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Abstract. Let C = {C1, . . . , Cn} be a family of distinct boxes in Rd

whose intersection graph is a tree, and let S = C1∪· · ·∪Cn. Let T ⊆ S.
The set T lies in a staircase convex subset of S if and only if for every
a, b in T there is an a−b staircase path in S. This result, in turn, yields
necessary and sufficient conditions for S to be a union of k staircase
convex sets, k ≥ 1. Analogous results characterize S as a union of k
staircase starshaped sets.
Further, when d ≥ 3, the set S above will be staircase convex if and only
if for every chain A of boxes in C, each projection of A into a coordinate
hyperplane is staircase convex.
Finally, if S is any orthogonal polytope in Rd, d ≥ 2, S is staircase
convex if and only if, for every j-flat F parallel to a coordinate flat,
F ∩ S is connected, 1 ≤ j ≤ d− 1.

MSC 2000: 52.A30, 52.A35
Keywords: orthogonal polytopes, staircase convex sets, staircase star-
shaped sets

1. Introduction

We begin with some definitions from [2] and [3]. A set B in Rd is called a box if
and only if B is a convex polytope (possibly degenerate) whose edges are parallel
to the coordinate axes. A set S in Rd is an orthogonal polytope if and only if S
is a connected union of finitely many boxes. Let λ be a simple polygonal path in
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Rd whose edges are parallel to the coordinate axes. For x, y in S, the path λ is
called an x− y path in S if and only if λ lies in S and contains the points x and
y; λ is an x − y geodesic in S if and only if λ is an x − y path of minimal length
in S. (Clearly an x − y geodesic need not be unique.) The path λ is a staircase
path if and only if no two of its edges have opposite directions. That is, for each
standard basis vector ei, 1 ≤ i ≤ d, all the edges of λ parallel to ei have the same
direction. For convenience of notation, we use ei or −ei to indicate the associated
direction. Clearly if λ is a staircase path in S with endpoints x and y, then λ is
an x−y geodesic in S. Moreover, if S contains an x−y staircase path, then every
x− y geodesic in S is an x− y staircase.

For points x and y in a set S, we say x sees y (x is visible from y) via staircase
paths if and only if there is a staircase path in S that contains both x and y. A set
S is staircase convex (orthogonally convex) if and only if for every pair x, y in S, x
sees y via staircase paths. Similarly, a set S is staircase starshaped (orthogonally
starshaped) if and only if for some point p in S, p sees each point of S via staircase
paths. The set of all such points p is the staircase kernel of S. For a set S in the
plane, S is called horizontally convex if and only if for each x, y in S with [x, y]
horizontal, it follows that [x, y] ⊆ S. Vertically convex is defined analogously.
Using a result by Motwani et al. [13, Lemma 1], an orthogonal polygon S in the
plane is staircase convex if and only if S is both horizontally convex and vertically
convex.

We will use a few standard terms from graph theory. For F = {C1, . . . , Cn}
a finite collection of distinct sets, the intersection graph G of F has vertex set
c1, . . . , cn. Further, for 1 ≤ i < j ≤ n, the points ci, cj determine an edge in G if
and only if the corresponding sets Ci, Cj in F have a nonempty intersection. A
graph G is a tree if and only if G is connected and acyclic. A sequence v1, . . . , vk

of vertices in G is a walk if and only if each consecutive pair vi, vi+1 determines
an edge of G, 1 ≤ i ≤ k − 1. A walk v1, . . . , vn is a path if and only if its points
are distinct.

Finally, for B1, . . . , Bn a collection of distinct boxes in Rd, we say that their
union is a chain of boxes (relative to our ordering) if and only if the intersection
graph of {B1, . . . , Bn} is the path b1, . . . bn (where bi represents the set Bi in the
intersection graph, 1 ≤ i ≤ n). That is, relative to our labeling, for 1 ≤ i < j ≤
k,Bi ∩Bj 6= ∅ if and only if j = i + 1.

Many results in convexity that involve the usual notion of visibility via straight
line segments have interesting analogues that instead use the idea of visibility via
staircase paths. For example, the familiar Krasnosel’skii theorem [8] says that, for
a nonempty compact set S in the plane, S is starshaped via segments if and only
if every three points of S see via segments in S a common point. In the staircase
analogue [1], for a nonempty simply connected orthogonal polygon S in R2, S is
staircase starshaped if and only if every two points of S see via staircase paths in
S a common point. Moreover, in an interesting study involving rectilinear spaces,
Chepoi [4] has generalized the planar result to any finite union S of boxes in Rd

whose corresponding intersection graph is a tree. In this paper, we examine such
a union S of boxes in Rd and extend other planar results to S, obtaining necessary
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and sufficient conditions for S to be a union of k staircase convex (or k staircase
starshaped) sets. Finally, we generalize a planar result [13, Lemma 1] to give
necessary and sufficient conditions for an arbitrary union of boxes in R2 to be
staircase convex.

We will use the following terminology. For convenience, we call each of the
hyperplanes {(x1, . . . , xd) : xi = 0}, 1 ≤ i ≤ d, a coordinate hyperplane. Similarly,
any intersection of coordinate hyperplanes will be a coordinate flat, while any
projection of Rd onto a coordinate hyperplane will be a coordinate projection. If λ
is a simple path containing points x and y, then λ(x, y) will denote the subpath of
λ from x to y (ordered from x to y). Readers may refer to Valentine [14], to Lay
[10], to Danzer, Grünbaum, Klee [5], to Eckhoff [6], to Martini and Soltan [11],
and to Martini and Wenzel [12] for discussions concerning visibility via straight
line segments and starshaped sets. Readers may refer to Harary [7] for information
on intersection graphs, trees, and other graph theoretic concepts.

2. The results

We begin with a lemma.

Lemma 1. Let C = {C1, . . . , Cn} be a family of distinct boxes in Rd whose
intersection graph is a tree, and let S = C1 ∪ · · · ∪ Cn. Set S is staircase convex
if and only if, for every chain A of boxes in C, A is staircase convex.

Proof. We begin with some preliminary comments. Observe that any path δ in S
corresponds in an obvious way to an associated walk (not necessarily unique) in
the intersection graph of C, where the walk is determined by the Ci sets met by
δ. For points a, b in S and for any a− b geodesic λ = λ(a, b) in S, λ corresponds
to a path w(λ) in the intersection graph of C. The path w(λ) need not be unique,
since the point a may belong to two members of C, as may the point b. Similarly,
the geodesic λ lies in a corresponding chain C1(λ) ∪ · · · ∪ Ck(λ) of boxes in C,
where a ε C1(λ), b ε Ck(λ). (Again, C1(λ), . . . , Ck(λ) need not be unique.) Since the
intersection graph of C is a tree, clearly C1(λ) ∪ · · · ∪ Ck(λ) contains every a − b
geodesic in S. Moreover, if k(λ) ≥ 3 then intermediate boxes C2(λ), . . . , C(k−1)(λ)

are uniquely determined by a and b. Of course, if a ∈ C2(λ) then λ ⊆ C2(λ) ∪
· · · ∪ C(k−1)(λ). Similarly, if a ∈ C2(λ) and b ∈ C(k−1)(λ), then λ ⊆ C2(λ) ∪ · · · ∪
C(k−1)(λ). This implies that if k(λ) is as small as possible and k(λ) ≥ 2 then the
corresponding boxes C1(λ), . . . , Ck(λ) are uniquely determined by a and b.

To establish the lemma, assume that S is staircase convex, with A a chain of
boxes in C. For convenience of notation, let A = C1 ∪ · · · ∪ Ck. To see that A is
staircase convex, select a, b in A to find a corresponding a − b staircase path in
A. If k = 1 or k = 2, the result is easy, so assume that k ≥ 3. Without loss of
generality, assume that a ε C1\C2, b ε Ck\Ck−1 (for otherwise we could restrict our
attention to a subchain). The set S contains an a− b staircase path λ(a, b), and
by our preliminary comments λ(a, b) lies in a chain of boxes C ′

1 ∪ · · · ∪ C ′
m in C,

where a ε C ′
1, b εC ′

m, and where m is as small as possible. Since the intersection
graph of C is a tree, each set C ′

1, . . . , C
′
m appears in {C1, . . . , Ck}. Then C ′

1 is
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either C1 or C2, and since a /∈ C2, C ′
1 = C1. Similarly, C ′

m = Ck, and the chains
are identical. Therefore λ(a, b) lies in our original chain A. We conclude that A
is staircase convex, the desired result.

Conversely, assume that each chain of boxes in C is staircase convex to prove
that S is staircase convex. Let s, t belong to S, and let λ(s, t) be any s−t geodesic
in S. By our preliminary comments, λ(s, t) lies in a chain A of boxes in C. Since A
is staircase convex, λ(s, t) must be a staircase path. Hence S is staircase convex,
finishing the proof of the lemma.

The first theorem is a d-dimensional analogue of [3, Lemmas 1 and 2].

Theorem 1. Let C = {C1, . . . , Cn} be a family of distinct boxes in Rd whose
intersection graph is a tree, and let S = C1 ∪ · · · ∪ Cn. Let T ⊆ S. If for every
a, b in T , there is an a− b staircase in S, then T lies in a staircase convex union
of boxes B1 ∪ · · · ∪Bm, where Bi is a subset of some associated box Ci, 1 ≤ i ≤ m
(for an appropriate labeling of members of C).

To establish the theorem, for each a, b in T , let U(a, b) denote the union of all
staircase a− b paths in S, and let U = ∪{U(a, b) : a, b in T}. For each Ci, 1 ≤ i ≤
n, select a smallest box Bi (possibly empty) such that Bi ⊆ Ci and Bi∩U = Ci∩U .
That is, Bi is the smallest subbox of Ci containing Ci ∩ U . Remove any empty
Bi sets. For convenience of notation, assume that B1, . . . , Bm are the remaining
(that is, nonempty) Bi sets, with B1, . . . , Bm distinct. Let B = {B1, . . . , Bm}.
Clearly B1 ∪ · · · ∪Bm is connected, and the intersection graph of B is a tree.

We assert that the union B1 ∪ · · · ∪ Bm satisfies the theorem. Certainly
T ⊆ B1 ∪ · · · ∪Bm, so we need only show that B1 ∪ · · · ∪Bm is staircase convex.
We will prove that any chain of boxes from B is staircase convex. For convenience
of notation, let B1∪· · ·∪Bk be a chain of boxes in B. The result is true for k = 1
and for k = 2. Inductively, let k ≥ 3 and assume that the result holds for chains of
k−1 or fewer boxes in B. Without loss of generality, choose x ε B1\B2, y εBk\Bk−1,
to find an x − y staircase in B1 ∪ · · · ∪ Bk. Select x′ in B2 closest to x. Observe
that any x− x′ staircase lies in B1 and uses at least one and at most d directions.
For convenience of notation, we label these directions e1, . . . , ej for some j, 1 ≤
j ≤ d, where ei is orthogonal to a hyperplane Hi supporting B2 at x′ and where
x is beyond Hi, 1 ≤ i ≤ j. (In case B2 is fully d-dimensional, then each Hi is
determined by a facet Fi of B2 with x′ ∈ Fi and with x beyond Hi, 1 ≤ i ≤ j.)
For future reference, observe that any staircase from x to B2 must use at least the
directions e1, . . . , ej. Moreover, since B1∪· · ·∪Bk−1 (by our induction hypothesis)
is staircase convex, it follows that all points of B2∪· · ·∪Bk−1 must lie on or beneath
each Hi, 1 ≤ i ≤ j.

Recall that B2 ∪ · · · ∪ Bk is staircase convex as well and hence contains an
x′− y staircase. If point y is on or beneath each of the hyperplanes Hi, 1 ≤ i ≤ j,
then no x′−y staircase uses direction −ei, 1 ≤ i ≤ j. We may combine any x−x′

staircase in B1 with any x′ − y staircase in B2 ∪ · · · ∪ Bk to produce an x − y
staircase in B1 ∪ · · · ∪Bk, the desired result.
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It remains to show that y does lie on or beneath each of the hyperplanes
Hi, 1 ≤ i ≤ j. Suppose on the contrary that y lies beyond at least one of
these hyperplanes, to obtain a contradiction. For convenience, assume that y lies
beyond the hyperplane H1. Then for some pair c, d in T and for some staircase
c − d path λ(c, d) in S, λ(c, d) contains a point y1 in Bk beyond H1. Clearly at
least one of c, d must lie beyond H1. Without loss of generality, assume that c lies
beyond H1, and consider the subpath λ(y1, c) of λ(d, c) from y1 to c. The staircase
path λ(y1, c) lies in a chain Bk ∪ · · · ∪Br of boxes in B, with c ε Br. Observe that
the boxes in {Bk, . . . , Br} are distinct from those in {B2, . . . , Bk−1}, since the
staircase path λ(y1, c) is entirely beyond H1 while all points of B2∪ · · · ∪Bk−1 are
beneath (or on) H1.

Similarly, the point x is beyond H1, so for some c′, d′ in T and some staircase
c′ − d′ path λ′(c′, d′) in S, λ′(c′, d′) contains a point x1 in B1 beyond H1. Assume
that c′ lies beyond H1, and choose a chain B′

s ∪ · · · ∪B1 of boxes in B containing
λ′(c′, x1), with c′ ε B′

s. Again observe that the boxes in {B′
s, . . . , B1} are distinct

from those in {B2, . . . , Bk−1}. Also, since the intersection graph of B is a tree, the
union B′

s∪· · ·∪B1∪B2∪· · ·∪Bk−1∪Bk∪· · ·∪Br defines a chain. Clearly any c′−c
geodesic in S must lie in this chain. Moreover, since c′, c ε T any c′− c geodesic is
a staircase path. However, since c′ and c are beyond H1, the travel from c′ to B1

to B2 requires direction e1, while travel from B2 to c requires direction −e1. That
is, no c′− c geodesic in this chain can be straircase. We have a contradiction, our
supposition is false, and y lies on or beneath each hyperplane H1, 1 ≤ i ≤ j.

Using an earlier argument, we conclude that B1 ∪ · · · ∪ Bk does contain an
x − y staircase, finishing the induction. That is, any chain of boxes from B is
staircase convex. By Lemma 1, it follows that B1 ∪ · · · ∪ Bm is indeed staircase
convex, completing the proof of Theorem 1.

The following corollaries are d-dimensional analogues of [3, Theorems 1 and 3].

Corollary 1.1. Let C = {C1, . . . , Cn} be a family of distinct boxes in Rd whose
intersection graph is a tree, and let S = C1 ∪ · · · ∪ Cn. Assume that, for every
finite subset F of S, there is a k-partition of F into subsets F1, . . . , Fk such that
every pair in Fi can be joined by a staircase path in S, 1 ≤ i ≤ k. Then S is a
union of k staircase convex sets.

Proof. The argument, just like the proof of [3, Theorem 1], is included for com-
pleteness. By a result of Lawrence, Hare, Kenelly [9, Theorem 1], the hypothesis
for finite subsets of S implies that there is a corresponding k-partition of S, say
{S1, . . . , Sk}, such that, for every finite subset F of S, every pair in F ∩Si can be
joined by a staircase path in S, 1 ≤ i ≤ k. Then every pair in Si can be joined by
a staircase path in S and, by Theorem 1, Si lies in a staircase convex union Pi of
boxes in S, 1 ≤ i ≤ k. Hence S = ∪{Si : 1 ≤ i ≤ k} is a union of the k staircase
convex sets P1, . . . , Pk.

Corollary 1.2. Let C = {C1, . . . Cn} be a family of distinct boxes in Rd whose
intersection graph is a tree, and let S = C1 ∪ · · · ∪ Cn. Assume that, for every
sequence v1, . . . , vm, vm+1 = v1, in S, m odd, at least one consecutive pair vi, vi+1,
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can be joined by a staircase path in S. Then S is a union of two staircase convex
sets.

Proof. The proof replicates the argument in [3, Theorem 3]. For F any finite
subset of S, define a corresponding graph GF as follows: The vertices of GF

correspond to points in F . Further, two points of GF are adjacent if and only if
their associated points in F can be joined by a staircase path in S.

Let GC represent the graph complement of GF . It is not hard to show that
GC contains no odd cycles and hence GC is a bigraph. (See [3, Theorem 3] for
details.)

Finally, let {A1, A2} be a partition of the vertex set of GC satisfying the
definition of a bigraph. Then {A1, A2} induces a corresponding partition of F ,
and every two points of A1 (of A2) can be joined by a staircase path in S. The
result follows from Corollary 1.1 above.

Remark. Clearly, the converse of Corollary 1.1 and the converse of Corollary 1.2
hold as well.

Using results of Chepoi [4], we obtain the following starshaped analogues of The-
orem 1 and its corollaries. Notice that Theorem 2 is a d-dimensional variation of
[3, Lemma 3].

Theorem 2. Let C = {C1, . . . , Cn} be a family of distinct boxes in Rd whose
intersection graph is a tree, and let S = C1∪· · ·∪Cn. Let T be a nonempty subset
of S. If every two points of T see a common point of S via staircase paths, then
T lies in a subset of S that is starshaped via staircase paths.

Proof. For completeness, we include some definitions from [4]. A metric space
is called a median space if and only if, for each triple of points x, y, z, there is a
unique “median” point between each pair of x, y, z. A median graph is a graph
whose standard graph-metric generates a median space, while a median polyhedron
in Rd is the geometric realization of some finite median graph. (See [4], [15] for
detailed discussions.)

For each point t in T , define V (t) = {x : t sees x via staircase paths in S}.
By Chepoi’s results in [4, Corollary 2], S is a median polyhedron. Moreover, by
[4, Theorem], each set V (t) is compact and convex in the corresponding median
space. Using Helly’s theorem for median spaces [15], since every two of the V (t)
sets meet, they all meet. Choose t0 ε ∩ {V (t) : t in T}. Every point of T sees t0
via staircase paths, so T lies in the starshaped set V (t0) ⊆ S.

The next two corollaries are d-dimensional analogues of [3, Theorems 4 and 5].

Corollary 2.1. Let C = {C1, . . . , Cn} be a family of distinct boxes in Rd whose
intersection graph is a tree, and let S = C1 ∪ · · · ∪ Cn. Assume that for every
finite subset F of S there is a k-partition of F into subsets F1, . . . , Fk such that
every two points in Fi see a common point of S via staircase paths, 1 ≤ i ≤ k.
Then S is a union of k staircase starshaped sets.
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Proof. The argument parallels the proof of Corollary 1.1, using Theorem 2 in
place of Theorem 1.

Corollary 2.2. Let C = {C1, . . . , Cn} be a family of distinct boxes in Rd whose
intersection graph is a tree, and let S = C1 ∪ · · · ∪ Cn. Assume that for every
sequence v1, . . . , vm, vm+1 = v1, in S, m odd, at least one consecutive pair vi, vi+1

sees a common point of S via staircase paths. Then S is a union of two staircase
starshaped sets.

Proof. The argument parallels the proof of Corollary 1.2.

Remark. Clearly, the converse of each corollary holds.

Theorem 3 will use projections to determine whether a chain of boxes is staircase
convex. The following easy lemma will be helpful.

Lemma 2. For d ≥ 2 and for each i, 1 ≤ i ≤ d, let Πi denote the coordinate
projection from Rd onto the coordinate hyperplane {(x1, . . . , xd) : xi = 0}. Let
A, C be boxes in Rd. If A ∩ C = ∅, then for at least d − 1 of the projections
Πi, 1 ≤ i ≤ d, Πi(A) ∩ Πi(C) = ∅.

Proof. Let A be the product of intervals [ai, bi], 1 ≤ i ≤ d, and let C be the
product of intervals [ci, di], 1 ≤ i ≤ d. If A∩C = ∅, then for at least one i, say for
i = 1, [a1, b1] ∩ [c1, d1] = ∅. Without loss of generality, assume a1 ≤ b1 < c1 ≤ d1.
Let H1 be a hyperplane orthogonal to the x1 axis at any point of the segment
(b1, c1). Then H1 strictly separates A and C. For i 6= 1, the (d − 2)-flat Π(Hi)
strictly separates Πi(A) and Πi(C). That is, Πi(A) ∩ Πi(C) = ∅ for 2 ≤ i ≤ d.

Theorem 3. Let A ≡ B1 ∪ · · · ∪Bk be a chain of boxes in Rd, d ≥ 3. The chain
A is staircase convex if and only if, for every subchain D of A, each projection of
D into a coordinate hyperplane is staircase convex.

Proof. If A is staircase convex, so are its subchains. Let D be any subchain of A,
and let Π(D) denote the projection of D into the coordinate hyperplane defined
by x1 = 0. Let a′, b′ ε Π(D), where a′ = Π(a), b′ = Π(b) for a, b in D. Since D
is staircase convex, D contains an a − b staircase λ(a, b). It is easy to see that
Π(λ) defines an a′− b′ staircase in Π(D): Vectors in λ parallel to the x1-axis map
to singleton sets in Π(λ). Each remaining vector (~v) in λ maps to a vector Π(~v),
parallel to ~v and having the same direction as ~v in Π(λ).

To establish the converse, assume that, for every subchain D of A, each pro-
jection of D into a coordinate hyperplane is staircase convex, to prove that A
is staircase convex. We use induction on the number of boxes in the chain A.
Clearly the result holds for chains of one or two boxes. Inductively, assume that
the result holds for chains of k − 1 or fewer boxes, 3 ≤ k, to prove the result
for a chain of k boxes. Let A be the chain B1 ∪ · · · ∪ Bk. To show that A is
staircase convex, select a, b in A to find an appropriate a− b path in A. Without
loss of generality, assume that a ε B1\B2, b ε Bk\Bk−1. As in the proof of Theorem
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1, select a′ in B2 closest to a. Observe that any a − a′ staircase lies in B1 and
uses exactly the j directions e1, . . . , ej for some 1 ≤ j ≤ d, where ei is orthogonal
to the hyperplane Hi supporting B2 at x′ and where x is beyond Hi, 1 ≤ i ≤ j.
Moreover, any staircase from a to B2 must use at least the directions e1, . . . , ej.
Since B1 ∪ · · · ∪Bk−1 is staircase convex, at all points of B2 ∪ · · · ∪Bk−1 must lie
on or beneath each Hi, 1 ≤ i ≤ j.

We will show that the point b must lie on or beneath each Hi, 1 ≤ i ≤ j, as
well. Suppose on the contrary that b lies beyond the hyperplane H1, to obtain
a contradiction. (See Figure 1.) Since k ≥ 3, the boxes B1 and Bk are disjoint.
Hence we may use Lemma 2 to conclude that for at least d− 1 of the coordinate
projections Πi, 1 ≤ i ≤ d, Πi(B1) ∩ Πi(Bk) = ∅. Since d ≥ 3, we may select such
a Πi with i 6= 1. For convenience of notation, assume that Π2(B1) ∩ Π2(Bk) = ∅.
However, then the corresponding projection of our chain, Π2(B1∪· · ·∪Bk), cannot
be staircase convex, since any geodesic joining Π2(a) to Π2(b) will require at least
one vector in direction e1 (to travel from Π(a) to Π(B2 ∪ · · · ∪Bk−1)) and at least
one vector in direction −e1 (to travel from Π(B2 ∪ · · · ∪ Bk−1) to Π(b)). This
contradicts our hypothesis. Our supposition must be fals, and we conclude that
point b indeed lies in or beneath each Hi, 1 ≤ i ≤ j.

Finally, as in the proof of Theorem 1, we may combine any a − a′ staircase
in B1 with any a′ − b staircase in B2 ∪ · · · ∪ Bk to produce an a − b staircase in
B1 ∪ · · · ∪Bk. This finishes the induction and completes the proof of Theorem 3.
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Figure 1.

Corollary 3.1. For d ≥ 3, let C = {C1, . . . , Cn} be a family of distinct boxes in
Rd whose intersection graph is a tree, and let S = C1 ∪ . . . ∪ Cn. The set S is
staircase convex if and only if for every chain A of boxes in C each projection of
A into a coordinate hyperplane is staircase convex.

Proof. This follows immediately from Lemma 1 and Theorem 3.

Our final results concern arbitrary unions of boxes in Rd and provide a d-dimen-
sional analogue of a well-known planar result obtained from [13, Lemma 1].
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Theorem 4. Let S be a connected, finite union of boxes in Rd, d ≥ 2. The set S
is staircase convex if and only if, for every hyperplane H parallel to a coordinate
hyperplane, H ∩ S is staircase convex.

Proof. For the necessity, assume that S is staircase convex, and let H denote
a hyperplane parallel to a coordinate hyperplane with H ∩ S 6= ∅. For a, b in
H ∩S, S contains a staircase a− b path λ ≡ λ(a, b). Clearly λ contains no vector
orthogonal to H, since leaving H on such a vector in one direction e would require
a return to H on a vector in the opposite direction −e. Thus λ ⊆ H ∩S, so H ∩S
is staircase convex.

To establish the sufficiency, assume that every hyperplane parallel to a co-
ordinate hyperplane satisfies the condition in our hypothesis, to prove that S
is staircase convex. We use a contrapositive argument. Suppose on the con-
trary that S fails to be staircase convex. Then for certain pairs a, b in S, every
a − b geodesic in S requires vectors in opposing directions. Select such a pair
a0, b0 whose a0 − b0 geodesic λ = λ(a0, b0) has fewest possible edges n. (That
is, no such a, b has a corresponding geodesic with fewer than n edges.) Say
λ(a0, b0) = [v0, v1] ∪ · · · ∪ [vn−1, vn], where a0 = v0, b0 = vn. Clearly n ≥ 3.
Moreover, by our choice of λ, we may assume that none of the intermediate vec-
tors

−−→
v1v2, . . . ,

−−−−−→
vn−2vn−1 are parallel to

−−→
v0v1, while

−−→
v0v1 and

−−−−→
vn−1vn are parallel and

in opposite directions. Choose a hyperplane H containing
−−→
v1v2, . . .

−−−−−→
vn−2vn−1 and

parallel to a coordinate hyperplane such that v0 and vn are in the same open
halfspace determined by H. Of course, H will be orthogonal to

−−→
v0v1. (See Figure

2.) Without loss of generality, assume that v0 is at least as close to H as vn is
to H. The translate H0 of H containing v0 meets [vn−1, vn], say at v′n. Observe
that there can be no v0 − v′n staircase in H0 ∩ S, for such a staircase δ would
use no edge parallel to [v0, v1], so δ ∪ [v′n, vn] would provide a v0 − vn staircase
in S. That is, there exists a hyperplane H0 parallel to a coordinate hyperplane
such that H0 ∩S is not staircase convex. The contrapositive statement yields the
desired result, establishing Theorem 4.

v = b
0 0

v = a
0 0

v

v
H

1

n-1

Figure 2.

Corollary 4.1. Let S be a finite union of boxes in Rd, d ≥ 2. The set S is
staircase convex if and only if S is connected and for every j, 1 ≤ j ≤ d− 1, and
for every j-flat F parallel to a coordinate flat, F ∩ S is connected.
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Proof. We use induction on d. Let d = 2. Using [13, Lemma 1], S is staircase
convex in R2 if and only if S is connected and both horizontally and vertically
convex. Thus the result is true in the plane.

Inductively, assume that the result holds in Rk−1, 3 ≤ k, to prove it in Rk.
Let S be a finite union of boxes in Rk. If S is staircase convex, certainly S
is connected. Moreover, by Theorem 4, for every hyperplane H parallel to a
coordinate hyperplane, H ∩S is staircase convex, hence connected. For any j-flat
F parallel to a coordinate flat, 1 ≤ j ≤ d− 1, F lies in a hyperplane HF parallel
to a coordinate hyperplane. Since HF ∩ S is staircase convex, by our induction
hypothesis in Rk−1 ≡ HF , F ∩ S is connected, too.

To establish the converse in Rk, assume that for every j, 1 ≤ j ≤ d, and
for every j-flat F parallel to a coordinate flat, F ∩ S is connected. Then S is
connected. Let H be any hyperplane parallel to a coordinate hyperplane. If we
identify H with Rk−1, then by our induction hypothesis H ∩S is staircase convex.
Since this is true for every such H, we may use Theorem 4 to conclude that S
is staircase convex. This finishes the induction and establishes the corollary for
every d ≥ 2.

References

[1] Breen, M.: An improved Krasnosel’skii-type theorem for orthogonal polygons
which are starshaped via staircase paths. J. Geom. 51 (1994), 31–35.

Zbl 0815.52005−−−−−−−−−−−−
[2] Breen, M.: Staircase kernels for orthogonal d-polytopes. Monatsh. Math. 122

(1996), 1–7. Zbl 0866.52005−−−−−−−−−−−−
[3] Breen, M.: Unions of orthogonally convex or orthogonally starshaped poly-

gons. Geom. Dedicata 53 (1994), 49–56. Zbl 0814.52002−−−−−−−−−−−−
[4] Chepoi, V.: On staircase starshapedness in rectilinear spaces. Geom. Dedicata

63 (1996), 321–329. Zbl 0866.52006−−−−−−−−−−−−
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