Some Small-Centralizer Properties for Rings

Howard E. Bell* Abraham A. Klein
Department of Mathematics, Brock University
St. Catharines, Ontario, Canada L2S 3A1
e-mail: hbell@brocku.ca
School of Mathematical Sciences, Sackler Faculty of Exact Sciences
Tel Aviv University, Tel Aviv 69978, Israel
e-mail:aaklein@post.tau.ac.il

Abstract

We characterize rings R in which certain elements x have the property that $C_{R}(x)$ (resp. the set of zero divisors in $C_{R}(x)$) is finite. We also explore the consequences of an assumption that certain x satisfy $C_{R}(x)=\langle x\rangle$.

1. Introduction

Let R be a ring with center Z, and let D be the set of zero divisors of R. For $x \in R$, let $C_{R}(x)$ be the centralizer of x in R. We study rings in which $C_{R}(x)$ is finite for all $x \in R \backslash Z$ and rings in which $C_{R}(x) \cap D$ is finite for all $x \in D \backslash Z$. In the first case we show that R is either finite or commutative; in the second case we show that either R is finite or $D \subseteq Z$.

As in [2], we call an element $x \in R$ extremely noncommutative if $C_{R}(x)=x \mathbb{Z}[x]$ - i.e. if $C_{R}(x)$ is the subring generated by x. Our most difficult result deals with rings such that each element of $D \backslash Z$ is extremely noncommutative.
Let us fix some additional notation and terminology. Let $N=N(R)$ denote the set of nilpotent elements of R, and $T=T(R)$ the set of elements of finite additive

[^0]0138-4821/93 \$ 2.50 © 2010 Heldermann Verlag
order. For $x \in R$, let $\langle x\rangle$ and $A(x)$ be respectively the subring generated by x and the two-sided annihilator of x. For a subring S of R, let $[R: S]$ denote the index of $(S,+)$ in $(R,+)$; and for a subset X of R, let $|X|$ denote the cardinality of X. An element $x \in R$ is called periodic if there exist distinct positive integers m, n for which $x^{m}=x^{n}$, and the ring R is called periodic if each of its elements is periodic.
The following lemmas will be useful.
Lemma 1.1. [6] If R is a periodic ring with $N \subseteq Z$, then R is commutative.
Lemma 1.2. [3] Let R be a ring such that for each $x \in R$ there exist a positive integer m and a polynomial $p(X) \in \mathbb{Z}[X]$ for which $x^{m}=x^{m+1} p(x)$. Then R is periodic.

Lemma 1.3. [7] If R is infinite and $x \in N$, then $|A(x)|=|R|$. In particular, $A(x)$ is infinite.

2. Finite-centralizer conditions

Theorem 2.1. If R is a ring such that $C_{R}(x)$ is finite for all $x \in R \backslash Z$, then R is either finite or commutative.

Proof. Suppose that R is infinite. Since $A(x) \subseteq C_{R}(x)$, it follows by Lemma 1.3 that $N \subseteq Z$. Suppose also that R is not commutative and $x \in R \backslash Z$. Since $\langle x\rangle \subseteq C_{R}(x),\langle x\rangle$ is finite and hence x is periodic; and since Z is clearly finite, central elements are periodic as well. Thus, R is a noncommutative periodic ring with $N \subseteq Z$, contrary to Lemma 1.1. Therefore R must be commutative.

Theorem 2.2. Let R be a ring such that $C_{R}(x) \cap D$ is finite for all $x \in D \backslash Z$. Then either R is finite or $D \subseteq Z$.

Proof. Note that if S is any infinite subring of R such that $C_{S}(x)=C_{R}(x) \cap S$ is finite for all $x \in S \backslash Z, S$ is commutative by Theorem 2.1 and therefore $S \subseteq Z$. In particular, if S is any infinite subring contained in $D, S \subseteq Z$.
Suppose that $D \backslash Z \neq \phi$, and assume without loss of generality that $x y=0$ with $x \in D \backslash Z$ and $y \neq 0$. If $A_{l}(y)$ is infinite, we have $x \in A_{l}(y) \subseteq Z$ - a contradiction; therefore $A_{l}(y)$ is finite. For each $w \in A_{l}(y)$, consider the map $f_{w}: R \rightarrow A_{l}(y)$ given by $f_{w}(r)=r w$. By applying the first isomorphism theorem for additive groups, we see that $\operatorname{ker}\left(f_{w}\right)=A_{l}(w)$ is of finite index in R; hence $S=A_{l}\left(A_{l}(y)\right)$ is of finite index and therefore is infinite. Thus $S \subseteq Z$; and since $S \subseteq A_{l}(x)$, we see that $A(x)$ is an infinite subset of $C_{R}(x) \cap D$ - a contradiction.

3. An extreme non-commutativity condition

In [2], the following theorem is proved.
Theorem 3.1. If R is a ring in which all noncentral elements are extremely noncommutative, then R is either finite or commutative.

In [8], we were led to consider an infinite noncentral subring A with subring $B=A \cap Z$ such that $A^{2} \subseteq Z, A=\langle a\rangle$ for all $a \in A \backslash B$, and $[A: B]$ is a prime. In the sections headed Proof of Theorem 2.1 and Completion of proof of Theorem 2.1, we showed that such a subring cannot exist. Thus, we proved, but did not explicitly state, the following lemma.

Lemma 3.2. Let R be an infinite noncommutative ring. Then R contains no infinite noncentral subring A such that $A^{2} \subseteq Z, A=\langle a\rangle$ for all $a \in A \backslash Z$, and $[A: A \cap Z]$ is a prime.

The principal theorem of this section, which we now state, is obtained by weakening the extreme noncommutativity hypothesis in Theorem 3.1.

Theorem 3.3. Let R be a ring in which every element of $D \backslash Z$ is extremely noncommutative. Then either R is finite or $D \subseteq Z$.

The proof will be presented as a series of lemmas, the first of which is almost obvious. In each lemma, it will be assumed without explicit mention that R is a ring in which every element of $D \backslash Z$ is extremely noncommutative.

Lemma 3.4. If $D \nsubseteq Z$, then R is indecomposable. Hence R has no nonzero central idempotent zero divisors.

Lemma 3.5. If $N \nsubseteq Z$, then R is finite.
Proof. Since Z centralizes $N \backslash Z, Z \subseteq N$. We show first that all zero divisors are periodic. This is clearly true for nilpotent elements, so we consider $d \in D \backslash N$. Then $d^{2} \notin N$, so $d^{2} \notin Z$ and hence $d \in\left\langle d^{2}\right\rangle$. Thus there exists $p(X) \in \mathbb{Z}[X]$ such that $d=d^{2} p(d)$. Since each element of D is in some subring of zero divisors, Lemma 1.2 shows that zero divisors are periodic.

Next we show that $D \subseteq T(R)$. Let $d \in D$ and $D^{\prime}=\langle d\rangle$. By [1, Lemma 1(c)], $d=a+u$ with $u \in N$ and a a power of d such that $a^{n}=a$ for some $n>1$. Now $e=a^{n-1}$ is an idempotent such that $a=a e$; and since e is in the periodic ring $D^{\prime}, 2 e$ is periodic, hence $e \in T(R)$ and $a \in T(R)$. We now need to show that $N \subseteq T(R)$; and since $Z=Z \cap N \subseteq(N \backslash Z)-(N \backslash Z)$, it suffices to show that $N \backslash Z \subseteq T(R)$. Let $u \in N \backslash Z$ and suppose $u^{k} \in T(R)$ for $k \geq 2$. Since $u \notin Z$, there exists $n \geq 2$ such that $n u \notin Z$; and it follows that $u \in\langle n u\rangle$, so that there exist $c_{1}, c_{2}, \ldots, c_{t} \in \mathbb{Z}$ such that $u=c_{1}(n u)+c_{2}(n u)^{2}+\cdots+c_{t}(n u)^{t}$. Multiplying by u^{k-2} gives $\left(1-c_{1} n\right) u^{k-1} \in T(R)$ and hence $u^{k-1} \in T(R)$. By backward induction, $u \in T(R)$.

We now know that if $d \in D \backslash Z,\langle d\rangle$ is finite and consequently $C_{R}(d)$ is finite. Thus, R is finite by Theorem 2.2.

Lemma 3.6.

(i) If $D \nsubseteq Z$ and $N \subseteq Z$, then $d^{n} \in Z$ for all $d \in D$ and $n \geq 2$.
(ii) If $D \nsubseteq Z$, there exists a prime p such that $p D \subseteq Z$.

Proof. By Lemma 3.4, R has no nonzero idempotent zero divisors. Hence, we need only adapt in an obvious way the proof of Lemma 2.8 of [2].

Lemma 3.7. If $N \subseteq Z$, then every subring of zero divisors is commutative.
Proof. Let H be any subring of zero divisors, and let $h \in H \backslash Z(H)$. Then $C_{H}(h)=\langle h\rangle$, so H is either finite or commutative by Theorem 3.1. Moreover, if H is finite, it is commutative by Lemma 1.1.

Lemma 3.8. Let R be infinite with $D \nsubseteq Z$ and $N \subseteq Z$. Then
(i) D is infinite;
(ii) D is a commutative ideal and hence $D^{2} \subseteq Z$;
(iii) $D=\langle d\rangle$ for every $d \in D \backslash Z$;
(iv) $[D: D \cap Z]=p$ for some prime p.

Proof. (i) follows immediately from an old theorem of Ganesan [4,5], which asserts that any ring R with $1 \leq|D \backslash\{0\}|<\infty$ must be finite.
(ii) Use the proof of Lemma 2.4 of [8], which employs Lemma 3.7.
(iii) Let $d \in D \backslash Z$. By (ii), $D \subseteq C_{R}(d)=\langle d\rangle$; and obviously $\langle d\rangle \subseteq D$.
(iv) Since we now know that D is an additive subgroup, the result follows from (iii) and Lemma 3.6.

Proof of Theorem 3.3. Assume that $D \nsubseteq Z$. By Lemmas 3.8 and 3.2, we cannot have $N \subseteq Z$; hence R is finite by Lemma 3.5.

Theorem 3.3 does not provide a characterization of rings such that all $d \in D \backslash Z$ are extremely noncommutative, since we do not have complete information about the finite examples. We do, however, have partial information.

Theorem 3.9. Let R be a finite ring with $D \nsubseteq Z$ such that each $d \in D \backslash Z$ is extremely noncommutative. Then either R is isomorphic to a matrix ring of form $G F(p) e_{11}+G F(p) e_{12}$ or $G F(p) e_{11}+G F(p) e_{21}$, or R is nil.

Proof. If $R=D$, the result follows by Theorem 2.11 of [2]. Otherwise, if $x \in R \backslash D$, some power of x is a regular idempotent, necessarily 1 . Now by Lemma 1.1, there exists $u \in N \backslash Z$; and since $1+u \in C_{R}(u), 1+u \in\langle u\rangle$. But this is not possible, since $\langle u\rangle$ is a nil ring and $1+u$ is invertible.

References

[1] Bell, H. E.: A commutativity study for periodic rings. Pac. J. Math. 70 (1977), 29-36.
[2] Bell, H. E.; Klein, A. A.: Extremely noncommutative elements in rings. Monatsh. Math. 153(1) (2008), 19-24.
[3] Chacron, M.: On a theorem of Herstein. Can. J. Math. 21 (1969), 1348-1353.
Zbl 0213.04302
[4] Ganesan, N.: Properties of rings with a finite number of zero divisors. Math. Ann. 157 (1964), 215-218.

Zbl 0135.07704
[5] Ganesan, N.: Properties of rings with a finite number of zero divisors II. Math. Ann. 161 (1965), 241-246.

Zbl 0163.28301
[6] Herstein, I. N.: A note on rings with central nilpotent elements. Proc. Am. Math. Soc. 5 (1954), 620.

Zbl 0055.26003
[7] Klein, A. A.: Annihilators of nilpotent elements. Int. J. Math. Math. Sci. 2005: 21 (2005), 3517-3519.

Zbl 1093.16027
[8] Klein, A. A.; Bell, H. E.: Conditions for rings to be finite or have only central zero divisors. Stud. Sci. Math. Hung. 44(2) (2007), 291-296. Zbl 1149.16029

Received June 26, 2008

[^0]: *supported by the Natural Sciences and Engineering Research Council of Canada, Grant 3961

