Spherical Quadrangles

Catarina P. Avelino* A. M. d'Azevedo Breda ${ }^{\dagger}$ Altino F. Santos
Department of Mathematics, UTAD
5001-801 Vila Real, Portugal
e-mail: cavelino@utad.pt
Department of Mathematics, University of Aveiro
3810-193 Aveiro, Portugal
e-mail: ambreda@ua.pt
Department of Mathematics, UTAD
5001-801 Vila Real, Portugal
e-mail: afolgado@utad.pt

Abstract

We introduce the notion of quasi-well-centered spherical quadrangle, or QWCSQ for short, describing a geometrical method to construct any QWCSQ. It is shown that any spherical quadrangle is congruent to a QWCSQ. We classify such quadrangles taking into account the relative position of the spherical moons containing their sides. This allows us to conclude that the class of all QWCSQ is a differentiable manifold of dimension five. Keywords: spherical geometry, applications of spherical trigonometry

1. Introduction

Let S^{2} be the unit 2-sphere. The notion of well-centered spherical moon was introduced in [1] (a spherical moon whose vertices belong to the great circle $x=0$, and whose bisecting semi-great circle contains the point $C=(1,0,0)$; in Figure 1

[^0]0138-4821/93 \$ 2.50 © 2010 Heldermann Verlag
a well centered spherical moon, L_{1} is presented). Also in [1] it was established that any spherical (geodesic) quadrangle with congruent opposite angles is congruent to the intersection of two well-centered spherical moons, i.e., a well-centered spherical quadrangle.

In this paper we generalize these results to the class of all spherical quadrangles, by introducing the notion of quasi-well-centered spherical quadrangle. Some of the obtained results are based in spherical trigonometry formulas. The cosine rules state that the angles α_{1}, α_{2} and α_{3} of a spherical triangle satisfy

$$
\begin{equation*}
\cos \alpha_{1}=\frac{\cos a-\cos b \cos c}{\sin b \sin c} \quad \text { and } \quad \cos a=\frac{\cos \alpha_{1}+\cos \alpha_{2} \cos \alpha_{3}}{\sin \alpha_{2} \sin \alpha_{3}}, \tag{1.1}
\end{equation*}
$$

where a, b and c are the lengths of the edges opposite to α_{1}, α_{2} and α_{3}, respectively. For a detailed discussion on spherical trigonometry see [2].

2. Spherical Quadrangles

By a quasi-well-centered spherical quadrangle (QWCSQ) we mean a spherical quadrangle Q which is the intersection of a well-centered spherical moon L_{1} with vertices N and $-N($ where $N=(0,0,1))$ and a spherical moon L_{2} with one of its vertices, say v, in the first octant $(x, y, z \geq 0)$, see Figure 1 .

Figure 1. A quasi-well-centered spherical quadrangle Q
We have used the following notation:

- β and γ are the angles measure of the spherical moons L_{1} and L_{2}, respectively; $\beta, \gamma \in(0, \pi)$;
- $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ and a, b, c, d are, respectively, the internal angles and the edge lengths of $Q=L_{1} \cap L_{2}$;
- θ and ϕ are the spherical coordinates of the vertex v of L_{2}; in other words, considering $v=(x, y, z)$, then $x=\cos \theta \sin \phi, y=\sin \theta \sin \phi$ and $z=\cos \phi$. Geometrically, θ is the oriented angle between the bisector of L_{1} and the meridian through N that contains $v ; \theta \in\left(\frac{\beta}{2}, \frac{\pi}{2}\right]$. On the other hand, ϕ is the oriented angle between N and the vertex $v ; \phi \in\left(0, \frac{\pi}{2}\right]$;
- λ is the oriented angle between the line connecting v and $C=(1,0,0)$, and the bisector of $L_{2} ; \lambda \in\left(-\frac{\pi-\gamma}{2}, \frac{\pi-\gamma}{2}\right)$.

Remark 1. With the above notation we have the following properties.

1. If $\theta=\frac{\pi}{2}$ and $\lambda=0$, then $\alpha_{1}=\alpha_{3}$ and $\alpha_{2}=\alpha_{4}$, i.e., $Q=L_{1} \cap L_{2}$ is a spherical parallelogram. In addition, if $\phi=\frac{\pi}{2}$, then $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}$ and Q is a spherical rectangle.
2. If $\theta=\frac{\pi}{2}$ and $\phi=\frac{\pi}{2}$, then $\alpha_{1}=\alpha_{4}$ and $\alpha_{2}=\alpha_{3}$, and so $Q=L_{1} \cap L_{2}$ is an isosceles trapezoid.
3. If $\phi=\frac{\pi}{2}$ and $\lambda=0$, then $\alpha_{1}=\alpha_{2}$ and $\alpha_{3}=\alpha_{4}$, and so $Q=L_{1} \cap L_{2}$ is also an isosceles trapezoid.

Proposition 2.1. Let Q be a spherical quadrangle with internal angles α_{1}, α_{2}, α_{3} and α_{4}, and edge lengths a, b, c and d. Then any three of these parameters are completely determined by the remaining five.

Proof. Let Q be a spherical quadrangle as described above. We shall show how to determine α_{4}, c and d as functions of $\alpha_{1}, \alpha_{2}, \alpha_{3}, a$ and b. Other cases are treated in a similar way.

Let l be the diagonal of Q through α_{2} and α_{4} as illustrated in Figure 2.

Figure 2. A spherical quadrangle
By (1.1), we have

$$
\cos \alpha_{1}=\frac{\cos l-\cos a \cos b}{\sin a \sin b} \quad \text { and } \quad \cos \alpha_{3}=\frac{\cos l-\cos c \cos d}{\sin c \sin d}
$$

and so

$$
\begin{equation*}
\cos a \cos b+\sin a \sin b \cos \alpha_{1}=\cos c \cos d+\sin c \sin d \cos \alpha_{3} \tag{2.1}
\end{equation*}
$$

Figure 3. A spherical moon obtained by extending a pair of opposite sides of Q

Now, extending the sides a and c of Q one gets a spherical moon as shown in Figure 3. Let γ be its angle measure.
Using again (1.1), one gets

$$
\cos b=\frac{\cos \gamma+\cos \alpha_{1} \cos \alpha_{2}}{\sin \alpha_{1} \sin \alpha_{2}} \quad \text { and } \quad \cos d=\frac{\cos \gamma+\cos \alpha_{3} \cos \alpha_{4}}{\sin \alpha_{3} \sin \alpha_{4}}
$$

and so

$$
\begin{equation*}
-\cos \alpha_{1} \cos \alpha_{2}+\sin \alpha_{1} \sin \alpha_{2} \cos b=-\cos \alpha_{3} \cos \alpha_{4}+\sin \alpha_{3} \sin \alpha_{4} \cos d . \tag{2.2}
\end{equation*}
$$

Similarly, extending the other pair of opposite sides of Q we get the formula

$$
\begin{equation*}
-\cos \alpha_{1} \cos \alpha_{4}+\sin \alpha_{1} \sin \alpha_{4} \cos a=-\cos \alpha_{2} \cos \alpha_{3}+\sin \alpha_{2} \sin \alpha_{3} \cos c . \tag{2.3}
\end{equation*}
$$

From equations (2.2) and (2.3) we may obtain d and c as functions of α_{4}, respectively. Replacing c and d in (2.1) by the obtained expressions, we get α_{4} as function of $\alpha_{1}, \alpha_{3}, a$ and b. The expressions for c and d follow immediately. Therefore, α_{4}, c and d are completely determined when $\alpha_{1}, \alpha_{2}, \alpha_{3}, a$ and b are fixed values.

Proposition 2.2. Any spherical quadrangle is congruent to a QWCSQ. Besides, its sides and angles are completely determined by the five parameters $\beta, \gamma, \theta, \phi$ and λ defined in Figure 1.

Proof. Suppose that Q is a spherical quadrangle with internal angles, $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and α_{4}, and edge lengths a, b, c and d. The extension of the edges of Q give rise to two spherical moons L_{1} and L_{2}, such that $Q=L_{1} \cap L_{2}$. Now it follows that there is a spherical isometry σ such that $\sigma\left(L_{1}\right)$ is a well centered spherical moon with vertices N and $-N(N=(0,0,1))$ and $\sigma\left(L_{2}\right)$ has one of these vertices in the first octant. And so Q is congruent to a QWCSQ. By Proposition 2.1 the knowledge of $\alpha_{1}, \alpha_{2}, \alpha_{3}, a$ and b determines α_{4}, c and d.

Using the labelling of Figure 1 one gets the following system of equations in the five variables $\beta, \gamma, \theta, \phi$ and λ.

$$
\left\{\begin{aligned}
\cos \alpha_{1} & =\cos \frac{\beta+2 \theta}{2} \sin \frac{\gamma+2 \lambda}{2}-\sin \frac{\beta+2 \theta}{2} \cos \frac{\gamma+2 \lambda}{2} \cos \phi \\
\cos \alpha_{2} & =\cos \frac{\beta+2 \theta}{2} \sin \frac{\gamma-2 \lambda}{2}+\sin \frac{\beta+2 \theta}{2} \cos \frac{\gamma-2 \lambda}{2} \cos \phi \\
\cos \alpha_{3} & =-\cos \frac{\beta-2 \theta}{2} \sin \frac{\gamma-2 \lambda}{2}+\sin \frac{\beta-2 \theta}{2} \cos \frac{\gamma-2 \lambda}{2} \cos \phi \\
\cos a & =\frac{\cos \beta+\cos \alpha_{1} \cos \alpha_{4}}{\sin \alpha_{1} \sin \alpha_{4}} \\
\cos b & =\frac{\cos \gamma+\cos \alpha_{1} \cos \alpha_{2}}{\sin \alpha_{1} \sin \alpha_{2}}
\end{aligned}\right.
$$

We obtain the expressions of β and γ from the two last equations. Replacing these expressions in the first three equations and solving now the 3×3 system of equations, we also get θ, ϕ and λ.

Let \mathcal{Q} be the set of all QWCSQ.
Corollary 2.1. The degree of freedom given by the five parameters $\beta, \gamma, \theta, \phi$ and λ allows us to conclude that \mathcal{Q} is a differentiable manifold of dimension five; $\beta, \gamma \in(0, \pi), \theta \in\left(\frac{\beta}{2}, \frac{\pi}{2}\right], \phi \in\left(0, \frac{\pi}{2}\right], \lambda \in\left(-\frac{\pi-\gamma}{2}, \frac{\pi-\gamma}{2}\right)$.
The set of all isosceles trapezoids contains a manifold of dimension three. The submanifold contained in the border of \mathcal{Q} defined by the equations $\theta=\frac{\pi}{2}$ and $\phi=\frac{\pi}{2}$ has dimension three.

References

[1] Breda, A. M.; Santos, A. F.: Well Centered Spherical Quadrangles. Beitr. Algebra Geom. 44(2) (2003), 539-549.

Zbl 1041.51007
[2] Berger, M.: Geometry, Volume II. Springer-Verlag, New York 1996. cf. corrected 4th printing, Springer, Berlin 2009.

Zbl 1153.51001

[^0]: *supported partially by the Research Unit CM-UTAD of University of Tras-os-Montes e Alto Douro, through the Foundation for Science and Technology (FCT)
 ${ }^{\dagger}$ supported partially by the Research Unit Mathematics and Applications, through the Foundation for Science and Technology (FCT)

