Some Small-Centralizer Properties for Rings

Howard E. Bell* Abraham A. Klein

Department of Mathematics, Brock University St. Catharines, Ontario, Canada L2S 3A1 e-mail: hbell@brocku.ca

School of Mathematical Sciences, Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv 69978, Israel e-mail: aaklein@post.tau.ac.il

Abstract. We characterize rings R in which certain elements x have the property that $C_R(x)$ (resp. the set of zero divisors in $C_R(x)$) is finite. We also explore the consequences of an assumption that certain x satisfy $C_R(x) = \langle x \rangle$.

1. Introduction

Let R be a ring with center Z, and let D be the set of zero divisors of R. For $x \in R$, let $C_R(x)$ be the centralizer of x in R. We study rings in which $C_R(x)$ is finite for all $x \in R \setminus Z$ and rings in which $C_R(x) \cap D$ is finite for all $x \in D \setminus Z$. In the first case we show that R is either finite or commutative; in the second case we show that either R is finite or $D \subseteq Z$.

As in [2], we call an element $x \in R$ extremely noncommutative if $C_R(x) = x\mathbb{Z}[x]$ – i.e. if $C_R(x)$ is the subring generated by x. Our most difficult result deals with rings such that each element of $D \setminus Z$ is extremely noncommutative.

Let us fix some additional notation and terminology. Let N = N(R) denote the set of nilpotent elements of R, and T = T(R) the set of elements of finite additive

0138-4821/93 \$ 2.50 © 2010 Heldermann Verlag

 $^{^{*}\}mathrm{supported}$ by the Natural Sciences and Engineering Research Council of Canada, Grant3961

order. For $x \in R$, let $\langle x \rangle$ and A(x) be respectively the subring generated by x and the two-sided annihilator of x. For a subring S of R, let [R : S] denote the index of (S, +) in (R, +); and for a subset X of R, let |X| denote the cardinality of X. An element $x \in R$ is called periodic if there exist distinct positive integers m, n for which $x^m = x^n$, and the ring R is called periodic if each of its elements is periodic.

The following lemmas will be useful.

Lemma 1.1. [6] If R is a periodic ring with $N \subseteq Z$, then R is commutative.

Lemma 1.2. [3] Let R be a ring such that for each $x \in R$ there exist a positive integer m and a polynomial $p(X) \in \mathbb{Z}[X]$ for which $x^m = x^{m+1}p(x)$. Then R is periodic.

Lemma 1.3. [7] If R is infinite and $x \in N$, then |A(x)| = |R|. In particular, A(x) is infinite.

2. Finite-centralizer conditions

Theorem 2.1. If R is a ring such that $C_R(x)$ is finite for all $x \in R \setminus Z$, then R is either finite or commutative.

Proof. Suppose that R is infinite. Since $A(x) \subseteq C_R(x)$, it follows by Lemma 1.3 that $N \subseteq Z$. Suppose also that R is not commutative and $x \in R \setminus Z$. Since $\langle x \rangle \subseteq C_R(x), \langle x \rangle$ is finite and hence x is periodic; and since Z is clearly finite, central elements are periodic as well. Thus, R is a noncommutative periodic ring with $N \subseteq Z$, contrary to Lemma 1.1. Therefore R must be commutative. \Box

Theorem 2.2. Let R be a ring such that $C_R(x) \cap D$ is finite for all $x \in D \setminus Z$. Then either R is finite or $D \subseteq Z$.

Proof. Note that if S is any infinite subring of R such that $C_S(x) = C_R(x) \cap S$ is finite for all $x \in S \setminus Z$, S is commutative by Theorem 2.1 and therefore $S \subseteq Z$. In particular, if S is any infinite subring contained in $D, S \subseteq Z$.

Suppose that $D \setminus Z \neq \phi$, and assume without loss of generality that xy = 0 with $x \in D \setminus Z$ and $y \neq 0$. If $A_l(y)$ is infinite, we have $x \in A_l(y) \subseteq Z$ – a contradiction; therefore $A_l(y)$ is finite. For each $w \in A_l(y)$, consider the map $f_w : R \to A_l(y)$ given by $f_w(r) = rw$. By applying the first isomorphism theorem for additive groups, we see that $ker(f_w) = A_l(w)$ is of finite index in R; hence $S = A_l(A_l(y))$ is of finite index and therefore is infinite. Thus $S \subseteq Z$; and since $S \subseteq A_l(x)$, we see that A(x) is an infinite subset of $C_R(x) \cap D$ – a contradiction.

3. An extreme non-commutativity condition

In [2], the following theorem is proved.

Theorem 3.1. If R is a ring in which all noncentral elements are extremely noncommutative, then R is either finite or commutative.

In [8], we were led to consider an infinite noncentral subring A with subring $B = A \cap Z$ such that $A^2 \subseteq Z$, $A = \langle a \rangle$ for all $a \in A \setminus B$, and [A : B] is a prime. In the sections headed *Proof of Theorem* 2.1 and *Completion of proof of Theorem* 2.1, we showed that such a subring cannot exist. Thus, we proved, but did not explicitly state, the following lemma.

Lemma 3.2. Let R be an infinite noncommutative ring. Then R contains no infinite noncentral subring A such that $A^2 \subseteq Z$, $A = \langle a \rangle$ for all $a \in A \setminus Z$, and $[A : A \cap Z]$ is a prime.

The principal theorem of this section, which we now state, is obtained by weakening the extreme noncommutativity hypothesis in Theorem 3.1.

Theorem 3.3. Let R be a ring in which every element of $D \setminus Z$ is extremely noncommutative. Then either R is finite or $D \subseteq Z$.

The proof will be presented as a series of lemmas, the first of which is almost obvious. In each lemma, it will be assumed without explicit mention that R is a ring in which every element of $D \setminus Z$ is extremely noncommutative.

Lemma 3.4. If $D \not\subseteq Z$, then R is indecomposable. Hence R has no nonzero central idempotent zero divisors.

Lemma 3.5. If $N \not\subseteq Z$, then R is finite.

Proof. Since Z centralizes $N \setminus Z$, $Z \subseteq N$. We show first that all zero divisors are periodic. This is clearly true for nilpotent elements, so we consider $d \in D \setminus N$. Then $d^2 \notin N$, so $d^2 \notin Z$ and hence $d \in \langle d^2 \rangle$. Thus there exists $p(X) \in \mathbb{Z}[X]$ such that $d = d^2 p(d)$. Since each element of D is in some subring of zero divisors, Lemma 1.2 shows that zero divisors are periodic.

Next we show that $D \subseteq T(R)$. Let $d \in D$ and $D' = \langle d \rangle$. By [1, Lemma 1(c)], d = a + u with $u \in N$ and a a power of d such that $a^n = a$ for some n > 1. Now $e = a^{n-1}$ is an idempotent such that a = ae; and since e is in the periodic ring D', 2e is periodic, hence $e \in T(R)$ and $a \in T(R)$. We now need to show that $N \subseteq T(R)$; and since $Z = Z \cap N \subseteq (N \setminus Z) - (N \setminus Z)$, it suffices to show that $N \setminus Z \subseteq T(R)$. Let $u \in N \setminus Z$ and suppose $u^k \in T(R)$ for $k \ge 2$. Since $u \notin Z$, there exists $n \ge 2$ such that $nu \notin Z$; and it follows that $u \in \langle nu \rangle$, so that there exist $c_1, c_2, \ldots, c_t \in \mathbb{Z}$ such that $u = c_1(nu) + c_2(nu)^2 + \cdots + c_t(nu)^t$. Multiplying by u^{k-2} gives $(1 - c_1n)u^{k-1} \in T(R)$ and hence $u^{k-1} \in T(R)$. By backward induction, $u \in T(R)$.

We now know that if $d \in D \setminus Z$, $\langle d \rangle$ is finite and consequently $C_R(d)$ is finite. Thus, R is finite by Theorem 2.2.

Lemma 3.6.

(i) If $D \not\subseteq Z$ and $N \subseteq Z$, then $d^n \in Z$ for all $d \in D$ and $n \ge 2$.

(ii) If $D \not\subseteq Z$, there exists a prime p such that $pD \subseteq Z$.

Proof. By Lemma 3.4, R has no nonzero idempotent zero divisors. Hence, we need only adapt in an obvious way the proof of Lemma 2.8 of [2]. \Box

Lemma 3.7. If $N \subseteq Z$, then every subring of zero divisors is commutative.

Proof. Let H be any subring of zero divisors, and let $h \in H \setminus Z(H)$. Then $C_H(h) = \langle h \rangle$, so H is either finite or commutative by Theorem 3.1. Moreover, if H is finite, it is commutative by Lemma 1.1.

Lemma 3.8. Let R be infinite with $D \not\subseteq Z$ and $N \subseteq Z$. Then

- (i) D is infinite;
- (ii) D is a commutative ideal and hence $D^2 \subseteq Z$;
- (iii) $D = \langle d \rangle$ for every $d \in D \setminus Z$;
- (iv) $[D: D \cap Z] = p$ for some prime p.

Proof. (i) follows immediately from an old theorem of Ganesan [4,5], which asserts that any ring R with $1 \le |D \setminus \{0\}| < \infty$ must be finite.

(ii) Use the proof of Lemma 2.4 of [8], which employs Lemma 3.7.

- (iii) Let $d \in D \setminus Z$. By (ii), $D \subseteq C_R(d) = \langle d \rangle$; and obviously $\langle d \rangle \subseteq D$.
- (iv) Since we now know that D is an additive subgroup, the result follows from (iii) and Lemma 3.6.

Proof of Theorem 3.3. Assume that $D \not\subseteq Z$. By Lemmas 3.8 and 3.2, we cannot have $N \subseteq Z$; hence R is finite by Lemma 3.5.

Theorem 3.3 does not provide a characterization of rings such that all $d \in D \setminus Z$ are extremely noncommutative, since we do not have complete information about the finite examples. We do, however, have partial information.

Theorem 3.9. Let R be a finite ring with $D \not\subseteq Z$ such that each $d \in D \setminus Z$ is extremely noncommutative. Then either R is isomorphic to a matrix ring of form $GF(p)e_{11} + GF(p)e_{12}$ or $GF(p)e_{11} + GF(p)e_{21}$, or R is nil.

Proof. If R = D, the result follows by Theorem 2.11 of [2]. Otherwise, if $x \in R \setminus D$, some power of x is a regular idempotent, necessarily 1. Now by Lemma 1.1, there exists $u \in N \setminus Z$; and since $1 + u \in C_R(u)$, $1 + u \in \langle u \rangle$. But this is not possible, since $\langle u \rangle$ is a nil ring and 1 + u is invertible.

References

- Bell, H. E.: A commutativity study for periodic rings. Pac. J. Math. 70 (1977), 29–36.
 Zbl 0336.16034
- Bell, H. E.; Klein, A. A.: *Extremely noncommutative elements in rings*. Monatsh. Math. **153**(1) (2008), 19–24.
 Zbl 1139.16017

- [3] Chacron, M.: On a theorem of Herstein. Can. J. Math. **21** (1969), 1348–1353. Zbl 0213.04302
- [4] Ganesan, N.: Properties of rings with a finite number of zero divisors. Math. Ann. 157 (1964), 215–218.
 Zbl 0135.07704
- [5] Ganesan, N.: Properties of rings with a finite number of zero divisors II. Math. Ann. 161 (1965), 241–246.
 Zbl 0163.28301
- [6] Herstein, I. N.: A note on rings with central nilpotent elements. Proc. Am. Math. Soc. 5 (1954), 620.
 Zbl 0055.26003
- [7] Klein, A. A.: Annihilators of nilpotent elements. Int. J. Math. Math. Sci. 2005 : 21 (2005), 3517–3519.
 Zbl 1093.16027
- [8] Klein, A. A.; Bell, H. E.: Conditions for rings to be finite or have only central zero divisors. Stud. Sci. Math. Hung. 44(2) (2007), 291–296. Zbl 1149.16029

Received June 26, 2008