(i=1, \ldots, d) \quad \text { and } \quad(j=1, \ldots, \hat{x}-1) \tag{2.3}
\end{align*}
$$

where $S_{i+j k}, i=1, \ldots, d$ and $j=1, \ldots, \hat{x}-1$ are the sums of certain vertices A_{1}, \ldots, A_{n}.

Proof. The system

$$
\begin{equation*}
P_{i}+P_{i+1}+\cdots+P_{i+k-1}=k A_{i} \quad(i=1, \ldots, n) \tag{2.4}
\end{equation*}
$$

can be rewritten as

$$
\begin{equation*}
P_{i}-P_{i+k}=k\left(A_{i}-A_{i+1}\right) \quad(i=1, \ldots, n) \tag{2.5}
\end{equation*}
$$

It is easy to see that

$$
\begin{align*}
& P_{i+k}=P_{i}-k\left(A_{i}-A_{i+1}\right) \tag{2.6}\\
& P_{i+2 k}=P_{i+k}-k\left(A_{i+k}-A_{i+1+k}\right), \tag{2.7}\\
& \quad \vdots \tag{2.8}\\
& P_{i+(\hat{x}-1) k}=P_{i+(\hat{x}-2) k}-k\left(A_{i+(\hat{x}-2) k}-A_{i+1+(\hat{x}-2) k}\right),
\end{align*}
$$

for all $i=1, \ldots, d$. The relations (2.3) can be obtained from (2.6)-(2.8). So, by (2.6) we see that

$$
P_{i+k}=P_{i}+S_{i+k},
$$

where $S_{i+k}=-k\left(A_{i}-A_{i+1}\right)$. Then, by (2.6) and (2.7) we deduce

$$
P_{i+2 k}=P_{i}-k\left(A_{i}-A_{i+1}\right)-k\left(A_{i+k}-A_{i+1+k}\right),
$$

such that can be written as

$$
P_{i+2 k}=P_{i}+S_{i+2 k},
$$

where

$$
S_{i+2 k}=-k\left(A_{i}-A_{i+1}\right)-k\left(A_{i+k}-A_{i+1+k}\right) .
$$

In the same way it can be seen that

$$
P_{i+3 k}=P_{i}+S_{i+3 k},
$$

where

$$
S_{i+3 k}=-k\left(A_{i}-A_{i+1}\right)-k\left(A_{i+k}-A_{i+1+k}\right)-k\left(A_{i+2 k}-A_{i+1+2 k}\right) .
$$

Finally, we get

$$
P_{i+(\hat{x}-1) k}=P_{i}+S_{i+(\hat{x}-1) k},
$$

where
$S_{i+(\hat{x}-1) k}=-k\left(A_{i}-A_{i+1}\right)-k\left(A_{i+k}-A_{i+1+k}\right)-\cdots-k\left(A_{i+(\hat{x}-2) k}-A_{i+1+(\hat{x}-2) k}\right)$.
Now from (2.4) it is easy to see that

$$
\begin{equation*}
\sum_{i=1}^{n} P_{i}=S \tag{2.9}
\end{equation*}
$$

where S is given by (2.1). Thus,

$$
\left[P_{1}+P_{1+k}+\cdots+P_{1+(\hat{x}-1) k}\right]+\cdots+\left[P_{d}+P_{d+k}+\cdots+P_{d+(\hat{x}-1) k}\right]=S
$$

or

$$
P_{1}+\cdots+P_{d}+\left[P_{1+k}+\cdots+P_{1+(\hat{x}-1) k}\right]+\cdots+\left[P_{d+k}+\cdots+P_{d+(\hat{x}-1) k}\right]=S,
$$

such that is equivalent to (2.2). This proves Theorem 1.
The following result is proved in [3, Theorem 4] in another way using vector spaces techniques.

Corollary 1.1. Denote M the matrix of the system (2.4). Then

$$
\text { rank of } M=n-d+1 \text {. }
$$

Corollary 1.2. Let $G C D(k, n)=2$. The area of $P_{1} \ldots P_{n}$ has the form

$$
\begin{equation*}
2 \text { area of } P_{1} \ldots P_{n}=\left|S_{3}, S_{3}+S_{4}, S_{4}+S_{5}, \ldots, S_{n-1}+S_{n}, S_{n}\right| \text {. } \tag{2.10}
\end{equation*}
$$

Proof. Since

$$
\begin{aligned}
& P_{2 i+1}=P_{1}+S_{2 i+1}, \\
& P_{2 i+2}=P_{2}+S_{2 i+2}, \quad\left(i=1, \ldots, \frac{n}{2}-1\right) \\
& P_{2}=-P_{1}+\frac{2}{n}\left[S-\sum_{i=1}^{n / 2-1}\left(S_{2 i+1}+S_{2 i+2}\right)\right],
\end{aligned}
$$

we can write

$$
\begin{aligned}
2 \text { area of } P_{1} \ldots P_{n} & =\left|P_{1}+P_{2}, P_{2}+P_{3}, \ldots, P_{n}+P_{1}\right| \\
& =\left|T, T+S_{3}, T+S_{3}+S_{4}, \ldots, T+S_{n-1}+S_{n}, T+S_{n}\right|
\end{aligned}
$$

where

$$
T=\frac{2}{n}\left[S-\sum_{i=1}^{n / 2-1}\left(S_{2 i+1}+S_{2 i+2}\right)\right] .
$$

The last display can be rewritten into the one like (2.10), having in mind (1.4).
Using [3, Theorem 10] (see introduction) the area of $P_{1} \ldots P_{n}$ can also be expressed like

$$
\begin{aligned}
& \text { area of } P_{1} \ldots P_{n}=\left|S_{3}, S_{3}+S_{4}, S_{4}+S_{5}\right|+\left|S_{5}, S_{5}+S_{6}, S_{6}+S_{7}\right|+\cdots+ \\
& \left|S_{n-3}, S_{n-3}+S_{n-2}, S_{n-2}+S_{n-1}\right|+\left|S_{n-1}, S_{n}\right| .
\end{aligned}
$$

Let us remark that

$$
\begin{aligned}
& S_{3}-\left(S_{3}+S_{4}\right)+\left(S_{4}+S_{5}\right)=S_{5} \\
& S_{3}-\left(S_{3}+S_{4}\right)+\left(S_{4}+S_{5}\right)-\left(S_{5}+S_{6}\right)+\left(S_{6}+S_{7}\right)=S_{7} \text { and so on. }
\end{aligned}
$$

Corollary 1.3. Let $G C D(k, n)=1$. Then there are S_{2}, \ldots, S_{n} so that

$$
\begin{equation*}
P_{1+i}=P_{1}+S_{1+i} \quad(i=1, \ldots, n-1 .) \tag{2.11}
\end{equation*}
$$

Proof. Since $P_{1} \ldots P_{n}$ is unique by [3, Theorem 1] (consult introduction), there are S_{2}, \ldots, S_{n} so that

$$
P_{2}=P_{1}+S_{2}, \ldots, P_{n}=P_{1}+S_{n} .
$$

Thus, when $d=1$, there is only one P_{1} such that (2.11) is valid.
Corollary 1.4. Let $G C D(k, n)=d>2$. For the sake of simplicity take $d=3$. Then

$$
\begin{equation*}
2 \text { area of } P_{1} \ldots P_{n}=\left|P_{1}+P_{2}, P_{2}+P_{3}, P_{3}+P_{4}, \ldots, P_{n}+P_{1}\right| \text {, } \tag{2.12}
\end{equation*}
$$

where $P_{4}=P_{1}+S_{4}, P_{5}=P_{2}+S_{5}, P_{6}=P_{3}+S_{6}, P_{7}=P_{1}+S_{7}$ etc. Thus, the area of $P_{1} \ldots P_{n}$ is 4-parametric, since $P_{1}\left(\alpha_{1}, \beta_{1}\right)$ and $P_{2}\left(\alpha_{2}, \beta_{2}\right)$ can be taken arbitrarily in \mathbb{R}^{2} and they cannot be eliminated from (2.12). Therefore, k-outscribed polygons to the polygon $A_{1} \ldots A_{n}$ have different areas when $G C D(k, n)>2$ (cf. [2, Theorem 11]).

Corollary 1.5. Let $G C D(k, n)=d=3$, where n is odd. Then

$$
\begin{equation*}
\left|P_{1}+P_{2}+P_{3}, P_{2}+P_{3}+P_{4}, \ldots, P_{n}+P_{1}+P_{2}\right|=\text { constant } \tag{2.13}
\end{equation*}
$$

where $P_{4}=P_{1}+S_{4}, P_{5}=P_{2}+S_{5}, P_{6}=P_{3}+S_{6}, P_{7}=P_{1}+S_{7}$ etc.
Proof. By (1.3) the determinant on the left-hand side of (2.13) can be expressed in the form

$$
\left|0, S_{4}, S_{4}+S_{5}, S_{4}+S_{5}+S_{6}, \ldots, S_{n-2}+S_{n-1}+S_{n}, S_{n-1}+S_{n}, S_{n}\right|
$$

or

$$
\left|S_{4}, S_{4}+S_{5}, \ldots, S_{n-1}+S_{n}, S_{n}\right| .
$$

Corollary 1.6. Let $A_{1} \ldots A_{n}$ be a polygon in $\mathbb{R}^{2}, k \in \mathbb{N}$ such that $G C D(k, n)=2$ and $\sum_{i=1}^{n}(-1)^{i} A_{i}=0$, which can be written as $S=2 \sum_{i=1}^{n / 2-1} A_{2 i-1}=$ $2 \sum_{i=1}^{n / 2-1} A_{2 i+2}$. Then the polygon $Q_{1} \ldots Q_{n}$ given by

$$
\begin{align*}
& n Q_{1}=S-2\left(S_{3}+S_{5}+\cdots+S_{n-1}\right) \tag{2.14}\\
& n Q_{2}=S-2\left(S_{4}+S_{6}+\cdots+S_{n}\right), \tag{2.15}\\
& n Q_{2 i+1}=Q_{1}+S_{2 i+1}, \tag{2.16}\\
& n Q_{2 i+2}=Q_{2}+S_{2 i+2}, \quad\left(i=1, \ldots, \frac{n}{2}-1\right) \tag{2.17}
\end{align*}
$$

is the only one k-outscribed to the polygon $A_{1} \ldots A_{n}$ and in the same time it can be k-outscribed.

Proof. The condition $\left(E_{k}\right)$ if fulfilled, that is, $S=2 \sum_{i=1}^{n / 2-1} Q_{2 i-1}=2 \sum_{i=1}^{n / 2-1} Q_{2 i}$, if Q_{1} and Q_{2} are chosen so, that

$$
\begin{aligned}
& \frac{S}{2}=Q_{1}+\left(Q_{1}+S_{3}\right)+\cdots+\left(Q_{1}+S_{n-1}\right) \\
& \frac{S}{2}=Q_{2}+\left(Q_{2}+S_{4}\right)+\cdots+\left(Q_{2}+S_{n}\right)
\end{aligned}
$$

Namely, in that case (2.14) and (2.15) are fulfilled.
Corollary 1.7. Let $A_{1} \ldots A_{n}$ be any given polygon in $\mathbb{R}^{2}, k \in \mathbb{R}^{2}$, such that $G C D(n, k)=d>2$ and let $\left(E_{k}\right)$ be fulfilled. Then the polygon $Q_{1} \ldots Q_{n}$ given by

$$
\begin{equation*}
n Q_{i}=S-d\left(S_{i+k}+S_{i+2 k}+\cdots+S_{i+(\hat{x}-1) k}\right), \quad(i=1, \ldots, d) \tag{2.18}
\end{equation*}
$$

and by

$$
\begin{align*}
& Q_{1+i k}=Q_{1}+S_{1+i k}, \\
& Q_{2+i k}=Q_{2}+S_{2+i k}, \\
& \quad \vdots \tag{2.19}\\
& Q_{d+i k}=Q_{d}+S_{d+i k}, \quad(i=1, \ldots, \hat{x}-1)
\end{align*}
$$

is the only one k-outscribed to the polygon $A_{1} \ldots A_{n}$ and has the property that it can be k-outscribed.

Proof. Analogously to the case when $d=2$, we choose Q_{1}, \ldots, Q_{d} so that

$$
\begin{equation*}
\frac{S}{d}=Q_{i}+\left(Q_{i}+S_{i+k}\right)+\cdots+\left(Q_{i}+S_{i+(\hat{x}-1) k}\right), \quad(i=1, \ldots, d) \tag{k}
\end{equation*}
$$

The following theorems refer to an inequality concerning k-outscribed polygons. Let us introduce the notation which will be used in the sequel.

Let $P_{i}\left(p_{i}, q_{i}\right)$ and $P_{i+1}\left(p_{i+1}, q_{i+1}\right)$ be points in \mathbb{R}^{2}. Then

$$
\begin{aligned}
& \left|P_{i}-P_{i+1}\right|^{2}=\left(p_{i}-p_{i+1}\right)^{2}+\left(q_{i}-q_{i+1}\right)^{2}, \\
& \frac{\mathrm{~d}}{\mathrm{~d} p_{i}}\left|P_{i}-P_{i+1}\right|^{2}=2\left(p_{i}-p_{i+1}\right), \quad \frac{\mathrm{d}}{\mathrm{~d} q_{i}}\left|P_{i}-P_{i+1}\right|^{2}=2\left(q_{i}-q_{i+1}\right) .
\end{aligned}
$$

Remark 1. For sake of simplicity we write $\frac{\mathrm{d}}{\mathrm{d} P_{i}}\left|P_{i}-P_{i+1}\right|^{2}$, whose meaning is $\frac{\mathrm{d}}{\mathrm{d} P_{i}}\left|P_{i}-P_{i+1}\right|^{2}=\left(2\left(p_{i}-p_{i+1}\right), 2\left(q_{i}-q_{i+1}\right)\right)$ or $\frac{\mathrm{d}}{\mathrm{d} P_{i}}\left|P_{i}-P_{i+1}\right|^{2}=2\left(P_{i}-P_{i+1}\right)$.
Of course, $\frac{\mathrm{d}}{\mathrm{d} P_{i+1}}\left|P_{i}-P_{i+1}\right|^{2}=-2\left(P_{i}-P_{i+1}\right)$.

Theorem 2. Let $A_{1} \ldots A_{n}$ be any given polygon in \mathbb{R}^{2} such that n is even, $d=$ 2 and $\sum_{i=1}^{n}(-1)^{i} A_{i}=0$. Then for every 2 -outscribed polygon $P_{1} \ldots P_{n}$ to the polygon $A_{1} \ldots A_{n}$ we have

$$
\sum_{i=1}^{n}\left|P_{i}-P_{i+1}\right|^{2} \geq \sum_{i=1}^{n}\left|Q_{i}-Q_{i+1}\right|^{2}
$$

where $Q_{1} \ldots Q_{n}$ is 2 -outscribed to $A_{1} \ldots A_{n}$ and it can be 2 -outscribed.
Proof. First, let us remark that from

$$
\begin{equation*}
\sum_{i=1}^{n}(-1)^{i} Q_{i}=0 \text { and } Q_{i}+Q_{i+1}=2 A_{i}, \quad(i=1, \ldots, n) \tag{2.20}
\end{equation*}
$$

one gets

$$
\begin{align*}
& \frac{n}{2} Q_{1}=(n-1) A_{1}-(n-2) A_{2}+(n-3) A_{3}-\cdots+A_{n-1}, \\
& \frac{n}{2} Q_{2}=(n-1) A_{2}-(n-2) A_{3}+(n-3) A_{4}-\cdots+A_{n}, \tag{2.21}\\
& \quad \vdots \\
& \frac{n}{2} Q_{n}=(n-1) A_{n}-(n-2) A_{1}+(n-3) A_{2}-\cdots+A_{n-2} .
\end{align*}
$$

Since by $P_{i}+P_{i+1}=2 A_{i}, i=1, \ldots, n$, it follows

$$
\begin{align*}
& P_{2}=2 A_{1}-P_{1} \\
& P_{3}=2 A_{2}-2 A_{1}+P_{1}, \tag{2.22}\\
& \vdots \\
& P_{n}=2 A_{n-1}-2 A_{n-2}+2 A_{n-3}-\cdots+2 A_{1}-P_{1},
\end{align*}
$$

it is clear that the sum $\sum_{i=1}^{n}\left|P_{i}-P_{i+1}\right|^{2}$ depends only on P_{1}; the equation $\frac{\mathrm{d}}{\mathrm{d} P_{i}} \sum_{i=1}^{n}\left|P_{i}-P_{i+1}\right|^{2}=0$ can be written as

$$
\left(2 P_{1}-2 A_{1}\right)-\left(-2 P_{1}-2 A_{2}+4 A_{1}\right)+\cdots-\left(2 A_{n}-2 P_{1}\right)=0,
$$

so, that we conclude

$$
\frac{n}{2} P_{1}=(n-1) A_{1}-(n-2) A_{2}+(n-3) A_{3}-\cdots+A_{n-1}
$$

Now, from (2.22) it follows

$$
\begin{aligned}
& \frac{n}{2} P_{2}=(n-1) A_{2}-(n-2) A_{3}+(n-3) A_{4}-\cdots+A_{n} \\
& \quad \vdots \\
& \frac{n}{2} P_{n}=(n-1) A_{n}-(n-2) A_{1}+(n-3) A_{2}-\cdots+A_{n-2}
\end{aligned}
$$

Thus, $P_{i}=Q_{i}, i=1, \ldots, n$, where Q_{i} are given by (2.21). Indeed, it is not difficult to see that $\frac{\mathrm{d}^{2}}{\mathrm{~d} P_{1}^{2}} \sum_{i=1}^{n}\left|P_{i}-P_{i+1}\right|^{2}=2 n>0$. Consequently, $\sum_{i=1}^{n}\left|P_{i}-P_{i+1}\right|^{2}$ takes its minimal value for $P_{i}=Q_{i}, i=1, \ldots, n$.

Although this theorem is a corollary of the following one, its proof is interesting in itself. The following theorem concerns Corollary 1.6.

Theorem 3. Let $A_{1} \ldots A_{n}$ and $Q_{1} \ldots Q_{n}$ be as in Corollary 1.6. Then for any k-outscribed polygon $P_{1} \ldots P_{n}$ to the polygon $A_{1} \ldots A_{n}$ we have

$$
\sum_{i=1}^{n}\left|P_{i}-P_{i+1}\right|^{2} \geq \sum_{i=1}^{n}\left|Q_{i}-Q_{i+1}\right|^{2}
$$

that is, $P_{i}=Q_{i}, i=1, \ldots, n$ minimizes $\sum_{i=1}^{n}\left|P_{i}-P_{i+1}\right|^{2}$.
Proof. Since $d=2$, one rewrites $\sum_{i=1}^{n} P_{i}=S$ into

$$
P_{1}+P_{2}+\left(P_{1}+S_{3}\right)+\left(P_{2}+S_{4}\right)+\cdots+\left(P_{1}+S_{n-1}\right)+\left(P_{2}+S_{n}\right)=S
$$

from which it follows

$$
\begin{equation*}
P_{2}=L-P_{1}, \tag{2.23}
\end{equation*}
$$

where
$L=\frac{2}{n} S-\frac{2}{n}\left(W_{1}+W_{2}\right), \quad W_{1}=S_{3}+S_{5}+\cdots+S_{n-1}, \quad W_{2}=S_{4}+S_{6}+\cdots+S_{n}$.
The equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} P_{1}} \sum_{i=1}^{n}\left|P_{i}-P_{i+1}\right|^{2}=0 \tag{2.24}
\end{equation*}
$$

becomes

$$
\begin{aligned}
P_{1}-\left(L-P_{1}\right)-(L- & \left.P_{1}\right)-\left(P_{1}+S_{3}\right)+\left(P_{1}+S_{3}\right)-\left(L-P_{1}+S_{4}\right)+\cdots+ \\
& \left(P_{1}+S_{n-1}\right)-\left(L-P_{1}+S_{n}\right)-\left(L-P_{1}+S_{n}\right)-P_{1}=0,
\end{aligned}
$$

from which it follows

$$
2 n P_{1}-n L+2 W_{1}-2 W_{2}=0
$$

and finally

$$
n P_{1}=S-2 W_{1}
$$

Now, by (2.23) and $P_{3}=P_{1}+S_{3}, \ldots, P_{n}=P_{2}+S_{n}$, we have

$$
\begin{aligned}
& n P_{2}=S-2 W_{2}, \\
& P_{2 i+1}=P_{1}+S_{2 i+1}, \quad P_{2 i+2}=P_{2}+S_{2 i+2}, \quad(i=1, \ldots, n / 2-1)
\end{aligned}
$$

(cf. Corollary 1.6). It is easy to see that the second derivative equals $2 n>0$). This proves Theorem 3.

The following theorem concerns Corollary 1.7.

Theorem 4. Let $A_{1} \ldots A_{n}$ be any given k-outscribed polygon in \mathbb{R}^{2}, where $1<$ $k<n$ and $G C D(k, n)=d>2$. In other words, let $\left(\mathrm{E}_{k}\right)$ be fulfilled, that is

$$
\begin{equation*}
A_{i}+A_{i+k}+A_{i+2 k}+\cdots+A_{i+(\hat{x}-1) k}=\frac{S}{d}, \quad(i=1, \ldots, d) \tag{2.25}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{x}=\frac{n}{d}, \quad S=\sum_{i=1}^{n} A_{i} . \tag{2.26}
\end{equation*}
$$

Then, for every k-outscribed polygon $P_{1} \ldots P_{n}$ to the polygon $A_{1} \ldots A_{n}$ we have that

$$
\begin{equation*}
\sum_{i=1}^{n}\left|P_{i}-P_{i+1}\right|^{2} \geq \sum_{i=1}^{n}\left|Q_{i}-Q_{i+1}\right|^{2} \tag{2.27}
\end{equation*}
$$

where $Q_{1} \ldots Q_{n}$ is k-outscribed to $A_{1} \ldots A_{n}$ and it can be k-outscribed too.
In other words, $P_{i}=Q_{i}, i=1, \ldots, n$ minimizes $\sum_{i=1}^{n}\left|P_{i}-P_{i+1}\right|^{2}$.
Proof. The following lemma will be used in the proving procedure.
Lemma 1. For all $i=1, \ldots, d$ we have

$$
\begin{equation*}
\left\{A_{i}, A_{i+k}, A_{i+2 k}, \ldots, A_{i+(\hat{x}-1) k}\right\}=\left\{A_{i}, A_{i+d}, A_{i+2 d}, \ldots, A_{i+(\hat{x}-1) d}\right\}, \tag{2.28}
\end{equation*}
$$

calculating the indices $\bmod n$, that is,

$$
\begin{equation*}
\{i, i+k, i+2 k, \ldots, i+(\hat{x}-1) k\}=\{i, i+d, i+2 d, \ldots, i+(\hat{x}-1) d\} . \tag{2.29}
\end{equation*}
$$

Proof of Lemma 1. Let q be the integer with $k=q d$. By (2.25) it is clear that for each $i=1, \ldots, d$ there are no two integers in the sequence

$$
\begin{equation*}
i, i+q d, i+2 q d, \ldots, i+(\hat{x}-1) q d \tag{2.30}
\end{equation*}
$$

equal modulo n. Also, it is clear that for each $i=1, \ldots, d$, between integers

$$
\begin{equation*}
i, i+d, i+2 d, \ldots, i+(\hat{x}-1) d \tag{2.31}
\end{equation*}
$$

we cannot find two identical ones modulo n. But, since d is a divisor of n, that is $\hat{x} d=n$, we conclude (2.29). This proves Lemma 1 .

Let us proceed with the proof of Theorem 4. Let $P_{1} \ldots P_{n}$ be a k-outscribed to $A_{1} \ldots A_{n}$, that is, Theorem 1 ensures the existence of points P_{1}, \ldots, P_{d-1} such that

$$
\begin{equation*}
P_{i+j d}=P_{i}+S_{i+j d}, \quad(i=1, \ldots, d) \quad \text { and } \quad(j=1, \ldots, \hat{x}-1) \tag{2.32}
\end{equation*}
$$

where P_{d} is given by

$$
\begin{equation*}
P_{d}=\frac{d}{n} S-\frac{d}{n}\left(W_{1}+\cdots+W_{d}\right)-\left(P_{1}+\cdots+P_{d-1}\right), \tag{2.33}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{i}=S_{i+d}+S_{i+2 d}+\cdots+S_{i+(\hat{x}-1) d}, \quad(i=1, \ldots, d) \tag{2.34}
\end{equation*}
$$

It will be shown that the equations

$$
\frac{\mathrm{d}}{\mathrm{~d} P_{j}} \sum_{i=1}^{n}\left|P_{i}-P_{i+1}\right|^{2}=0, \quad(j=1, \ldots, d-1)
$$

are fulfilled with P_{1}, \ldots, P_{d} given by

$$
\begin{equation*}
n P_{i}=S-d\left(S_{i+d}+S_{i+2 d}+\cdots+S_{i+(\hat{x}-1) d}\right), \quad(i=1, \ldots, d) \tag{2.35}
\end{equation*}
$$

that means, if $P_{i}=Q_{i}, i=1, \ldots, n$ (cf. Corollary 1.7).
First, put $j=1$. Then, $\frac{\mathrm{d}}{\mathrm{d} P_{1}} \sum_{i=1}^{n}\left|P_{i}-P_{i+1}\right|^{2}$ can be written as

$$
\begin{align*}
& 2\left(P_{1}-P_{2}\right)+0+\cdots+0+2\left(P_{d-1}-P_{d}\right)-4\left(P_{d}-P_{1+d}\right)+ \\
& 2\left(P_{1+d}-P_{2+d}\right)+0+\cdots+0+2\left(P_{2 d-1}-P_{2 d}\right)-4\left(P_{2 d}-P_{1+2 d}\right)+ \\
& \quad \vdots \tag{2.36}\\
& 2\left(P_{1+(\hat{x}-1) d}-P_{2+(\hat{x}-1) d}\right)+0+\cdots+0+2\left(P_{n-1}-P_{n}\right)-4\left(P_{n}-P_{1}\right)=0,
\end{align*}
$$

where $d-1+(\hat{x}-1) d=n-1$, i.e. $\hat{x} d=n$.
Using the relations (2.35) transformed into:

$$
\begin{equation*}
P_{i}=\frac{S}{d}-\left(P_{i+d}+P_{i+2 d}+\cdots+P_{i+(\hat{x}-1) d}\right), \quad(i=1, \ldots, d) \tag{2.37}
\end{equation*}
$$

it is not difficult to see that the equation (2.36) can be written as

$$
\begin{aligned}
& 6 P_{1}-2 P_{2}+2 P_{d-1}-6 P_{d}+ \\
& \quad 6\left(P_{1+d}+P_{1+2 d}+\cdots+P_{1+(\hat{x}-1) d}\right)- \\
& 2\left(P_{2+d}+P_{2+2 d}+\cdots+P_{2+(\hat{x}-1) d}\right)+ \\
& 2\left(P_{d-1+d}+P_{d-1+2 d}+\cdots+P_{d-1+(\hat{x}-1) d}\right)- \\
& 6\left(P_{d+d}+P_{d+2 d}+\cdots+P_{d+(\hat{x}-1) d}\right)=0 .
\end{aligned}
$$

Thus, the equation (2.36) is satisfied for P_{1}, \ldots, P_{d} such that are given by (2.37) when $P_{i}=Q_{i}, i=1, \ldots, n$.

Generally, setting some integer $j \in\{2, \ldots, d-1\}$, the equation $\left.\frac{\mathrm{d}}{\mathrm{d} P_{j}} \sum_{i=1}^{n} \right\rvert\, P_{i}-$ $\left.P_{i+1}\right|^{2}=0$ will take the form

$$
-2\left(P_{j-1}-P_{j}\right)+2\left(P_{j}-P_{j+1}\right)+0+\cdots+0+2\left(P_{d-1}-P_{d}\right)-2\left(P_{d}-P_{1+d}\right)-
$$

$$
-2\left(P_{j-1+w}-P_{j+w}\right)+2\left(P_{j+w}-P_{j+1+w}\right)+0+\cdots
$$

$$
\cdots+0+2\left(P_{d-1+w}-P_{\hat{x} d}\right)-2\left(P_{\hat{x} d}-P_{1}\right)=0
$$

where we write $w:=(\hat{x}-1) d$.
Using relations (2.37), it is easy to see that the above equation can be rewritten into

$$
\begin{aligned}
2 P_{1} & -2 P_{j-1}+4 P_{j}-2 P_{j+1}+2 P_{d-1}-4 P_{d} \\
& +2\left(P_{1+d}+P_{1+2 d}+\cdots+P_{1+(\hat{x}-1) d}\right) \\
& -2\left(P_{j-1+d}+P_{j-1+2 d}+\cdots+P_{j-1+(\hat{x}-1) d}\right) \\
& +4\left(P_{j+d}+P_{j+2 d}+\cdots+P_{j+(\hat{x}-1) d}\right) \\
& -2\left(P_{j+1+d}+P_{j+1+2 d}+\cdots+P_{j+1+(\hat{x}-1) d}\right) \\
& +2\left(P_{d-1+d}+P_{d-1+2 d}+\cdots+P_{d-1+(\hat{x}-1) d}\right) \\
& -4\left(P_{d+d}+P_{d+2 d}+\cdots+P_{d+(\hat{x}-1) d}\right)=0 .
\end{aligned}
$$

As it can be easily seen, all the second derivatives with respect to P_{1}, \ldots, P_{d-1} are positive. So, by (2.36) it follows that $\frac{\mathrm{d}}{\mathrm{d} P_{1}}\left(\frac{\mathrm{~d}}{\mathrm{~d} P_{1}} \sum_{i=1}^{n}\left|P_{i}-P_{i+1}\right|^{2}\right)=2 d+6 d>0$, since for example, $P_{1+d}=P_{1}+S_{1+d}, P_{d+d}=P_{d}+S_{d+d}$ and (2.33) holds.

Thus, $\sum_{i=1}^{n}\left|P_{i}-P_{i+1}\right|^{2}$ attains its minimum when $P_{i}=Q_{i}, i=1, \ldots, n$.
As a corollary of Theorems 1 and 4 we have the following result concerning a special polygon in the set of all k-outscribed polygons to $A_{1} \ldots A_{n}$.

Theorem 5. Let $A_{1} \ldots A_{n}$ be as in Theorem 4. Then, there exists only one k outscribed polygon to $A_{1} \ldots A_{n}$ and has the property that it can be k-outscribed.

Proof. The validity of this theorem can be easily seen by Corollary 1.7. Namely, let $Q_{1} \ldots Q_{n}$ be a given k-outscribed polygon to $A_{1} \ldots A_{n}$ and which one has the property that it can be k-outscribed; therefore (E_{k}) (in Corollary 1.7) is fulfilled. By this fact and by the relations (2.2), (2.3) it follows that (2.18), (2.19) have to be valid. Thus, $Q_{1} \ldots Q_{n}$ must be the same as that one in Corollary 1.7.

Theorem 6. Let $Q_{1} \ldots Q_{n}$ be as in Theorem 5. Then

$$
2 \text { area of } Q_{1} \ldots Q_{n}=\left|Q_{1}+Q_{2}, \ldots, Q_{n-1}+Q_{n}, Q_{n}+Q_{1}\right|
$$

where

$$
\begin{aligned}
Q_{i} & =\frac{S}{d}-\left(S_{i+d}+S_{i+2 d}+\cdots+S_{i+(\hat{x}-1) d}\right), \quad(i=1, \ldots, d) \\
Q_{i+j d} & =Q_{i}+S_{i+j d}, \quad(i=1, \ldots, d) \quad \text { and } \quad(j=1, \ldots, \hat{x}-1) .
\end{aligned}
$$

The proof of Theorem 6 is analogous to the proof of Corollary 1.2.
The following question arises immediately: "What will be happen when we replace the power 2 in $\sum_{i=1}^{n}\left|P_{i}-P_{i+1}\right|^{2}$ with $2 \alpha \in \mathbb{R}_{+}$?" We present an answer only in the case of quadrilaterals, $n=4$.

Theorem 7. Let $A_{1} A_{2} A_{3} A_{4}$ be a 2-outscribed quadrilateral, that is $A_{1}-A_{2}+$ $A_{3}-A_{4}=0$. Let $Q_{1} Q_{2} Q_{3} Q_{4}$ be a 2-outscribed quadrilateral to $A_{1} A_{2} A_{3} A_{4}$ and it can be 2-outscribed, that is

$$
\begin{aligned}
& 2 Q_{1}=3 A_{1}-2 A_{2}+A_{3}, \\
& 2 Q_{2}=3 A_{2}-2 A_{3}+A_{4}, \\
& 2 Q_{3}=3 A_{3}-2 A_{4}+A_{1}, \\
& 2 Q_{4}=3 A_{4}-2 A_{1}+A_{2} .
\end{aligned}
$$

Then for every 2-outscribed $P_{1} P_{2} P_{3} P_{4}$ to the $A_{1} A_{2} A_{3} A_{4}$ and for every real number $\alpha>0$ we have

$$
\sum_{i=1}^{4}\left|P_{i}-P_{i+1}\right|^{2 \alpha} \geq \sum_{i=1}^{4}\left|Q_{i}-Q_{i+1}\right|^{2 \alpha}
$$

Proof. Since P_{1} can be arbitrary and $P_{i}+P_{i+1}=2 A_{i}, i=1,2,3,4$, we have

$$
\begin{aligned}
& P_{1}(x, y) \text { arbitrary } \\
& P_{2}=2 A_{1}-P_{1} \\
& P_{3}=2 A_{2}-2 A_{1}+P_{1} \\
& P_{4}=2 A_{3}-2 A_{2}+2 A_{1}-P_{1}
\end{aligned}
$$

where $A_{i}\left(a_{i}, b_{i}\right), i=1,2,3,4$. Thus

$$
\begin{aligned}
& P_{1}-P_{2}=-2 A_{1}+2 P_{1} \\
& P_{2}-P_{3}=-2 A_{2}+4 A_{1}-2 P_{1} \\
& P_{3}-P_{4}=-2 A_{3}+4 A_{2}-4 A_{1}+2 P_{1} \\
& P_{4}-P_{1}=2 A_{3}-2 A_{2}+2 A_{1}-2 P_{1}=2 A_{4}-2 P_{1} .
\end{aligned}
$$

The equation $\frac{\mathrm{d}}{\mathrm{d} x} \sum_{i=1}^{4}\left|P_{i}-P_{i+1}\right|^{2 \alpha}=0$ becomes

$$
F+G+H+K=0,
$$

where

$$
\begin{aligned}
F= & 2 \alpha\left[\left(2 x-2 a_{1}\right)^{2}+\left(2 y-2 b_{1}\right)^{2}\right]^{\alpha-1}\left(2 x-2 a_{1}\right), \\
G= & 2 \alpha\left[\left(-2 x-2 a_{2}+4 a_{1}\right)^{2}+\left(-2 y-2 b_{2}+4 b_{1}\right)^{2}\right]^{\alpha-1}\left(2 x+2 a_{2}-4 a_{1}\right), \\
H= & 2 \alpha\left[\left(2 x-2 a_{3}+4 a_{2}-4 a_{1}\right)^{2}\right. \\
& \left.+\left(2 y-2 b_{3}+4 b_{2}-4 b_{1}\right)^{2}\right]^{\alpha-1}\left(2 x-2 a_{3}+4 a_{2}-4 a_{1}\right), \\
K= & 2 \alpha\left[\left(-2 x+2 a_{4}\right)^{2}+\left(-2 y+2 b_{4}\right)^{2}\right]^{\alpha-1}\left(2 x-2 a_{4}\right) .
\end{aligned}
$$

It is not difficult to see that

$$
F+G=H+K=0 \quad \text { if } \quad 2 P_{1}=3 A_{1}-2 A_{2}+A_{3},
$$

that means:

$$
\begin{aligned}
\left(2 x-2 a_{1}\right)+\left(2 x-2 a_{3}+4 a_{2}-4 a_{1}\right)=0 & \Longleftrightarrow 2 x=3 a_{1}-2 a_{2}+a_{3}, \\
\left(2 x+2 a_{2}-4 a_{1}\right)+\left(2 x-2 a_{4}\right)=0 & \Longleftrightarrow 2 x=3 a_{1}-2 a_{2}+a_{3},
\end{aligned}
$$

and also

$$
\begin{aligned}
& \left(2 x-2 a_{1}\right)^{2}=\left(2 x-2 a_{3}+4 a_{2}-4 a_{1}\right)^{2} \\
& \left(-2 x-2 a_{2}+4 a_{1}\right)^{2}=\left(-2 x+2 a_{4}\right)^{2} .
\end{aligned}
$$

Now, we have $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\mathrm{~d}}{\mathrm{~d} x} \sum_{i=1}^{4}\left|P_{i}-P_{i+1}\right|^{2 \alpha}\right)>0$ when $2 x=3 a_{1}-2 a_{2}+a_{3}$.
Analogously, the same result can be proved for y in $P(x, y)$. This finishes the proof of Theorem 7 .

Acknowledgment. The author of the article expresses his thankfulness to the referee for many very useful proposals.

This research was supported in part by Research Project No. 112-23528182814 of Ministry of Sciences, Education and Sports of Croatia.

References

[1] Radić, M.: A definition of determinant of rectangular matrix. Glas. Mat., III. Ser. 1(21) (1966), 17-22.
[2] Radić, M.: About a determinant of rectangular $2 \times n$ matrix and its geometric interpretation. Beitr. Algebra Geom. 46(2) (2005), 321-349. Zbl 1090.15009
[3] Radić, M.: Areas of certain polygons in connection with determinants of rectangular matrices. Beitr. Algebra Geom. 49(1) (2008), 71-96.

