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Abstract. The structure of certain involution rings having a unique
minimal *-subring, is described.

1. Introduction

Kruse and Price [5] determined the structure of nilpotent p-rings with unique min-
imal subring. Using their result, Hirano [4] completely described the structure of
right (or left) artinian rings with a unique minimal subring and considered the
problem under the general situation. In [10], Wiegandt determined the structure
of rings having a unique minimal subring, under the two different interpretations:
(i) rings in which the intersection of nonzero subrings is nonzero and (ii) rings
having exactly one atom in their lattice of subrings. In this paper, we consider
which involution rings have a unique minimal *-subring, considering the two in-
terpretations and thus establishing the involutive versions of the main results in
[4] and [10].

All rings considered are associative. Let us recall that an involution ring A is
a ring with an additional unary operation *, called involution, subjected to the
identities: (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ and (a∗)∗ = a for all a, b ∈ A. A
biideal B of a ring A is a subring of A satisfying the inclusion BAB ⊆ B. An
ideal (respectively: biideal, subring) B of an involution ring A is called a *-ideal
(respectively: *-biideal, *-subring) of A if B is closed under involution; that is,
B∗ = {a∗ ∈ A : a ∈ B} ⊆ B. An involution ring A is semiprime if and only if,
for any *-ideal I of A, I2 = 0 implies I = 0. An involution ring A is called
*-subdirectly irreducible if the intersection of all nonzero *-ideals of A (called the
*-heart of A) is nonzero.
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2. Involution rings whose nonzero *-subrings have nonzero intersection

In this section the involutive version of ([10] , Theorem 4) shall be proved. We
shall make use of the following results.

Lemma 1. Let B be a minimal *-biideal of an involution ring A. Then B2 = B
if and only if B is a semiprime involution ring.

Proof. Suppose I is a nonzero *-ideal of B such that I2 = 0. The biideal of
A generated by I is I = I + IAI, which is clearly a *-biideal of A contained in
B. The minimality of B implies B = I + IAI. Then we have 0 6= B = B2 =
(I + IAI)2 = 0, a contradiction. The converse is obvious. �

Proposition 2. A *-subring S of an involution ring A is a minimal *-subring of
A if and only if, for some prime p, either

(i) S ' GF (p); or

(ii) S ' Z(p) where Z(p) is the zero-ring on the cyclic additive group C(p) of
order p.

Proof. If S is a minimal *-subring of A, then S is a *-simple ring. According
to ([2] , Proposition 2.1), either S is simple or S contains an ideal K such that
S = K ⊕ K∗ and S2 6= 0. However, the latter case cannot occur. Indeed,
suppose S = K⊕K∗. By the assumption on S, K cannot contain nonzero proper
left ideals, whence it is a division ring. Now if P denotes the prime field of K,
then {a + a∗ : a ∈ P} is a proper *-subring of A, properly contained in S, which
contradicts the minimality of S. Therefore S must be a simple involution ring.
If S2 = S, then S is obviously a minimal *-biideal of itself. Therefore, by the
previous lemma, S is semiprime and, by ([6], Proposition 4), S is a minimal
biideal of itself and hence a division ring. By the assumption on S, S ' GF (p)
for some prime p. Finally, if S2 = 0, then it is clear that the additive group of S
is a cyclic group of prime order, say p, and hence S ' Z(p). �

It is well-known that if R is any ring and A = R ⊕ Rop, where Rop is the anti-
isomorphic image of R, then A is a ring with involution defined by (a, b)∗ = (b, a)
for every a, b ∈ R. This involution is called the exchange involution. Let A be an
involution ring such that either A is a division ring or A = D ⊕Dop where D is
a division ring. In the first case, A has a unique smallest subfield, which we shall
call the prime *-field of A. In the second case, if F is the smallest subfield of D,
we shall call {(a, a) : a ∈ F} the prime *-field of A. We say that A is *-algebraic
if, for any nonzero *-subring B of A, there exists a nonzero element b ∈ B which
is algebraic over the prime *-field of A. Now we are in a position to prove the
following:

Theorem 3. If the intersection S of the nonzero *-subrings of an involution ring
A is nonzero, then A is one of the following rings:

(i) A is a *-algebraic division ring with prime *-field S ' GF (p) of finite
characteristic p;
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(ii) A ' D ⊕ Dop, where D is a division ring and A is *-algebraic with prime
*-field S ' GF (2);

(iii) A is a *-subdirectly irreducible ring with *-heart S ' Z(p) for some prime
p;

(iv) A is a *-subdirectly irreducible ring with *-heart H ' K ⊕K∗ where K '
Z(2) ' K∗.

Proof. If A has a unique smallest *-subring S, then S generates a *-ideal H in
A. Obviously, A is *-subdirectly irreducible with *-heart H.

Case 1. (H2 6= 0). Either H is a simple prime ring or H = K ⊕K∗ where each of
the ideals K and K∗ of A are simple prime rings. Since H has d.c.c. on *-biideals,
we know by ([1], Corollary 4), that H is an artinian ring and so H has a minimal
left ideal, say L.

If H is simple prime, L = He for some idempotent e ∈ L. Then L∗ = e∗H is
a minimal right ideal of H. Now L∗L = (e∗H) (He) = e∗He 6= 0. Furthermore,
by ([8], Theorem 4), L∗L is a minimal *-biideal of H. So, B = L∗L ⊆ L. The
*-ideal H does not contain other minimal left ideals, besides L. Indeed, if L1 is
a minimal left ideal of H, then B = L∗

1L1 ⊆ L1. Now, 0 6= B ⊆ L ∩ L1 ⊆ L1

and the minimality of L and L1 implies that L1 = L. Thus H = L and H is a
division ring with prime field of finite characteristic p. Since H has a unity and
is a *-essential *-ideal, we have, by ([7], Lemma 8), that A = H. Hence A is a
division ring.

Now we consider the case when H = K ⊕ K∗. Clearly K is artinian with a
unique minimal left ideal, which implies that K is a division ring. Consequently,
H = B = K ⊕ K∗ where K is a division ring with prime field GF (p), for some
prime p. Consequently, we have that A = H. If p 6= 2, then {a + a∗ : a ∈ GF (p)}
and {a− a∗ : a ∈ GF (p)} are two distinct *-subrings of A.

We notice that, in either case, the ring A is *-algebraic, since S is the prime
*-field of A and S is contained in every nonzero *-subring of A.

Case 2. (H2 = 0). By Proposition 2, the *-subring S is a minimal subring of A.
By ([3], Proposition 6.2), H+, the additive group of H, is an elementary abelian
p-group and hence is a direct sum of cyclic groups of order p. By our assumption
on A, it is clear that either H ' Z(p) or H = K ⊕K∗, where K ' Z(p) ' K∗.
If p 6= 2, then the case H = K ⊕K∗ cannot occur, for then {a + a∗ : a ∈ K} and
{a− a∗ : a ∈ K} would be two distinct minimal *-subrings of A. �

As an immediate consequence, we have:

Corollary 4. If A is a semiprime involution ring, then the intersection S of the
nonzero *-subrings of A is nonzero if, and only if, A is one of the following rings:

(i) A is a *-algebraic division ring with prime *-field S ' GF (p) of finite
characteristic p;

(ii) A ' D ⊕ Dop, where D is a division ring and A is *-algebraic with prime
*-field S ' GF (2).
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3. Involution rings with one atom in their lattice of *-subrings

An involution ring in which every idempotent element is central shall be called a
CI -involution ring. In this section, our main aim is to determine the structure of
CI -involution rings with descending chain condition (d.c.c.) on *-biideals which
have exactly one atom S in their lattice of *-subrings (admitting also nonzero
*-subrings T such that S ∩ T = 0), namely, the involutive version of ([4], Theo-
rem 1). The problem shall also be considered in a more general context. First,
however, we need some preliminary results. In an involution ring A, an element
a is symmetric if a∗ = a and b in A is skew-symmetric if b∗ = −b. We shall call
an element in A a *-element if it is either symmetric or skew-symmetric.

Lemma 5. If an involution ring A satisfies the condition

for any nonzero *-elements a, b ∈ A, ab 6= 0 (�)

then A is semiprime.

Proof. If I is a nonzero *-ideal of A such that I2 = 0, then, for any 0 6= a ∈ I,
we have a2 = 0. So, if a is a *-element, we immediately have a contradiction
with condition (�). If a is not a *-element, then a∗ + a is a nonzero *-element and
(a + a∗)2 = 0, again contradicting condition (�). �

Proposition 6. A finite involution ring A satisfies condition (�) if, and only if,
either A is a field, or A = F ⊕ F ∗ where F is a field.

Proof. Suppose that the ring A satisfies condition (�). Then every nonzero left
ideal L of A is *-essential in A; that is, L ∩ I 6= 0 for any nonzero *-ideal I of
A. Indeed, suppose that L ∩ I = 0 for some nonzero *-ideal I of A. Then, for
any nonzero *-element a ∈ I and nonzero b ∈ L, we have ab ∈ IL ⊆ I ∩ L = 0.
If b is also a *-element, we have a contradiction with condition (�); otherwise,
b + b∗ is a nonzero *-element and ba∗ ∈ LI = 0, whence ab∗ = 0. Consequently,
a (b + b∗) = 0, contradicting condition (�). Now since A is finite, A has a finite
number of *-essential minimal left ideals and, consequently, a finite number of
*-essential minimal *-biideals. Finally, by ([7] , Corollary 10), the fact that A
satisfies condition (�) and that a finite division ring is a field, we have that either
A is a field or A = F ⊕ F ∗, where F is field. �

In what follows, [a] denotes the subring of A generated by a. We consider the
following condition:

(4) If a, b are nonzero *-elements of an involution ring A such that ab = 0, then
either [a] or [b] is infinite.

Proposition 7. If A is a CI-involution ring, then the following conditions are
equivalent:

(i) A has a unique minimal *-subring S and S is a field;
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(ii) A has a nonzero finite *-subring and A satisfies condition (4).

Proof. (i) implies (ii). Let a, b be nonzero *-elements of A such that [a] and [b]
are finite. Then the field S is contained in both of [a] and [b] and so S ⊆ [a] [b].
Thus we have ab 6= 0.

(ii) implies (i). If A has a nonzero finite *-subring, then this *-subring contains
a minimal *-subring S. Condition (4) implies that the *-subring S is a field.
It remains to show that S is the unique minimal ∗-subring of A. Let e be the
identity element of S and let f be any other idempotent symmetric element in A
such that [f ] is a minimal *-subring of A. Then [e, f ], the subring of A generated
by e and f , is clearly a finite *-subring of A in which every element is symmetric.
Hence it has no zero-divisors, by condition (4). Thus it is a field and so e = f . �

Clearly, (i) implies (ii) in the previous proposition is valid for an arbitrary invo-
lution ring A.

Let us recall that a ring A is π-regular if for every element a in A there exists a
positive integer n (depending on a) and an element x in A such that anxan = an.
It is easy to see that if a is a *-element of an involution ring A, then there exists
a *-element in A, namely y = x∗anx, such that anyan = an. As usual, A is said
to be torsion-free if it does not have nonzero elements of finite order.

Clearly, if A = A1 ⊕ A2 is a direct sum of rings A1 and A2 with involutions
∗1 and ∗2, respectively, then we may define an involution * on A by (a1, a2)

∗ =
(a∗1

1 , a∗2
2 ), for every a1 ∈ A1 and a2 ∈ A2.

Proposition 8. Let A be a π-regular CI-involution ring. Then A has a unique
minimal *-subring S and S ' GF (p), for some prime p, if and only if, either:

(i) A ' T ⊕ D where T is a torsion-free involution ring and D is a division
involution ring of finite characteristic p; or;

(ii) A ' T⊕(D ⊕Dop), where T is a torsion-free involution ring, D is a division
ring of characteristic 2 and the ring D ⊕Dop is endowed with the exchange
involution.

Proof. We prove the direct implication. Let e be the identity element of S.
Then, by assumption, e is a central element. First consider the *-subring

T = {a ∈ A : a = c− ec for some c ∈ A }

of A. By (4), any nonzero symmetric element in T generates an infinite subring.
Suppose a is a *-element in T and a has finite order. Since T is also π-regular,
there exist a positive integer n and a *-element x ∈ T such that anxan = an

holds. If an 6= 0, then anx is a nonzero idempotent element and hence is central.
We have anx ∈ T and anx = xan, since anxxan = ((anx) x) an = (x (anx)) an =
x (anxan) = xan and anxxan = an (x (xan)) = an ((xan) x) = (anxan) x = anx.
So, the *-subring generated by anx is a nonzero finite *-subring of T . This con-
tradiction shows that an = 0. Therefore the *-subring generated by a is finite
and so a = 0. Hence any nonzero *-element in T is torsion-free. If b is a nonzero
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element in T and b is not a *-element, then 0 6= b∗ + b ∈ T and, reasoning as
above, we conclude that b∗ + b has infinite order. From Z (b∗ + b) ⊆ Zb∗ + Zb
(where Z denotes the set of integers), it is clear that b must have infinite order.
Therefore T is torsion-free.

For any a ∈ A, a = (a− ea) + ea ∈ T ⊕ eA. Next we show that either eA is
a division ring or the direct sum of two division rings. First, however, we notice
that since pe = 0, eA has no nonzero nilpotent *-elements, neither does it have
nonzero idempotent *-elements other than e.

Let a be a nonzero element in eA. If aa∗ 6= 0, then also a∗a 6= 0. Now there
exist *-elements y, z ∈ A and positive integers k, m such that (aa∗)k y (aa∗)k =
(aa∗)k and (a∗a)m z (a∗a)m = (aa∗)m. The *-subring generated by the idempotent
*-element (aa∗)k y is finite and hence (aa∗)k y = e. Similarly z (a∗a)m = e. There-
fore a is invertible. So, if for every 0 6= a ∈ eA, aa∗ 6= 0, eA is a division
ring. Suppose, now, that there exists an element a in eA such that aa∗ = 0.
Then a∗a = 0 and a is not a *-element. Moreover, a cannot be nilpotent, oth-
erwise, a + a∗ would be a nonzero nilpotent *-element in eA. Since A is π-
regular, there exist x ∈ eA and a positive integer n such that anxan = an. Now
anx + (anx)∗ is a nonzero idempotent *-element and hence anx + (anx)∗ = e. Let
e1 = anx. We now assert that eA = e1A ⊕ e∗1A. Since e = e1 + e∗1, it is clear
that eA = e1A + e∗1A. Now let b ∈ e1A ∩ e∗1A. Then b = e1c = e∗1d, for some
c, d ∈ A. Thus e1b = e1c = e1e

∗
1d = e1 (e− e1) d = 0; that is b = 0. Finally, we

notice that the ideals e1A and e∗1A cannot contain nonzero nilpotent elements, for,
otherwise eA would contain nonzero nilpotent *-elements. Similarly, these ideals
cannot contain nontrivial idempotent elements. Thus e1A and e∗1A are division
rings. Moreover, e∗1A ' (e1A)op. As was noticed in the proof of Theorem 3, the
direct sum of division rings, e1A⊕ e∗1A, has exactly one minimal *-subring only if
the division rings e1A and e∗1A have characteristic 2. �

Lemma 9. If A is a nil involution ring with unique minimal *-subring S of order
p, then S is an ideal of A.

Proof. S is a zero ring of order p, for some prime p. Let S = [s] where s is
a *-element and let a be an arbitrary nonzero element of A. If s (a + a∗) s 6= 0,
then [s (a + a∗) s] = [s] and therefore is (a + a∗) s = s for some integer i, (0 < i <
p). But then is (a + a∗) is a nonzero idempotent element, which contradicts our
assumption. Hence s (a + a∗) s = 0 and so sa∗s = −sas. Arguing as above, we
conclude that sas = 0. Finally, we show that sb = 0 for any b ∈ A. Suppose that
sb 6= 0. If sb is a *-element, then [sb] = [s], which implies that s (jb) = jsb = s
for some integer j (0 < j < p), which is impossible in a nil ring. If sb is not a
*-element, then [sb + b∗s] = [s] and k (sb + b∗s) = s for some integer k (0 < k < p).
This implies that ksb2 + kb∗sb = sb; that is ksb2 − sb = −kb∗sb, which is a
*-element. So, if ksb2 − sb 6= 0, then [ksb2 − sb] = [s] and l (ksb2 − sb) = s for
some integer l (0 < l < p); that is, s (lkb2 − lb) = s, which is impossible. Therefore
ksb2 − sb = 0 and this implies that sb (kb) = sb, which is again impossible. Thus
we must have sb = 0. Similarly, we can prove that bs = 0. Thus SA = AS = 0
and S is a *-ideal of A. �
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Lemma 10. Let A be a nilpotent involution p-ring (p prime). If A has a unique
minimal *-subring, then the intersection of all nonzero *-subrings of A is nonzero.

Proof. Let A have a unique minimal *-subring S. Then S2 = 0 and S is an ideal
of A of order p. Let S1 be any nonzero *-subring of A. There exists a nonzero
*-element s1 in S1, of order p and such that s2

1 = 0. Hence [s1] = S and so
S ⊆ S1. �

In what follows, if S is a *-subring of the involution ring A and p is a prime, then
we put AS = {a ∈ A : pa = 0 = a2 and a /∈ S}.

Proposition 11. Let A be a nilpotent involution p-ring (p 6= 2 and p prime).
The following conditions are equivalent:

(i) A has a unique minimal *-subring S;

(ii) A is subdirectly irreducible with heart S ' Z (p) and either aa∗ 6= 0 or
a∗a 6= 0 for each a ∈ AS.

Proof. Suppose (i) holds. From the previous lemma, we have that S is contained
in every nonzero *-biideal of A. By Theorem 3, A is *-subdirectly irreducible with
*-heart S ∼= Z (p). Finally, we show that A is, in fact, subdirectly irreducible.
Let K be any nonzero ideal of A such that K 6= K∗ and let 0 6= k ∈ K such
that k2 = 0 = pk. If KK∗ = 0 = K∗K, then for K1 = [k], we have two
distinct *-subrings of A of order p, {k∗

1 + k1 : k1 ∈ K1} and {k∗
1 − k1 : k1 ∈ K1}; a

contradiction with our assumption. Thus either KK∗ 6= 0 or K∗K 6= 0 and hence
either S ⊆ KK∗ ⊆ K or S ⊆ K∗K ⊆ K. Therefore A is a subdirectly irreducible
ring with heart S. Suppose there exists a ∈ AS such that a∗a = aa∗ = 0. For
T = [a], we have two distinct minimal *-subrings of A, namely, {t + t∗ : t ∈ T}
and {t− t∗ : t ∈ T}, contradicting our assumption.

Suppose (ii) holds and let S1 = [s1] be a minimal *-subring of A such that S1 6= S.
Clearly s1 ∈ As and s∗1s1 = s∗1s1 = 0, contradicting (ii). �

We notice that a nilpotent involution ring A having a unique minimal *-subring
of order 2 does not necessarily have a unique minimal subring. In fact, the ring
A = Z (2)⊕ Z (2), with the exchange involution, has a unique minimal *-subring
of order 2, but three minimal subrings.

As usual, a ring A with identity is called a local ring if A/J (A) is a division
ring, where J (A) denotes the Jacobson radical of A.

Proposition 12. Let A be a local involution ring of characteristic pn (p 6= 2
a prime and n ≥ 2) and with nilpotent Jacobson radical. Then the following
conditions are equivalent:

(i) A has a unique minimal *-subring;

(ii) J (A) is subdirectly irreducible with heart S ' Z (p) and aa∗ 6= 0 or a∗a 6= 0,
for each a ∈ J (A)S.



144 D. I. C. Mendes: On Involution Rings with Unique Minimal *-subring

Proof. If S is a minimal *-subring of A, then it is clear that S ⊆ J (A). Notice
that if a is a nonzero element which does not belong to J (A), then a does not
generate a subring of order p. In fact, since a is invertible, pa 6= 0, for otherwise
paa−1 = p1 = 0, which is a contradiction with the fact that the identity 1 has
order pn. Taking into account the previous proposition, the result is clear. �

It is well-known (see [1], Theorem 3 and Corollary 4) that an involution ring has
d.c.c. on *-biideals if and only if it is an artinian ring with artinian Jacobson
radical and that the Jacobson radical of such an involution ring is nilpotent.
For any prime p, Ap shall denote, as usual, the p-component of the ring A and
T (A) = {a ∈ A : na = 0 for some nonzero integer n}. We are now in a position to
investigate the structure of CI-rings with involution and with d.c.c. on *-biideals,
which have a unique minimal *-subring.

Theorem 13. Let A be a CI-ring with involution and with d.c.c. on *-biideals.
Then A has a unique minimal *-subring if and only if A is one of the following
rings:

(i) A ' T ⊕D where T is a torsion-free involution ring with identity and D is
a division ring with involution of finite characteristic p;

(ii) A ' T ⊕ (D ⊕Dop) where T is a torsion-free involution ring with identity,
D is a division ring of characteristic 2 and D ⊕ Dop is endowed with the
exchange involution;

(iii) A ' T ⊕L where T is a torsion-free involution ring with identity and L is a
nonzero local involution ring of characteristic pn (p prime and n ≥ 2) with
unique minimal *-subring;

(iv) A ' T ⊕ (L⊕ Lop) where T is a torsion-free involution ring with identity,
each of L and Lop is a nonzero local ring of characteristic 2n (n ≥ 2) with
unique minimal subring and L⊕Lop is endowed with the exchange involution;

(v) A ' T ⊕N where T is a torsion-free involution ring with identity and N is
a nonzero nilpotent involution p-ring (p a prime) having a unique minimal
*-subring.

Proof. We shall first prove the only if part. By hypothesis, there exists a prime
p such that Ap 6= 0 and A/Ap is torsion free. By ([9] , Theorem 5), A is a direct
sum of Ap and a torsion-free ring with right identity. Clearly, the right identity
is also a left identity. Since Ap is artinian, either Ap has a non-zero idempotent
or Ap is nilpotent. First we consider the case when Ap has a nonzero idempotent
e. If e is a *-element, then e must be the identity of Ap and Ap is a local ring
of characteristic pn for some integer n ≥ 1. If n = 1, then Ap has the minimal
*-subring S ∼= GF (p) generated by the identity of Ap. In this case, A satisfies (i),
according to Proposition 8. If n ≥ 2, then A satisfies (iii). If e is not a *-element,
then e + e∗ is the identity of Ap. Furthermore, Ap = eAp ⊕ e∗Ap, where eAp and
e∗Ap are local rings of characteristic pn for some integer n ≥ 1. If n = 1 and p = 2,
then (ii) holds. If, on the other hand, n ≥ 2 and p = 2, then (iv) holds. Notice
that, if p 6= 2 and S is the unique minimal subring of eAp, then {a + a∗ : a ∈ S}
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and {a− a∗ : a ∈ S} are two distinct *-subrings of Ap. If Ap is nilpotent, then (v)
holds.

Conversely, since artinian rings are π-regular (see [4]), we have, by Proposi-
tion 8, that the involution rings in (i) and (ii) have a unique minimal *-subring.
Regarding the involution ring A = T ⊕ (L⊕ Lop) in (iv), if S denotes the unique
minimal subring in L, then it is clear that S is a zero-ring on a cyclic group of
order 2, S = Sop and {(0, (a, a)) : a ∈ S} is the unique minimal *-subring in A. �

Theorem 14. Let A be an involution ring with unique minimal *-subring S.

(i) If S ' GF (p) and every idempotent element in A is central, then A decom-
poses as follows: A = A′ ⊕ D where A′ is an involution ring all of whose
nonzero *-subrings are infinite, D has finite characteristic p and any finite
*-subring of D is either a field or of the form F ⊕ F ∗ (where F is a field)
and contains S.

(ii) If S ' Z (p) and the prime radical of Ap is nonzero, then S is a *-ideal of
A, T (A) /Ap has no nonzero nilpotent *-elements and the prime radical of
Ap is a nil p-ring having the unique minimal *-subring S.

Proof. (i) S ' GF (p). Let e be the identity of S. If every idempotent el-
ement in A is central, then, by Proposition 7, any non-zero *-subring of A′ =
{x− ex : x ∈ A} is infinite. By Propositions 6 and 7, any finite *-subring of eA
is either a field or of the form F ⊕ F ∗ (where F is a field) and contains S.

(ii) S ' Z (p). In this case, S is an ideal of A. To see this, let P denote the prime
radical of Ap. As is well-known, P is locally nilpotent and hence any finitely
generated *-subring of P is a nilpotent p-ring with unique minimal *-subring. Let
S = [s] and consider any a ∈ A. Since P is an ideal of A, we have sa ∈ P .
Arguing as in the first part of Lemma 9, we can show that sa = as = 0. �
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