Commutativity Conditions on Derivations and Lie Ideals in σ-prime Rings

L. Oukhtite
S. Salhi
L. Taoufiq
Université Moulay Ismail, Faculté des Sciences et Techniques
Département de Mathématiques, Groupe d'Algèbre et Applications
B. P. 509 Boutalamine, Errachidia, Maroc
e-mail: oukhtitel@hotmail.com
e-mail: salhi@fastmail.fm
e-mail: lahcentaoufiq@yahoo.com

Abstract

Let R be a 2 -torsion free σ-prime ring, U a nonzero square closed σ-Lie ideal of R and let d be a derivation of R. In this paper it is shown that: 1) If d is centralizing on U, then $d=0$ or $U \subseteq Z(R)$. 2) If either $d([x, y])=0$ for all $x, y \in U$, or $[d(x), d(y)]=0$ for all $x, y \in U$ and d commutes with σ on U, then $d=0$ or $U \subseteq Z(R)$. MSC 2000: 16W10, 16W25, 16U80 Keywords: σ-prime ring, derivation, commutativity

1. Introduction

Throughout this paper, R will represent an associative ring with center $Z(R)$. Recall that R is said to be 2-torsion free if whenever $2 x=0$, with $x \in R$, then $x=0 . R$ is prime if $a R b=0$ implies that $a=0$ or $b=0$ for all a and b in R. If σ is an involution in R, then R is said to be σ-prime if $a R b=a R \sigma(b)=0$ implies that $a=0$ or $b=0$. It is obvious that every prime ring equipped with an involution σ is also σ-prime, but the converse need not be true in general. An additive mapping $d: R \rightarrow R$ is said to be a derivation if $d(x y)=d(x) y+x d(y)$ for all x, y in R. A mapping $F: R \rightarrow R$ is said to be centralizing on a subset S of R
if $[F(s), s] \in Z(R)$ for all $s \in S$. In particular, if $[F(s), s]=0$ for all $s \in S$, then F is commuting on S. In all that follows $S a_{\sigma}(R)$ will denote the set of symmetric and skew-symmetric elements of R; i.e., $S a_{\sigma}(R)=\{x \in R / \sigma(x)= \pm x\}$. For any $x, y \in R$, the commutator $x y-y x$ will be denoted by $[x, y]$. An additive subgroup U of R is said to be a Lie ideal of R if $[u, r] \in U$ for all $u \in U$ and $r \in R$. A Lie ideal U which satisfies $\sigma(U) \subseteq U$ is called a σ-Lie ideal. If U is a Lie (resp. σ-Lie) ideal of R, then U is called a square closed Lie (resp. σ-Lie) ideal if $u^{2} \in U$ for all $u \in U$. Since $(u+v)^{2} \in U$ and $[u, v] \in U$, we see that $2 u v \in U$ for all $u, v \in U$. Therefore, for all $r \in R$ we get $2 r[u, v]=2[u, r v]-2[u, r] v \in U$ and $2[u, v] r=2[u, v r]-2 v[u, r] \in U$, so that $2 R[U, U] \subseteq U$ and $2[U, U] R \subseteq U$. This remark will be freely used in the whole paper.
Many works concerning the relationship between commutativity of a ring and the behavior of derivations defined on this ring have been studied. The first important result in this subject is Posner's theorem, which states that the existence of a nonzero centralizing derivation on a prime ring forces this ring to be commutative ([9]). This result has been generalized by many authors in several ways.
In [3], I. N. Herstein proved that if R is a prime ring of characteristic not 2 which has a nonzero derivation d such that $[d(x), d(y)]=0$ for all $x, y \in R$, then R is commutative. Motivated by this result, H. E. Bell, in [1], studied derivations d satisfying $d([x, y])=0$ for all $x, y \in R$. In [4] and [7], L. Oukhtite and S. Salhi generalized these results to σ-prime rings. In particular, they proved that if R is a 2 -torsion free σ-prime ring equipped with a nonzero derivation which is centralizing on R, then R is necessarily commutative.
Our purpose in this paper is to extend these results to square closed σ-Lie ideals.

2. Preliminaries and results

In order to prove our main theorems, we shall need the following lemmas.
Lemma 1. ([8], Lemma 4) If $U \not \subset Z(R)$ is a σ-Lie ideal of a 2-torsion free σ prime ring R and $a, b \in R$ such that $a U b=\sigma(a) U b=0$ or $a U b=a U \sigma(b)=0$, then $a=0$ or $b=0$.

Lemma 2. ([5], Lemma 2.3) Let $0 \neq U$ be a σ-Lie ideal of a 2-torsion free σ prime ring R. If $[U, U]=0$, then $U \subseteq Z(R)$.

Lemma 3. ([6], Lemma 2.2) Let R be a 2-torsion free σ-prime ring and U a nonzero σ-Lie ideal of R. If d is a derivation of R which commutes with σ and satisfies $d(U)=0$, then either $d=0$ or $U \subseteq Z(R)$.

Remark. One can easily verify that Lemma 3 is still valid if the condition that d commutes with σ is replaced by $d \circ \sigma=-\sigma \circ d$.

Theorem 1. Let R be a 2 -torsion free σ-prime ring and U a square closed σ-Lie ideal of R. If d is a derivation of R satisfying $[d(u), u] \in Z(R)$ for all $u \in U$, then $U \subseteq Z(R)$ or $d=0$.

Proof. Suppose that $U \nsubseteq Z(R)$. As $[d(x), x] \in Z(R)$ for all $x \in U$, by linearization $[d(x), y]+[d(y), x] \in Z(R)$ for all $x, y \in U$. Since char $R \neq 2$, the fact that $\left[d(x), x^{2}\right]+\left[d\left(x^{2}\right), x\right] \in Z(R)$ yields $x[d(x), x] \in Z(R)$ for all $x \in U$; hence

$$
[r, x][d(x), x]=0 \quad \text { for all } \quad x \in U, r \in R,
$$

and therefore $[d(x), x]^{2}=0$ for all $x \in U$. Since $[d(x), x] \in Z(R)$,

$$
[d(x), x] R[d(x), x] \sigma([d(x), x])=0 \text { for all } x \in U
$$

and the σ-primeness of R yields $[d(x), x]=0$ or $[d(x), x] \sigma([d(x), x])=0$. If $[d(x), x] \sigma([d(x), x])=0$, then $[d(x), x] R \sigma([d(x), x])=0$; and the fact that $[d(x), x]^{2}$ $=0$ gives

$$
[d(x), x] R \sigma([d(x), x])=[d(x), x] R[d(x), x]=0 .
$$

Since R is σ-prime, we obtain

$$
[d(x), x]=0 \text { for all } x \in U .
$$

Let us consider the map $\delta: R \longmapsto R$ defined by $\delta(x)=d(x)+\sigma \circ d \circ \sigma(x)$. One can easily verify that δ is a derivation of R which commutes with σ and satisfies

$$
[\delta(x), x]=0 \text { for all } x \in U
$$

Linearizing this equality, we obtain

$$
[\delta(x), y]+[\delta(y), x]=0 \quad \text { for all } x, y \in U .
$$

Writing $2 x z$ instead of y and using char $R \neq 2$, we find that

$$
\delta(x)[x, z]=0 \quad \text { for all } x, z \in U .
$$

Replacing z by $2 z y$ in this equality, we conclude that $\delta(x) z[x, y]=0$, so that

$$
\begin{equation*}
\delta(x) U[x, y]=0 \text { for all } x, y \in U . \tag{1}
\end{equation*}
$$

By virtue of Lemma 1, it then follows that

$$
\delta(x)=0 \text { or }[x, U]=0, \text { for all } x \in U \cap S a_{\sigma}(R) .
$$

Let $u \in U$. Since $u-\sigma(u) \in U \cap S a_{\sigma}(R)$, it follows that

$$
\delta(u-\sigma(u))=0 \text { or }[u-\sigma(u), U]=0 .
$$

If $\delta(u-\sigma(u))=0$, then $\delta(u) \in S a_{\sigma}(R)$ and (1) yields $\delta(u)=0$; or $[u, U]=0$. If $[u-\sigma(u), U]=0$, then $[u, y]=[\sigma(u), y]$ for all $y \in U$ and (1) assures that

$$
\delta(u) U[u, y]=0=\delta(u) U \sigma([u, y]), \text { for all } y \in U .
$$

Applying Lemma 1, we find that $\delta(u)=0$ or $[u, U]=0$. Hence, U is a union of two additive subgroups G_{1} and G_{2}, where
$G_{1}=\{u \in U$ such that $\delta(u)=0\}$ and $G_{2}=\{u \in U$ such that $[u, U]=0\}$.

Since a group cannot be a union of two of its proper subgroups, we are forced to $U=G_{1}$ or $U=G_{2}$. Since $U \nsubseteq Z(R)$, Lemma 2 assures that $U=G_{1}$ and therefore $\delta(U)=0$. Now applying Lemma 3, we get $\delta=0$ and therefore $d \circ \sigma=-\sigma \circ d$. As $[d(x), x]=0$ for all $x \in U$, in view of the above Remark, similar reasoning leads to $d=0$.

Corollary 1. ([7], Theorem 1.1) Let R be a 2 -torsion free σ-prime ring and $d a$ nonzero derivation of R. If d is centralizing on R, then R is commutative.

Theorem 2. Let U be a square closed σ-Lie ideal of a 2 -torsion free σ-prime ring R and d a derivation of R which commutes with σ on U.
If $[d(x), d(y)]=d([y, x])$ for all $x, y \in U$, then $d=0$ or $U \subseteq Z(R)$.
Proof. Suppose that $U \not \subset Z(R)$. We have

$$
\begin{equation*}
[d(x), d(y)]=d([y, x]) \text { for all } x, y \in U \tag{2}
\end{equation*}
$$

Substituting $2 x y$ for y in (2) and using char $R \neq 2$, we get

$$
\begin{equation*}
d(x)[y, x]=[d(x), x] d(y)+d(x)[d(x), y] \text { for all } x, y \in U . \tag{3}
\end{equation*}
$$

Replacing y by $2[y, z] x$ and using (3), we find that

$$
\begin{equation*}
[d(x), x][y, z] d(x)+d(x)[y, z][d(x), x]=0 \text { for all } x, y, z \in U . \tag{4}
\end{equation*}
$$

Replace y by $2[y, z] d(x)$ in (3) to get

$$
\begin{equation*}
d(x)[y, z][d(x), x]-[d(x), x][y, z] d^{2}(x)=0 \text { for all } x, y, z \in U . \tag{5}
\end{equation*}
$$

From (4) and (5) we obtain

$$
\begin{equation*}
[d(x), x][y, z]\left(d(x)+d^{2}(x)\right)=0 \text { for all } x, y, z \in U . \tag{6}
\end{equation*}
$$

Writing $2[u, v]\left(d(x)+d^{2}(x)\right) y$ instead of y in (6), where $u, v \in U$, we obtain $[d(x), x][u, v] z\left(d(x)+d^{2}(x)\right) y\left(d(x)+d^{2}(x)\right)=0$, so that

$$
\begin{equation*}
[d(x), x][u, v] z\left(d(x)+d^{2}(x)\right) U\left(d(x)+d^{2}(x)\right)=0 \text { for all } x, u, v, z \in U . \tag{7}
\end{equation*}
$$

If $x \in U \cap S a_{\sigma}(R)$, then Lemma 1 together with (7) assures that

$$
d(x)+d^{2}(x)=0 \quad \text { or } \quad[d(x), x][u, v] z\left(d(x)+d^{2}(x)\right)=0 \quad \text { for all } u, v, z \in U .
$$

Suppose that $[d(x), x][u, v] z\left(d(x)+d^{2}(x)\right)=0$. Then

$$
\begin{equation*}
[d(x), x][u, v] U\left(d(x)+d^{2}(x)\right)=0 . \tag{8}
\end{equation*}
$$

Since d commutes with σ and $x \in S a_{\sigma}(R)$, in view of (8), Lemma 1 gives

$$
\begin{equation*}
d(x)+d^{2}(x)=0 \text { or }[d(x), x][u, v]=0 \text { for all } u, v \in U . \tag{9}
\end{equation*}
$$

If $[d(x), x][u, v]=0$, then replacing u by $2 u w$ in (9) where $w \in U$, we obtain

$$
\begin{equation*}
[d(x), x] U[u, v]=0 . \tag{10}
\end{equation*}
$$

As $\sigma(U)=U$ and $[U, U] \neq 0$, by (10), Lemma 2 yields that $[d(x), x]=0$. Thus, in any event,

$$
\text { either }[d(x), x]=0 \text { or } d(x)+d^{2}(x)=0 \text { for all } x \in U \cap S a_{\sigma}(R)
$$

Let $x \in U$. Since $x+\sigma(x) \in U \cap S a_{\sigma}(R)$, either $d(x+\sigma(x))+d^{2}(x+\sigma(x))=0$ or $[d(x+\sigma(x)), x+\sigma(x)]=0$.
If $d(x+\sigma(x))+d^{2}(x+\sigma(x))=0$, then $d(x)+d^{2}(x) \in S a_{\sigma}(R)$ and (7) yields that $d(x)+d^{2}(x)=0$ or $[d(x), x][u, v] U\left(d(x)+d^{2}(x)\right)=0$.
If $[d(x), x][u, v] U\left(d(x)+d^{2}(x)\right)=0$, once again using $d(x)+d^{2}(x) \in S a_{\sigma}(R)$, we find that $d(x)+d^{2}(x)=0$, or $[d(x), x][u, v]$ for all $u, v \in U$, in which case $[d(x), x]=0$.
Now suppose that $[d(x+\sigma(x)), x+\sigma(x)]=0$. As $x-\sigma(x) \in U \cap S a_{\sigma}(R)$ we have to distinguish two cases:

1) If $d(x-\sigma(x))+d^{2}(x-\sigma(x))=0$, then $d(x)+d^{2}(x) \in S a_{\sigma}(R)$. Reasoning as above we get $d(x)+d^{2}(x)=0$ or $[d(x), x]=0$.
2) If $[d(x-\sigma(x)), x-\sigma(x)]=0$, then $[d(x), x] \in S a_{\sigma}(R)$. Replace u by $2 y u$ in (7), with $y \in U$, to get $[d(x), x] y[u, v] z\left(d(x)+d^{2}(x)\right) U\left(d(x)+d^{2}(x)\right)=0$, so that

$$
\begin{equation*}
[d(x), x] U[u, v] z\left(d(x)+d^{2}(x)\right) U\left(d(x)+d^{2}(x)\right)=0 \text { for all } x, u, v, z \in U \tag{11}
\end{equation*}
$$

Since $[d(x), x] \in S a_{\sigma}(R)$, from (11) it follows that

$$
[d(x), x]=0 \text { or }[u, v] U\left(d(x)+d^{2}(x)\right) U\left(d(x)+d^{2}(x)\right)=0 \text { for all } u, v \in U
$$

Suppose $[u, v] U\left(d(x)+d^{2}(x)\right) U\left(d(x)+d^{2}(x)\right)=0$. As $\sigma(U)=U$ and $[U, U] \neq 0$, then

$$
\begin{equation*}
\left(d(x)+d^{2}(x)\right) U\left(d(x)+d^{2}(x)\right)=0 \tag{12}
\end{equation*}
$$

In (6), write $2[u, v]\left(d(x)+d^{2}(x)\right) r$ instead of z, where $u, v \in U$ and $r \in R$, to obtain

$$
\begin{equation*}
[d(x), x][u, v] y\left(d(x)+d^{2}(x)\right) r\left(d(x)+d^{2}(x)\right)=0, \text { for all } u, v, y \in U, r \in R . \tag{13}
\end{equation*}
$$

Replacing r by $r \sigma\left(d(x)+d^{2}(x)\right) z$ in (13), where $z \in U$, we find that

$$
[d(x), x][u, v] y\left(d(x)+d^{2}(x)\right) r \sigma\left(d(x)+d^{2}(x)\right) z\left(d(x)+d^{2}(x)\right)=0
$$

which leads us to

$$
\begin{equation*}
[d(x), x][u, v] y\left(d(x)+d^{2}(x)\right) U \sigma\left(d(x)+d^{2}(x)\right) U\left(d(x)+d^{2}(x)\right)=0 . \tag{14}
\end{equation*}
$$

Since $\sigma\left(d(x)+d^{2}(x)\right) U\left(d(x)+d^{2}(x)\right)$ is invariant under σ, by virtue of (14), Lemma 1 yields

$$
\sigma\left(d(x)+d^{2}(x)\right) U\left(d(x)+d^{2}(x)\right)=0 \text { or }[d(x), x][u, v] y\left(d(x)+d^{2}(x)\right)=0 .
$$

If $\sigma\left(d(x)+d^{2}(x)\right) U\left(d(x)+d^{2}(x)\right)=0$, then (12) implies that $d(x)+d^{2}(x)=0$.
Now assume that

$$
\begin{equation*}
[d(x), x][u, v] y\left(d(x)+d^{2}(x)\right)=0 \text { for all } u, v, y \in U . \tag{15}
\end{equation*}
$$

Replace v by $2 w v$ in (15), where $w \in U$, and use (15) to get

$$
[d(x), x] w[u, v] y\left(d(x)+d^{2}(x)\right)=0,
$$

so that

$$
\begin{equation*}
[d(x), x] U[u, v] y\left(d(x)+d^{2}(x)\right)=0 \text { for all } u, v, y \in U . \tag{16}
\end{equation*}
$$

As $[d(x), x] \in S a_{\sigma}(R),(16)$ yields $[u, v] U\left(d(x)+d^{2}(x)\right)=0$, in which case $d(x)+$ $d^{2}(x)=0$, or $[d(x), x]=0$.
In conclusion, for all $x \in U$ we have either $[d(x), x]=0$ or $d(x)+d^{2}(x)=0$.
Now let $x \in U$ such that $d(x)+d^{2}(x)=0$. In (2), put $y=2[y, z] d(x)$ to get

$$
\begin{equation*}
d([y, z])[d(x), x]-[[y, z], x] d(x)+[d(x),[y, z]] d(x)=[y, z][d(x), x] . \tag{17}
\end{equation*}
$$

If in (2) we put $y=2[y, z] x$, we get

$$
\begin{equation*}
[[y, z], x] d(x)=[d(x),[y, z]] d(x)+d([y, z])[d(x), x]=0 . \tag{18}
\end{equation*}
$$

From (17) and (18) it then follows that

$$
[y, z][d(x), x]=0 \text { for all } y, z \in U,
$$

hence $[y, z] U[d(x), x]=0$ for all $y, z \in U$. Applying Lemma 1 , this leads to

$$
[d(x), x]=0, \text { for all } x \in U
$$

By virtue of Theorem 1, this yields that $d=0$.
Note that if d is a derivation of R which acts as anti-homomorphism on U, then d satisfies the condition $[d(x), d(y)]=d([y, x])$ for all $x, y \in U$. Thus we have the following corollary.

Corollary 2. ([6], Theorem 1.1) Let d be a derivation of a 2 -torsion free σ-prime ring R which acts as an anti-homomorphism on a nonzero square closed σ-Lie ideal U of R. If d commutes with σ, then either $d=0$ or $U \subseteq Z(R)$.

Theorem 3. Let U be a square closed σ-Lie ideal of a 2 -torsion free σ-prime ring R and d a derivation of R. If either $d([x, y])=0$ for all $x, y \in U$, or $[d(x), d(y)]=0$ for all $x, y \in U$ and d commutes with σ on U, then $d=0$ or $U \subseteq Z(R)$.

Proof. Suppose that $U \nsubseteq Z(R)$. Assume that $d([x, y])=0$; for all $x, y \in U$. Let δ be the derivation of R defined by $\delta(x)=d(x)+\sigma \circ d \circ \sigma(x)$.
Clearly, δ commutes with σ and $\delta([x, y])=0$ for all $x, y \in U$, so that

$$
\begin{equation*}
[\delta(x), y]=[\delta(y), x] \quad \text { for all } x, y \in U \tag{19}
\end{equation*}
$$

Writing $[x, y]$ instead of y in (19), we find that

$$
\begin{equation*}
[\delta(x),[x, y]]=0 \quad \text { for all } x, y \in U \tag{20}
\end{equation*}
$$

Replacing x by x^{2} in (19), we conclude that

$$
\begin{equation*}
\delta(x)[x, y]+[x, y] \delta(x)=0 \quad \text { for all } x, y \in U \tag{21}
\end{equation*}
$$

As char $R \neq 2$, from (20) and (21) it follows that

$$
\begin{equation*}
\delta(x)[x, y]=0 \quad \text { for all } x, y \in U \tag{22}
\end{equation*}
$$

Replacing y by $2 z y$ in (22), we get $\delta(x) z[x, y]=0$, so that

$$
\delta(x) U[x, y]=0 \quad \text { for all } x, y \in U
$$

From the proof of Theorem 1, we conclude that $\delta=0$ and thus $d \circ \sigma=-\sigma \circ d$. Since d satisfies $d([x, y])=0$ for all $x, y \in U$, by similar reasoning, we are forced to $d=0$.
Now assume that d commutes with σ and satisfies $[d(x), d(y)]=0$ for all $x, y \in U$.
The fact that $[d(x), d(2 x y)]=0$ implies that

$$
\begin{equation*}
d(x)[d(x), y]+[d(x), x] d(y)=0 \quad \text { for all } x, y \in U \tag{23}
\end{equation*}
$$

Replace y by $2[y, z] d(u)$ in (23), where $z, u \in U$, to find that

$$
\begin{equation*}
[d(x), x][y, z] d^{2}(u)=0 \quad \text { for all } x, y, u \in U \tag{24}
\end{equation*}
$$

Write $2[s, t] d^{2}(w) y$ instead of y in (24), where $s, t, w \in U$, thereby concluding that $[d(x), x] z[s, t] d^{2}(w) y d^{2}(u)=0$. Accordingly,

$$
\begin{equation*}
[d(x), x] z[s, t] d^{2}(w) U d^{2}(u)=0 \text { for all } s, t, u, w, x \in U \tag{25}
\end{equation*}
$$

Since d commutes with σ and $\sigma(U)=U$, using (25) we find that

$$
d^{2}(U)=0 \text { or }[d(x), x] U[s, t] d^{2}(w)=0
$$

Suppose that

$$
\begin{equation*}
[d(x), x] U[s, t] d^{2}(w)=0 \text { for all } s, t, w, x \in U \tag{26}
\end{equation*}
$$

Replacing t by $2 t v$ in (26), where $v \in U$, we are forced to

$$
[d(x), x][s, t] v d^{2}(w)=0
$$

and hence

$$
\begin{equation*}
[d(x), x][s, t] U d^{2}(w)=0 \text { for all } s, t, w, x \in U . \tag{27}
\end{equation*}
$$

Since $\sigma(U)=U$ and d commutes with σ, then (27) implies that either $d^{2}(U)=0$, or $[d(x), x][s, t]=0$ for all $s, t, x \in U$, in which case $[d(x), x]=0$ for all $x \in U$. Thus, in any event, we find that

$$
d^{2}(U)=0 \text { or }[d(x), x]=0 \text { for all } x \in U .
$$

If $d^{2}(U)=0$, then [5], Theorem 1.1 assures that $d=0$.
If $[d(x), x]=0$ for all $x \in U$, then Theorem 1 yields $d=0$.

Corollary 3. ([4], Theorem 3.3) Let d be a nonzero derivation of a 2-torsion free σ-prime ring R. If $d([x, y])=0$ for all $x, y \in R$, then R is commutative.

References

[1] Bell, H. E.; Daif, M. N.: On derivations and commutativity in prime rings. Acta. Math. Hung. 66(4) (1995), 337-343.

Zbl 0822.16033
[2] Brešar, M.: Centralizing mappings and derivations in prime rings. J. Algebra. 156(2) (1993), 385-394.

Zbl 0773.16017
[3] Herstein, I. N.: Rings with involution. Chicago Lectures in Mathematics. University of Chicago Press, Chicago 1976.

Zbl 0343.16011
[4] Oukhtite, L.; Salhi, S.: On commutativity of σ-prime rings. Glas. Mat. III. Ser. 41(1) (2006), 57-64.

Zbl 1123.16023
[5] Oukhtite, L.; Salhi, S.: Lie ideals and derivations of σ-prime rings. Int. J. Algebra 1(1-4) (2007), 25-30.

Zbl 1126.16019
[6] Oukhtite, L.; Salhi, S.: σ-Lie ideals with derivations as homomorphisms and anti-homomorphisms. Int. J. Algebra 1(5-8) (2007), 235-239.

Zbl 1124.16028
[7] Oukhtite, L.; Salhi, S.: On derivations in σ-prime rings. Int. J. Algebra 1(5-8) (2007), 241-246.

Zbl 1124.16025
[8] Oukhtite, SL.; Salhi, S.: Centralizing automorphisms and Jordan left derivations on σ-prime rings. Advances in Algebra (to appear).
[9] Posner, E. C.: Derivations in prime rings. Proc. Am. Math. Soc. 8 (1958), 1093-1100.

Zbl 0082.03003
[10] Vukman, J.: Commuting and centralizing mappings in prime rings. Proc. Am. Math. Soc. 109(1) (1990), 47-52.

Zbl 0697.16035

Received April 19, 2008

