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Abstract. For a convex body C in Rd, what is the smallest number f =
fd(C) such that any sequence of smaller homothetic copies of C whose
total volume is at least f times the volume of C permits a translative
covering of C? László Fejes Tóth conjectured in 1984 that f2(C) ≤ 3
for any convex body C in the plane. This conjecture has been only
confirmed for parallelograms and triangles: Moon and Moser had shown
in 1967 that f2(C) = 3 for a square C. Since fd(C) is invariant under
affine transformation of C, it follows from Moon and Moser’s result
that f2(C) = 3 for any parallelogram C. In 2003, Füredi settled the
case of triangles with a sharper bound, by showing that f2(C) = 2 for
a triangle C, and thus confirming a stronger conjecture of A. Bezdek
and K. Bezdek for this case. For an arbitrary planar convex body C,
the current best bound is f2(C) ≤ 6.5, due to Januszewski. In this
paper, we prove that f2(D) < 3 for a disk D, and thereby confirm
the conjecture of László Fejes Tóth for disks. We also present the first
non-trivial bound for covering a disk by disks in the online model. Our
methods lead to very efficient algorithms for both offline and online disk
covering.
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1. Introduction

Covering a convex body by its smaller homothetic copies is a classic problem in
geometry, that has generated a lot of interest over the years, initially in finding op-
timal structural patterns for packing and covering, and more recently in designing
efficient online algorithms.

Let C be a convex body in Rd, that is, a compact convex set with nonempty
interior in the d-dimensional Euclidean space. Let C = {C1, C2, . . .} be a (possibly
infinite) sequence of convex bodies in Rd. We say that C permits a covering of C
if there exist rigid motions σi such that C ⊆

⋃
i σi(Ci). We say that C permits

a translative covering of C if there exist translations τi such that C ⊆
⋃

i τi(Ci).
Define fd(C) as the smallest number f with the following property:

Any sequence of smaller homothetic copies of C whose total volume is
at least f times the volume of C permits a translative covering of C.

Very recently, Naszódi [14] showed that fd(C) ≤ 6d for any convex body C in Rd;
for the planar case, the current best bound, f2(C) ≤ 6.5, is due to Januszewski [7].
It is also known that f2(C) = 3 for a square C (indeed for any parallelogram C too
since fd(C) is invariant under affine transformation of C) [13] and that f2(C) = 2
for a triangle C [3].

László Fejes Tóth conjectured [1, Page 131, Conjecture 1] in 1984 that

For any planar convex body C, f2(C) ≤ 3.

Besides this offline setting, the above problem has also been studied in the online
model [11], [8], [9], [10], [12], where each homothetic copy in the sequence is
revealed only after the placement of the preceding copy in the sequence. Define
gd(C) for the online model, analogous to fd(C) for the offline model. Obviously
fd(C) ≤ gd(C) holds for any C and d. It is known that g2(C) ≤ 28 for any convex
body C [8]1. It is also known that g2(C) ≤ 7

4
3
√

9 + 13
8

= 5.265 . . . for a square C
[9], g3(C) ≤ 9.843 . . . for a cube C [12], and gd(C) ≤ 2d + (5/3)(1 + 2−d) for a
hypercube C in Rd [12]. For a survey of this and many other related problems,
we refer the reader to the book by Braß et al. [1, Chapter 3].

All previous results on f2(C) and g2(C), except the two general results f2(C) ≤
6.5 [7] and g2(C) ≤ 28 [8] for any convex body in the plane, are for simple
convex bodies with straight boundaries, such as squares and triangles. While the
conjecture of László Fejes Tóth that f2(C) ≤ 3 for any planar convex body has
been confirmed for squares [13] and triangles [3], it was not confirmed until now
for any natural convex body with a curved boundary, where the analysis is more
difficult. In this paper, we prove the conjecture of László Fejes Tóth for disks, the
most natural convex bodies with curved boundaries.

Let D be a unit disk2. Write ρ = f2(D). That is, ρ is the smallest number

1A method by Januszewski [5] achieves a bound of 15, but the covering is not translative
because it uses 90◦ rotations. Braß et al. [1, Page 126, Problem 1] incorrectly state that 15 is
the current best bound for translative covering.

2Whether D has unit radius or unit diameter will be made clear in the respective sections.
For convenience, we will use different definitions of unit disk in our analysis for f2(D) and g2(D);
the bounds are not affected by this difference because they are ratios.
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such that any sequence of disks with total area at least ρ times the area of a unit
disk permits an offline covering of the unit disk (note that any disk covering is
automatically translative). For k ≥ 1, also define ρk, similar to ρ, but with the
additional constraint that the sequence contains at most k disks. It is clear that
ρ ≥ ρk+1 ≥ ρk for any k ≥ 1, and that ρ = limk→∞ ρk. Write η = g2(D) for the
online model.

Our main results are summarized in the following three theorems. Theorem 1
and Theorem 3 are both obtained by analytical proofs, while Theorem 2 is ob-
tained by a computer-assisted proof.

Theorem 1. Any sequence of disks with total area at least 3.25 times the area
of a unit disk permits an offline covering of the unit disk. That is, ρ ≤ 3.25.
Moreover, ρ1 = 1, ρ2 = 2, and ρ3 = ρ4 = 2.25.

Theorem 2. Any sequence of disks with total area at least 2.97 times the area of
a unit disk permits an offline covering of the unit disk. That is, ρ ≤ 2.97.

Theorem 3. Any sequence of disks with total area at least 9.7633 times the area
of a unit disk permits an online covering of the unit disk. That is, η ≤ 9.7633.

Note that Theorem 2 confirms the conjecture of László Fejes Tóth for the disk
case. Our methods for obtaining these bounds are constructive and lead to very
efficient algorithms for disk covering. In particular, Theorems 1 and 2 lead to O(n)
time algorithms for offline covering a unit disk by a sequence of n disks ordered
by non-increasing radius, and Theorem 3 leads to an O(n log n) time algorithm
for online covering a unit disk by a sequence of n disks.

In this paper, we cover the unit disk D by a sequence D = 〈D1, D2, . . . 〉 of
disks. The sequence D can be finite or infinite. If the sequence is finite and a
reference is made to a disk Di whose index i is larger than the total number of
disks, we assume for convenience that Di exists but has zero radius. While for
offline covering we will assume that the disks in the input sequence are sorted by
radius (largest disk first), no such assumption is made for online covering.

2. Offline covering

In this section we prove Theorems 1 and 2. Let the unit disk D be a disk of unit
radius. Denote by xi the radius of the ith disk Di in the sequence D. Assume that
1 > x1 ≥ x2 ≥ · · · . The largest four or five disks in the sequence play especially
important roles in our proofs because they will be used first, in a greedy manner,
to cover either the whole unit disk or two large cap regions of it. To simplify
the case analysis for the relative disk sizes in our proofs, we will transform the
largest four disks while maintaining the non-increasing order of the disk radii in
the sequence.
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2.1. Proof of Theorem 1

We first introduce two covering tools, next give bounds for the special case of
covering the unit disk by at most four disks, and then prove a general bound of
ρ ≤ 3.25.

2.1.1. Covering a rectangle by disks

Define the following function A of three variables w, h, x ∈ R:

A(w, h, x) = min
{
w(h + x) + hx, w(h + x) + h2

}
.

For w ≥ h > 0 and x > 0, A(w, h, x) is an area measure used in the following
lemma by Januszewski [6], which is an extension of the classical result by Moon
and Moser [13] on translative coverings of the unit square by smaller homothetic
squares.

Lemma 1. (Januszewski [6]). Given an axis-parallel rectangle with width w and
height h (h ≤ w) and a sequence of axis-parallel squares with side length at most
x, if the total area of the squares is at least A(w, h, x), then the rectangle permits
a translative covering by the squares.

Observe that a disk Dk of radius xk contains a square of side length
√

2 xk in any
orientation. This leads to the following corollary:

Corollary 1. Given a rectangle with width w and height h (h ≤ w) and a se-
quence of disks with radius at most x, if the total area of the disks is at least
π
2
A(w, h,

√
2 x), then the rectangle can be covered by the disks.

2.1.2. Covering a cap by two disks

For any i ≥ 1, put ai = arcsin xi. For any i 6= j, put hij = cos(ai + aj). We first
prove the following lemma.

Lemma 2. For any i 6= j, Di and Dj can be placed to cover a cap of angle
2ai + 2aj and height 1− hij of the unit disk D.

Proof. Refer to Figure 1, where the shaded triangle 4spq is inscribed in the unit
disk, and has two sides sp and sq of lengths 2xi and 2xj, respectively. Place Di

and Dj such that the two sides sp and sq are their diameters. Then the third side
pq of the triangle intersects the boundaries of both Di and Dj at exactly the same
point t, where st ⊥ pq. Di and Dj together cover a cap of the unit disk bounded
by pq, which subtends an angle of 2ai + 2aj from the unit disk center. The height
of the cap is 1−hij, where hij = cos(ai + aj) is the signed distance from pq to the
unit disk center (hij is negative if 2ai + 2aj > π; in this case the unit disk center
lies inside the triangle 4spq).

We now prove some useful properties for covering a cap by two disks.
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2xi 2xj
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p t
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Figure 1. Covering a cap by two disks

Lemma 3. Let i < j (thus xi ≥ xj and ai ≥ aj). Suppose that 0 ≤ 2aj ≤ 2ai ≤ π
and that 2ai + 2aj is fixed (thus hij is also fixed). Then we have:

(i) If 2ai + 2aj ≤ π (hij ≥ 0), then x2
i + x2

j is non-decreasing when xi increases
and correspondingly xj decreases.

(ii) If 2ai + 2aj ≥ π (hij ≤ 0), then x2
i + x2

j is non-decreasing when xi decreases
and correspondingly xj increases until xi = xj.

Proof. Since 2ai + 2aj is fixed, we have
daj

dai
= −1. Then,

d(x2
i + x2

j)

dai

=
d(sin2 ai + sin2 aj)

dai

= sin 2ai − sin 2aj.

Consider two cases:
(i) 2ai + 2aj ≤ π (hij ≥ 0).

If 0 ≤ 2ai ≤ π/2, then 0 ≤ 2aj ≤ 2ai ≤ π/2. If π/2 ≤ 2ai ≤ π, then
0 ≤ 2aj ≤ π − 2ai ≤ π/2. We always have sin 2ai − sin 2aj ≥ 0. Therefore
x2

i + x2
j is non-decreasing when ai (hence xi) increases and correspondingly

aj (hence xj) decreases.

(ii) 2ai + 2aj ≥ π (hij ≤ 0).
If 0 ≤ 2aj ≤ π/2, then 0 ≤ π − 2ai ≤ 2aj ≤ π/2. If π/2 ≤ 2aj ≤ π, then
π/2 ≤ 2aj ≤ 2ai ≤ π. We always have sin 2ai − sin 2aj ≤ 0. Therefore
x2

i + x2
j is non-decreasing when ai (hence xi) decreases and correspondingly

aj (hence xj) increases.

The intersection of the two cases is: 2ai + 2aj = π (hij = 0). In this case,
2ai = π − 2aj, sin 2ai − sin 2aj = 0, and x2

i + x2
j is constant.

2.1.3. The special case of covering the unit disk by at most four disks

It is a simple exercise to prove that ρ1 = 1 and ρ2 = 2. To show that ρ3 = ρ4 =
2.25, we first prove the following lemma.
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Lemma 4. If 2a1 + 2a2 + 2a3 + 2a4 < 2π, then x2
1 + x2

2 + x2
3 + x2

4 < 2.25.

Proof. Consider four disks D1, D2, D3, and D4 with a fixed value of 2a1 + 2a2 +
2a3+2a4 such that x2

1+x2
2+x2

3+x2
4 is maximized. Recall that 1 > x1 ≥ x2 ≥ x3 ≥

x4. Since 2a1 +2a2 +2a3 +2a4 < 2π, we must have 2a3 +2a4 < π. By Lemma 3(i),
we can increase x3 and decrease x4 with 2a3 + 2a4 fixed until either x2 = x3 or
x4 = 0. If x4 > 0 after this transformation, then 2a2 + 2a4 = 2a3 + 2a4 < π, and
again by Lemma 3(i) we can increase x2 and decrease x4 until either x1 = x2 or
x4 = 0. If we still have x4 > 0, then perform one more such transformation to
increase x1 and decrease x4 until x4 = 0. Finally, we have a1 ≥ a2 ≥ a3 ≥ a4 = 0
and a1 + a2 + a3 < π. Since xi = sin2 ai is an increasing function of ai for
0 ≤ ai ≤ π/2, we can find three angles α, β, and γ of a triangle such that a1 ≤ α,
a2 ≤ β, a3 ≤ γ, and sin2 a1 + sin2 a2 + sin2 a3 < sin2 α + sin2 β + sin2 γ. Then
x2

1+x2
2+x2

3+x2
4 = x2

1+x2
2+x2

3 = sin2 a1+sin2 a2+sin2 a3 < sin2 α+sin2 β+sin2 γ ≤
2.25, where the last step is a well-known inequality in the geometry of triangles
[16].

If x2
1+x2

2+x2
3+x2

4 ≥ 2.25, then it follows by Lemma 4 that 2a1+2a2+2a3+2a4 ≥ 2π.
Then, by Lemma 2, the two pairs of disks (D1, D2) and (D3, D4) can be placed to
cover two caps whose union is the unit disk. Therefore ρ4 ≤ 2.25. On the other
hand, it is easy to see that ρ3 ≥ 2.25, as given by the configuration of three equal
disks whose diameters form an equilateral triangle inscribed in the unit disk. In
fact, Füredi [4] conjectured that this configuration is the overall worst case and
that ρ = 2.25. Since ρ4 ≥ ρ3, we obtain the tight bounds ρ3 = ρ4 = 2.25. This
proves the second part of Theorem 1.

2.1.4. A general bound of ρ ≤ 3.25

We now prove the first part of Theorem 1 by considering four cases (it is easy to
check that they cover all possibilities):

Case 0 that 2a1 + 2a2 + 2a3 + 2a4 ≥ 2π:
D1, D2, D3, and D4 together cover the whole unit disk D.

Case 1 that 2a1 + 2a2 ≥ π and 2a3 < π/2:
D1 and D2 together cover a half of D; D3 covers less than a quarter of D.

Case 2 that 2a1 ≥ 2a2 ≥ 2a3 ≥ π/2:
D1, D2, and D3 together cover three quarters of D.

Case 3 that 2a1 + 2a2 < π:
D1 and D2 together cover less than a half of D.

For Cases 0, 1, and 3, we use our main method illustrated in Figure 2(a): D1 and
D2 cover a cap of height 1− h12; D3 and D4 cover a cap of height 1− h34, so that
the chords of the two caps are parallel. The other disks cover a rectangle R of
width 2 and height h12 + h34 (if h12 + h34 > 0).

For Case 2, we use an alternative method illustrated in Figure 2(b): D1, D2, and
D3 cover three sectors of angles 2a1, 2a2, and 2a3, so that the diameters of the
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Figure 2. (a) Two caps and a rectangle (b) Three sectors and a rectangle

three disks are consecutive chords of the unit disk D. The other disks cover a
rectangle R of width 1 and height sin(2π − 2a1 − 2a2 − 2a3).

In all four cases, we use a few large disks D1, . . . , Dk, k = 3 or 4, to cover
part of the unit disk, then use the remaining small disks Di, i ≥ k + 1, to cover
a rectangle R of width w and height h. By Corollary 1, the rectangle R can be
covered by the remaining disks if their total area is at least π

2
A(w, h,

√
2 xk+1).

Define

r =
πx2

1 + · · ·+ πx2
k + π

2
A(w, h,

√
2 xk+1)

π
= x2

1 + · · ·+ x2
k + A(w, h,

√
2 xk+1)/2.

(1)
Then ρ ≤ r. It remains to bound the value of r in each of the four cases.

Case 0 that 2a1 +2a2 +2a3 +2a4 ≥ 2π: Refer to Figure 1. D1 and D2 cover a cap
of angle 2a1 +2a2, while D3 and D4 cover a (parallel) cap of angle 2a3 +2a4. Since
2a1+2a2+2a3+2a4 ≥ 2π, the two caps overlap hence together they cover the unit
disk D. We can assume without loss of generality that x5 = 0, and suppose that∑∞

i=1 x2
i =

∑4
i=1 x2

i ≥ 2.25. Then Lemma 4 implies a bound of ρ ≤ 2.25 < 3.25
for Case 0.

Case 1 that 2a1 + 2a2 ≥ π and 2a3 < π/2: We will reduce Case 1 to either Case 2
or Case 3. By Lemma 3(ii), we can assume that a1 = a2. Then,

x2
1 + x2

2 = sin2 a1 + sin2 a2 = 2 sin2 a1 = 1− cos 2a1 = 1− cos(a1 + a2) = 1− h12,

d(x2
1 + x2

2)

dh12

= −1.



98 A. Dumitrescu, M. Jiang: Covering a Disk by Disks

Fix x4. Then,

x2
3 + x2

4 = sin2 a3 + sin2 a4 =⇒ d(x2
3 + x2

4)

da3

= sin 2a3,

h34 = cos(a3 + a4) =⇒ da3

dh34

= − 1

sin(a3 + a4)
,

0 ≤ a3 + a4 ≤ 2a3 < π/2 =⇒ 0 ≤ sin(a3 + a4) ≤ sin(2a3) ≤ 1,

d(x2
3 + x2

4)

dh34

=
d(x2

3 + x2
4)

da3

· da3

dh34

= − sin 2a3

sin(a3 + a4)
≤ −1.

Therefore,
d(x2

3 + x2
4)

dh34

≤ d(x2
1 + x2

2)

dh12

,

which implies that, when keeping h12+h34 fixed, the sum x2
1+x2

2+x2
3+x2

4 does not
decrease if we decrease h34 (increase x3 and fix x4) and correspondingly increase
h12 (decrease x1 and x2 together). Since

2a1 = 2a2 ≥ π/2 > 2a3,

as we decrease 2a1 = 2a2, and correspondingly increase 2a3, either 2a3 will become
larger than π/2, or 2a1 = 2a2 will become smaller than π/2. Case 1 is therefore
reduced to either Case 2 that 2a1 ≥ 2a2 ≥ 2a3 ≥ π/2 or Case 3 that 2a1+2a2 < π.

Case 2 that 2a1 ≥ 2a2 ≥ 2a3 ≥ π/2: D1, D2, and D3 cover three sectors of angles
2a1, 2a2, and 2a3 of the unit disk. Put θ = 2π − (2a1 + 2a2 + 2a3). If θ ≤ 0,
then we would have Case 0 that 2a1 + 2a2 + 2a3 + 2a4 ≥ 2π. So assume that
0 < θ ≤ π/2. The sector of angle θ is contained in a rectangle R of width w = 1
and height h = sin θ; see Figure 2(b).

By Lemma 3(ii), we can assume that a1 = a2 = a3 = (2π − θ)/6. Therefore,

x2
1 + x2

2 + x2
3 = 3 sin2 2π − θ

6
=

3

2

(
1− cos

2π − θ

3

)
=

3

2

(
1 + cos

θ + π

3

)
.

If 2a4 ≥ π/2, then we would again have Case 0 that 2a1 + 2a2 + 2a3 + 2a4 ≥ 2π.
So assume otherwise. Then x4 <

√
2/2, and we have

A(w, h,
√

2 x4)/2 ≤ A(1, sin θ, 1)/2 ≤
(
1 · (sin θ + 1) + sin θ · 1

)
/2

= 1/2 + sin θ = 1/2− sin(θ + π).

Therefore,

r = x2
1 + x2

2 + x2
3 + A(w, h,

√
2 x4)/2 ≤ 2 +

3

2
cos

θ + π

3
− sin(θ + π).

Put γ = (θ + π)/3. Then

r = r(γ) = 2 + (3/2) cos γ − sin 3γ, π/3 < γ ≤ π/2. (2)
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Setting dr(γ)
dγ

to zero to maximize r(γ), we have

−(3/2) sin γ − 3 cos 3γ = 0

sin2 γ = 4 cos2 3γ

1− cos2 γ = 4(4 cos2 γ − 3)2 cos2 γ.

Put x = cos2 γ, and get the following cubic equation:

64x3 − 96x2 + 37x− 1 = 0, 0 < x ≤ 1/4. (3)

Equation (3) has only one real root 0.02919 . . . between 0 and 1/4. Correspond-
ingly, r(γ) attains the maximum value 3.126 . . . at γ = 80.16 . . .◦. We have ob-
tained a bound of ρ ≤ 3.126 . . . < 3.25 for Case 2.

Case 3 that 2a1 + 2a2 < π: The condition implies h12 > 0. Likewise we also
have 2a3 + 2a4 < π, and correspondingly h34 > 0. Since 2a3 + 2a4 < π, we have
a4 < π/4. D1, D2, D3, and D4 cover two caps of total height 2− h12 − h34. The
remaining uncovered area of the unit disk is contained in a rectangle of width
w = 2 and height h = h12 + h34.

For two variables x and y, 0 ≤ x ≤ y ≤ π/2, such that x + y is fixed, we have

d(cos x + cos y)

dx
= − sin x + sin y ≥ 0.

Therefore,

h = h12 + h34 = cos(a1 + a2) + cos(a3 + a4) ≤ cos(a1 + a4) + cos(a2 + a3). (4)

Note that a5 ≤ a4 < π/4 hence x5 <
√

2/2. We have

A(w, h,
√

2 x5)/2 ≤ h+
√

2 x5+(h
√

2 x5)/2 < h+
√

2 x5+h/2 ≤ 1.5h+
√

2 x4. (5)

By Lemma 3(i), we can enlarge D1 and correspondingly shrink D2 until x2 = x3.
So assume that a2 = a3. Now it follows from (5) and (4) that

r = x2
1 + x2

2 + x2
3 + x2

4 + A(2, h,
√

2 x5)/2

< sin2 a1 + 2 sin2 a2 + sin2 a4 + 1.5(cos(a1 + a4) + cos 2a2) +
√

2 sin a4

= sin2 a1 + 1.5 cos(a1 + a4) +
√

2 sin a4 + sin2 a4 + 2 sin2 a2 + 1.5 cos 2a2

= sin2 a1 + 1.5 cos(a1 + a4) +
√

2 sin a4 + sin2 a4 − sin2 a2 + 1.5

≤ sin2 a1 + 1.5 cos(a1 + a4) +
√

2 sin a4 + 1.5.

Fix a1 + a4. Then,

dr

da1

= sin 2a1 −
√

2 cos a4 < sin 2a1 − 1 ≤ 0,

where the first inequality follows from a4 < π/4. Therefore we can assume that
a1 = a4.
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Put θ = a1 = a4. Then,

r < sin2 θ + 1.5 cos 2θ +
√

2 sin θ + 1.5

= −2 sin2 θ +
√

2 sin θ + 3

= −2(sin θ −
√

2/4)2 + 3.25

≤ 3.25.

We have obtained a bound of ρ ≤ 3.25 for Case 3, and the proof of Theorem 1 is
now complete.

Extremal configuration. It is illuminating to take a closer look at the extremal
configuration in Case 3 for the 3.25 bound, where x1 = x2 = x3 = x4 = x5 =√

2/4 = 0.3535 . . .. A calculation shows that x2
1 + x2

2 + x2
3 + x2

4 = 0.5, h =
2 cos 2a2 = 2(1− 2 sin2 a2) = 2(1− 1/4) = 1.5, and

A(w, h,
√

2 x5)/2 = A(2, 1.5, 0.5)/2 = 1.5 + 0.5 + 0.375 = 2.375.

So the real bound for the extremal configuration should be

x2
1 + x2

2 + x2
3 + x2

4 + A(w, h,
√

2 x5)/2 = 0.5 + 2.375 = 2.875.

However, to simplify the analysis, we have used a rather conservative estimate
x5 <

√
2/2 = 0.7071 . . . in the second inequality in (5), which led to a looser

bound:
A(w, h,

√
2 x5)/2 < 1.5 + 0.5 + 0.75 = 2.75,

x2
1 + x2

2 + x2
3 + x2

4 + A(w, h,
√

2 x5)/2 < 0.5 + 2.75 = 3.25.

We found it difficult to obtain a better bound than 3.25 with an analytical proof
(note that it is not trivial even to determine the minimum radius of five equal
disks that cover a unit disk [15]). However with the help of a computer program
we have obtained a bound less than 3 (in the next subsection).

2.2. Proof of Theorem 2

We will use two more covering tools to obtain a bound of ρ ≤ 2.97 with a computer-
assisted proof.

2.2.1. Two more covering tools

Let Di, Dj, Dk be three disks such that i < j < k (thus xi ≥ xj ≥ xk). Note
that Dj contains a copy of Dk. Refer to Figure 3, where the shaded trapezoid is
inscribed in the unit disk. Place the large disk Di and two copies of the small
disk Dk such that (i) the centers of the three disks are collinear, (ii) the diameters
of the two copies of Dk are the left and right sides of the trapezoid, and (iii) the
boundary of Di passes through the two vertices of the upper side of the trapezoid.
Then the lower side of the trapezoid intersects the boundaries of Di and each copy
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2a

2b

Di DkDk

hijk

Figure 3. Covering a cap by one large disk and two equal small disks

of Dk at exactly the same point. The three disks together cover a cap of the unit
disk.

Let hijk be the signed distance from the lower side of the trapezoid to the unit disk
center. Let 2a and 2b, respectively, be the upper side length and the height of the
trapezoid. Let 2α and 2β, respectively, be the two angles subtended by the lower
and upper sides of the trapezoid from the unit disk center. The five parameters
hijk, a, b, α, and β are determined by xi and xk according to the following five
equations:

cos α = hijk, cos β = hijk + 2b, α− β = 2 arcsin xk, a = sin β, a2 + b2 = x2
i .

We have the following lemma by construction:

Lemma 5. Di, Dj, and Dk can be placed to cover a cap of height 1− hijk of the
unit disk.

We will also use the following lemma by Neville [15] which provides the solution
to a popular problem from the 19th century3:

Lemma 6. (Neville [15]). A unit disk can be covered by five equal disks of radius
0.609383 . . ..

2.2.2. A bound of ρ ≤ 2.97 with a computer-assisted proof

Put x̂5 = 0.6094 and r̂ = 2.97. Recall our definition of r in (1). Now define r4

and r5 as follows:

r4 = x2
1 + x2

2 + x2
3 + x2

4 + A(2, h12 + h34,
√

2 x5)/2, (6)

r5 = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + A(2, h12 + h345,

√
2 x5)/2. (7)

3[2, Problem D3]: “The problem of completely covering a circular region by placing over
it, one at a time, five smaller equal circular disks was familiar to frequenters of English fairs a
century ago.”
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Our next two lemmas are about the four conditions h12 +h34 ≤ 0, x5 ≥ x̂5, r̂ ≥ r4,
and r̂ ≥ r5.

Lemma 7. If the total area of the disks in D is at least r̂ times the area of the
unit disk D, and if any one of the four conditions is satisfied, then the unit disk
D can be covered by the disks in D.

Proof. We give a covering method for each condition:

1. h12 + h34 ≤ 0: By Lemma 2, the unit disk can be covered as follows:

(a) D1 and D2 cover a cap of height 1− h12;

(b) D3 and D4 cover a cap of height 1− h34.

2. x5 ≥ x̂5: By Lemma 6, the unit disk can be covered by the five disks D1,
D2, D3, D4, and D5.

3. r̂ ≥ r4: By Lemma 2 and Corollary 1, the unit disk can be covered as follows:

(a) D1 and D2 cover a cap of height 1− h12;

(b) D3 and D4 cover a cap of height 1− h34.

(c) If h12 +h34 > 0, the other disks cover a rectangle of width 2 and height
h12 + h34.

4. r̂ ≥ r5: By Lemma 2, Lemma 5, and Corollary 1, the unit disk can be
covered as follows:

(a) D1 and D2 cover a cap of height 1− h12;

(b) D3, D4, and D5 cover a cap of height 1− h345.

(c) If h12+h345 > 0, the other disks cover a rectangle of width 2 and height
h12 + h345. �

Lemma 8. If the total area of the disks in D is at least r̂ times the area of the
unit disk D, then at least one of the four conditions is satisfied.

Proof. We were unable to find a simple analytical proof of Lemma 8, but have
verified it by a computer program (Appendix A). The program enumerates all
discrete combinations of (x1, x2, x3, x4, x5) where 1 > x1 ≥ x2 ≥ x3 ≥ x4 ≥ x5 ≥ 0
with the step size4 δ = 0.005. For each discrete combination (x1, x2, x3, x4, x5),
the program uses closed-form formulas to calculate

h12 = cos(arcsin(x1) + arcsin(x2))

h34 = cos(arcsin(x3) + arcsin(x4)),

4With the step size δ = 0.005, the program takes less than one minute on a low-end desktop
computer (tested on an Apple iMac computer with a 2GHz PowerPC G5 processor running Mac
OS X 10.4.11). A smaller step size (with a longer running time) gives a bound better than 2.97,
but not below 2.9.
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and uses a binary search to find a value ĥ345 such that h345(x3, x4, x5) ≤ ĥ345. To
account for the sampling error, the program uses the enlarged values xi+δ instead
of xi in (6) and (7) to calculate

r̂4 = (x1 + δ)2 + (x2 + δ)2 + (x3 + δ)2 + (x4 + δ)2

+A(2, h12 + h34,
√

2 (x5 + δ))/2

r̂5 = (x1 + δ)2 + (x2 + δ)2 + (x3 + δ)2 + (x4 + δ)2 + (x5 + δ)2

+A(2, h12 + ĥ345,
√

2 (x5 + δ))/2.

The program then verifies that at least one of the four conditions is satisfied.
Note that h12 is a decreasing function of x1 and x2, and h34 is a decreasing

function of x3 and x4. Although we don’t have a closed-form formula for h345, it
is clear from our construction in Figure 3 that h345 is a non-increasing function
of x3, x4, and x5. Also note that A(w, h, x) is a non-decreasing function of w, h,
and x. Therefore, for any (not necessarily discrete) combination (x′1, x

′
2, x

′
3, x

′
4, x

′
5)

such that xi ≤ x′i ≤ xi + δ, 1 ≤ i ≤ 5, we have

h12(x1, x2) + h34(x3, x4) ≤ 0 =⇒ h12(x
′
1, x

′
2) + h34(x

′
3, x

′
4) ≤ 0

x5 ≥ x̂5 =⇒ x′5 ≥ x̂5

r̂ ≥ r̂4(x1, x2, x3, x4, x5) =⇒ r̂ ≥ r4(x
′
1, x

′
2, x

′
3, x

′
4, x

′
5)

r̂ ≥ r̂5(x1, x2, x3, x4, x5) =⇒ r̂ ≥ r5(x
′
1, x

′
2, x

′
3, x

′
4, x

′
5).

Since all discrete combinations are checked by the program, it follows that all
possible combinations are also verified.

By Lemma 7 and Lemma 8, it follows that ρ ≤ r̂ = 2.97. The proof of Theorem 2
is now complete. Given a sequence D of n disks ordered by non-increasing radius,
a covering as in Lemma 1 can be obtained in O(n) time. As a consequence,
Theorems 1 and 2 lead to O(n) time algorithms for offline covering under the
same disk order assumption.

3. Online covering

In this section we prove Theorem 3. Let the unit disk D be a disk of unit diame-
ter 5. Denote by di the diameter of the ith disk Di in the sequence D. Denote by
|C| the area of a convex body C in the plane. Let N = {0, 1, 2, . . .} denote the set
of natural numbers, and let N+ = {1, 2, 3, . . .} denote the set of positive integers.

The unit disk D is contained in a unit square S. Each disk Di of diameter
di contains a square Si of side length si = di/

√
2. Note that |S|/|D| = 4/π and

|Di|/|Si| = π/2. Therefore, using the current best bound for online covering a
unit square S by squares Si, namely 7

4
3
√

9 + 13
8

= 5.265 . . . [9], we immediately
obtain a bound of

η ≤ 4

π
· π

2
·
(

7

4
3
√

9 +
13

8

)
= 10.5302 . . . .

5The unit disk was defined as a disk of unit radius in Section 2. Here we use a different
definition for convenience in analysis.
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By using an efficient adaptation of a method by Januszewski and Lassak [8, 9],
we obtain a better bound of η < 9.7633. The idea is to use an inscribed rectangle
Ri in each disk Di, instead of an inscribed square Si, to cover the unit square S.

We first review some basic techniques for online covering [8, 9]. Suppose we
want to cover the unit square S = [0, 1]2 by a sequence S of axis-parallel squares.
And suppose that each square Si ∈ S is normalized : its side length has the
form 2−r, r ∈ N+. The method of the current bottom [8] places each square
Si as follows: First find the largest number bi such that every point of S with
y-coordinate at most bi has been covered by some square Sj, j < i. The set of
points of S with y-coordinate equal to bi is called the ith bottom. A point of the
ith bottom is called a surface point if no point of S with the same x-coordinate
and with a larger y-coordinate has been covered by the preceding squares. Now
place Si at the bottom, that is, find a translation τi such that τi(Si) contains a
surface point and has the form{

(x, y) | m 2−r ≤ x ≤ (m + 1)2−r and bi ≤ y ≤ bi + 2−r
}

,

where m ∈ {0, . . . , 2r − 1}.
Since τi(Si) contains a surface point on its lower side, it does not overlap with
the preceding squares that are larger or of equal size. Hence the upper half of
τi(Si) is not covered by the preceding squares. The lower half of τi(Si) consists of
the lower-left quarter and the lower-right quarter; at least one of the two quarters
contains a surface point on its lower side. Apply the same argument recursively
to this quarter of τi(Si), and it follows that the fraction of the area of τi(Si) not
covered by the preceding squares is at least

1

2

(
1 +

1

4
+

1

4 · 4
+

1

4 · 4 · 4
+ · · ·

)
=

1

2
· 1

1− 1
4

=
2

3
.

That is, 2/3 of the area of τi(Si) is covered for the first time. Similarly observe
that, above the current bottom bi, an area of at most 1/3 (the total area of a
collection of squares, one of each side length 2−k, k = 1, 2, . . .) is covered by the
squares Sj, j < i. Therefore, the total area of the squares preceding Si is at most

3

2

(
bi +

1

3

)
.

The unit square S becomes completely covered when bi reaches 1. Thus a total
area of (3/2)(1 + 1/3) = 2 is sufficient for online covering a unit square by nor-
malized squares. Since every square contains a normalized square of at least 1/2
of its side length and hence at least 1/4 of its area, it follows that g2(C) ≤ 8 for
a square C. The method of the current bottom has been extended to the method
of the current bottom and top [8, 9], in which a square Si may be placed at ei-
ther the current bottom bi or the current top ti (which is defined analogously).
Initially, b1 = 0 and t1 = 1. The unit square S becomes completely covered
when bi ≥ ti for some i. This extended method yields the current best bound of
g2(C) ≤ 7

4
3
√

9 + 13
8

= 5.265 . . . for a square C [9].
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We now outline another way to extend the method of the current bottom. Ob-
serve that, when the sequence S of squares is replaced by a sequence B of similar
rectangles with width and height of the form 2−r and u · 2−r, r ∈ N+, the pre-
vious argument for the ratio 2/3 remains valid. The total area of the rectangles
preceding rectangle Bi ∈ B becomes

3

2

(
bi +

u

3

)
.

Now suppose that we have another sequence T of similar rectangles with width
and height of the form 2−r/3 and v · 2−r/3, r ∈ N. To cover the unit square S
from the top, place each rectangle Ti ∈ T such that τi(Ti) has the form{

(x, y) | m 2−r/3 ≤ x ≤ (m + 1)2−r/3 and ti − 2−r/3 ≤ y ≤ ti
}

,

where m ∈ {0, . . . , 2r − 1}.
Then the total covered area below the current top becomes

v

9
+

v

9
+

v

9 · 4
+

v

9 · 4 · 4
+ · · · = v

9
+

v
9

1− 1
4

=
7v

27
.

The total area of the rectangles preceding Ti becomes

3

2

(
1− ti +

7v

27

)
.

We now present a method that covers the unit disk D by a sequence D of disks.
We show that each disk Di ∈ D of diameter di contains a normalized rectangle Ri

of width wi and height hi (defined below), and use these rectangles Ri to cover
the unit square S containing D. Let 1 < c < 2. The exact value of c will be
determined later. Consider two cases:

1. 1
c
· 2−k ≤ di < 2−k, k ∈ N. Then Di contains a rectangle Ri of width

wi = 1
2
· 2−k and height hi = u

2
· 2−k, where u =

√
4/c2 − 1. Place Ri to

cover S from the bottom. Define

f(c) =
π

u
.

We have
|Di|
|Ri|

=
π(di/2)2

wihi

≤ π/4

u/4
= f(c).

2. 1
2
· 2−k ≤ di < 1

c
· 2−k, k ∈ N. Then Di contains a rectangle Ri of width

wi = 1
3
· 2−k and height hi = v

3
· 2−k, where v =

√
5/2. Place Ri to cover S

from the top. Define

g(c) =
9π

4c2v
.

We have
|Di|
|Ri|

=
π(di/2)2

wihi

≤ π/(4c2)

v/9
= g(c).
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We now show that our method achieves a bound of η < 9.7633. Define

b(z) =
3

2

(
z +

u

3

)
, t(z) =

3

2

(
1− z +

7v

27

)
,

r(z, c) =
b(z) · f(c) + t(z) · g(c)

π/4
.

Note that b(z) · f(c) and t(z) · g(c) bound the total areas of the disks that cover
the unit square S from the bottom and from the top, respectively, and that π/4
is the area of the unit disk D. Then we have

η ≤ max
0≤z≤1

r(z, c).

Now,

r(z, c) =
4

π
· 3

2

(
z +

u

3

)
· π

u
+

4

π
· 3

2

(
1− z +

7v

27

)
· 9π

4c2v

=

(
6

u
− 27

2c2v

)
· z + 2 +

27

2c2v
+

7

2c2
.

Let c be the solution of the following equation:

6

u
− 27

2c2v
= 0.

Then r(z, c) does not depend on z. A calculation shows that c = 1.4164 . . . and
r(z, c) = 9.7632 . . .. Therefore η ≤ 9.7633. This completes the proof of Theorem 3.

An O(n log n)-time algorithm can be achieved by using a linked list to represent
the “coastline” of horizontal segments bounding from above the current covered
area at the bottom of the unit square, and by maintaining these segments in a
priority queue. The segments bounding from below the current covered area at
the top of the unit square are maintained in a similar way. The amortized cost
for processing a disk is O(log n).

A. Source code

#include <math.h>
#include <stdio.h>

#define RATIO 2.97
#define STEP 0.005

double find_hijk(double xi, double xj, double xk);

int main() {
double x1, x2, x3, x4, x5;
double x1_, x2_, x3_, x4_, x5_;
double s1_, s2_, s3_, s4_, s5_;
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double a1, a2, a3, a4;
double h12, h34, h345;
double w, h, x, x_;
double r4_, r5_;
double start = 0.0, end = 1.0;

printf("Testing ratio %g with step size %g ...\n", RATIO, STEP);
for (x1 = start; x1 <= end; x1 += STEP) {

x1_ = x1 + STEP; s1_ = x1_ * x1_;
a1 = asin(x1);
for (x2 = start; x2 <= x1; x2 += STEP) {

x2_ = x2 + STEP; s2_ = s1_ + x2_ * x2_;
a2 = asin(x2);
h12 = cos(a1 + a2);
for (x3 = start; x3 <= x2; x3 += STEP) {

x3_ = x3 + STEP; s3_ = s2_ + x3_ * x3_;
a3 = asin(x3);
for (x4 = start; x4 <= x3; x4 += STEP) {

x4_ = x4 + STEP; s4_ = s3_ + x4_ * x4_;
a4 = asin(x4);
h34 = cos(a3 + a4);

if (h12 + h34 <= 0.0) /* condition 1 */
break;

for (x5 = start; x5 <= x4; x5 += STEP) {

if (x5 >= 0.6094) /* condition 2 */
break;

x5_ = x5 + STEP; s5_ = s4_ + x5_ * x5_;
x = x5_ * M_SQRT2;
w = 2.0;
h = h12 + h34;
x_ = x < h ? x : h;
r4_ = s4_ + (w * (h + x) + h * x_) / 2.0;

if (RATIO >= r4_) /* condition 3 */
continue;

h345 = find_hijk(x3, x4, x5);
h = h12 + h345;
x_ = x < h ? x : h;
r5_ = s5_ + (w * (h + x) + h * x_) / 2.0;

if (RATIO >= r5_) /* condition 4 */
continue;

/* difficult case */
printf("%5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f\n",

x1, x2, x3, x4, x5, r4_, r5_);
printf(" x %5.3f h12+h34 %5.3f h12+h345 %5.3f\n",

x, h12 + h34, h12 + h345);
}
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}
}

}
}
return 0;

}

double find_hijk(double xi, double xj, double xk) {
double ak = asin(xk);
double a, b, h;
double alpha, beta;
double upper = cos(ak * 2.0); /* trapezoid becomes triangle */
double lower = -xk; /* trapezoid becomes rectangle */

while (upper - lower > 0.001) { /* binary search */
h = (upper + lower) / 2.0;
alpha = acos(h);
beta = alpha - ak * 2.0;
a = sin(beta);
b = (cos(beta) - h) / 2.0;
if (a * a + b * b <= xi * xi)

upper = h;
else

lower = h;
}
return upper;

}
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[3] Füredi, Z.: Covering a triangle with homothetic copies. In: A. Bezdek (ed.),
Discrete Geometry — in Honor of W. Kuperberg’s 65th Birthday. Pure Appl.
Math. 253 (2003), 435–445. Zbl pre02068124−−−−−−−−−−−−−
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