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A Dialogue Between Two Lifting Theorems

Rodrigo Arocena ∗

En conmemoración de los 20 años del Postgrado en Matemática
de la Universidad Central de Venezuela.

Han pasado 20 años desde que formé parte de la primera generación
de estudiantes del Postgrado en Matemática de la Facultad de Cien-
cias de la UCV. Por entonces, la “casa que vence a las sombras” me
hab́ıa ofrecido la oportunidad de volver a estudiar, enseñar y respirar
el aire vivificante de una universidad autónoma y democráticamente
cogobernada, lo que era imposible en el Cono Sur ensombrecido por
las dictaduras. Hace más de una década, al retornar al Uruguay para
colaborar en la reconstrucción de una enseñanza devastada, afirmé en
la renuncia a mi cargo en la UCV: “pase lo que pase, ésta será para
siempre mi Universidad.” Hoy quiero agregar que, cerca o lejos, siempre
me he sentido trabajando en el Grupo de Teoŕıa de Operadores de la
UCV. Lo que sigue se inscribe en esa labor.

Abstract. The relation between the lifting theorems due to Nagy-Foias and
Cotlar-Sadosky is discussed.

PRESENTATION.
The Nagy-Foias commutant lifting theorem is a basic result in Operator

Theory and its applications to interpolation problems. Its scope is shown in a
fundamental book due to Foias and Frazho where we can read that “the work
on the general framework of the commutant lifting theorem continued to grow
mainly in Romania, the U.S.A. and Venezuela.” [FF, p. viii]

Now, the “Southamerican” contribution to the subject stems from the pur-
pose of understanding the relations between the Nagy-Foias theorem and the
Cotlar-Sadosky theorem on “weakly positive” matrices of measures.

The aim of this note is to recall some aspects of a “dialogue” between those
two theorems that ends by showing that they can be seen as alternative ways
of describing the same facts: see below, theorems (4) and (7).

∗Universidad de La República, Montevideo, Uruguay.
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THE COTLAR-SADOSKY THEOREM.
We shall use the following notation en(t) = eint, n ∈ Z and t ∈ R, P is

the space of trigonometric polynomials, i.e. of finite sums
∑

anen, with n ∈ Z
and an ∈ C, P+ = {

∑
anen ∈ P : an = 0 if n < 0}, P− = {

∑
anen ∈ P :

an = 0 if n ≥ 0}; T denotes the unit circle on the complex plane C, C(T) is the
Banach space of complex continuous functions on T and M(T) its dual, i.e., the
space of complex Radon measures on T; for any p ≥ 1, Hp = {f ∈ Lp ≡ Lp(T) :
f̂(n) = 0 if n < 0}, where f̂ is the Fourier transform of f .

If µ = {µjk}j,k=1,2 is a matrix with entries in M(T) and f = (f1, f2) ∈
C(T) × C(T), we set

〈µf, f〉 =
∑

{
∫

T
fj f̄k dµjk : j, k = 1, 2}.

Then 〈µf, f〉 ≥ 0, ∀f = (f1, f2) ∈ C(T) × C(T), iff µ is a positive matrix
measure, i.e., {µjk(∆)} is a positive matrix for any Borel set ∆ ⊂ T, and the
Cotlar-Sadosky theorem [CS. 1] can be stated as follows.

(1) Theorem. If the matrix measure µ = {µjk}j,k=1,2 is such that 〈µf, f〉 ≥
0, ∀f = (f1, f2) ∈ P+ × P−, there exists a positive matrix measure σ =
{σjk}j,k=1,2 such that 〈σf, f〉 = 〈µf, f〉, ∀f ∈ P+ × P−.

The above statement implies that

σ11 = µ11, σ22 = µ22, σ12 = σ̄21 = µ11 + h dt,

where dt is the Lebesgue measure in T and h ∈ H1.
The matrix µ such that 〈µf, f〉 ≥ 0 for every f ∈ P+ × P− is called “weakly

positive” and the theorem says that the weakly positive form defined by µ on
P+ × P− can be “lifted” (or, more precisely, extended) to the positive form
defined by σ on C(T) × C(T).

THE NAGY-FOIAS THEOREM IMPLIES THE COTLAR-SADOSKY
THEOREM

When theorem (1) was proved in 1979, Cotlar said that it was related to the
abstract version of Sarason’s generalized interpolation theorem [S.1], i.e., the
famous Nagy-Foias commutant lifting theorem proved in 1968 ([NF.1]; see also
[NF.2] and [FF]).

In order to recall its statement we fix the following notation. If G, H are
Hilbert spaces, L(G, H) is the set of bounded linear operators from G to H and
L(G) = L(G, G); if K is a closed subspace of G, PK denotes the orthogonal
projection of G onto K, iK the injection of K in G and G θ K the orthogonal
complement of K in G. Also,

∨
means “closed linear span of”. Unless otherwise

stated, all spaces are Hilbert spaces and all subspaces are closed subspaces.
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If X ∈ L(E1,E2) and Ej is a subspace of the space Gj , j = 1, 2, then
B ∈ L(G1,G2) is a lifting of X if PE2B = XPE1 .Nagy’s dilation theorem ([NF.
2], [FF]) says that if T ∈ L(E) is a contraction there exists an essentially unique
unitary operator U ∈ L(F ) such that E ⊂ T, T n = PEUn|E for every n ≥ 0
and F = ∨{UnE : n ∈ Z}; U is called the minimal unitary dilation of T ; set
G = ∨{UnE : n ≥ 0} and W = U|G, then W ∈ L(G) is the essentially unique
minimal isometric dilation of T : W is an isometry that lifts T, PEW = TPE ,
and G = ∨{WnE : n ≥ 0}. Then:

(2) Theorem. For j = 1,2 let Tj ∈ L(Ej) be a contraction in a Hilbert space,
Wj ∈ L(Gj) its minimal isometric dilation and Uj ∈ L(Fj) its minimal unitary
dilation. If X ∈ L(E1, E2) and XT1 = T2X, then:
i) ∃B ∈ L(G1,G2) such that BW1 = W2B, PE2B = XPE1 , ||B|| = ||X ||;
ii) ∃Y ∈ L(F1, F2) such that Y U1 = U2Y, PE2Y|E1 = X, ||Y || = ||X||;

In fact, (1) can be proved by means of (2) in the way we now sketch. Let
the shift S be given by (Sf)(z) ≡ zf(z). Set Fj = L2(µjj), Uj the shift
in Fj , j = 1, 2, E1 (E2) the closure of P+ (P−) in F1 (F2), T1 = U1|E1 and
T2 = PE2U2|E2 . Define X ∈ L(E1, E2) by

〈Xf1, f2〉 =
∫

T
f1f̄2 dµ12, ∀(f1, f2) ∈ P+ × P−.

Then Uj is the minimal unitary dilation of Tj, j = 1, 2, ||X|| ≤ 1 and
XT1 = T2X . Any Y as in (2ii) is given by the multiplication by a function
u = Y e0 so 〈Y f1, f2〉 =

∫
T f1f̄2u dµ22, ∀(f1, f2) ∈ P×P . Since ||Y || = ||X|| ≤ 1,

the matrix measure σ given by σ11 = µ11, σ22 = µ22, σ12 = σ̄21 = udµ22 is as
stated.
Remark We obtained the function u because any operator Y that intertwines
the shifts, ie., such that Y S1 = S2Y , is a multiplication. In this way, the
commutant lifting theorem extends Sarason’s method and gives all the solutions
of several interpolation problems [FF].

THE EXTENDED COTLAR-SADOSKY THEOREM IMPLIES THE
NAGY-FOIAS THEOREM

The following [CS.2] is an extension of theorem (1).

(3) Theorem. For j = 1, 2 let Vj be a vector space, Lj a subspace and τj : Vj →
Vl a linear isomorphism such that τ1L1 ⊂ L1 and τ−1

2 L2 ⊂ L2, αj : Vj ×Vj → C
is a positive form such that αj(τjv, τjw) ≡ αj(v,w), and β′ : L1 × L2 → C a
sesquilinear form such that β′(τ1w1, w2) = β′(w1, τ

−1
2 w2) and |β′(w1, w2)|2 ≤

α1(w1, w1)α2(w2, w2), ∀(w1, w2) ∈ L1 × L2. Then β′ can be extended to a
sesquilinear form β : V1 × V2 → C such that β(τ1v1, τ2v2) = β(v1, v2) and
|β(v1, v2)|2 ≤ α1(v1, v1)α2(v2, v2), ∀(v1, v2) ∈ V1 × V2.
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Set Vj = L2(µjj), τj the shift in Vj , αj(v, w) ≡
∫

T vw̄dµjj , L1 = P+, L2 =
P− and β′ ≡

∫
T vw̄dµ12; apply (3), then β is given by an operator that inter-

twines the shifts and (1) follows as above.
When β′(τ1w1, w2) ≡ β′(w1, τ

−1
2 w2) it is said that β′ is a generalized Han-

kel form, and when β(τ1v1, τ2v2) ≡ β(v1, v2) it is said that β is a generalized
Toeplitz form; thus, (3) is a result concerning the extension of Hankel forms to
Toeplitz forms.

Theorem (1) was presented as a property of a class of “modified Toeplitz
kernels” [CS.1]. That result was extended to vector valued “generalized Toeplitz
kernels” in [AC], where an extension of the famous Naimark dilation for Toeplitz
kernels was proved by the method of unitary extensions of isometries. The
dilation theorem for generalized Toeplitz kernels gives a proof of the Nagy-
Foias theorem ([A.1]; see also [FF], VII.8) so the last and (an extension of)
theorem (1) are in fact closely related.

But the story of the dialogue between these two lifting theorems is much
longer. For example, theorem (3) was first proved as a consequence of the
Nagy-Foias theorem and then an independent proof was given by the method of
unitary extensions of isometries ([CS.3]), a method by means of which a direct
proof of the Nagy-Foias theorem can be given ([A.2]; see also [S.2] and [F]).

We shall now show that theorem (3) implies (2). With notations as be-
fore, assume ||X|| = 1 and set Vj = Fj, τj = Uj , L1 = G1, L2 = G′

2 :=
∨{Un

2 E2 : n ≤ 0}, αj the scalar product in Fj ; let β′ : L1 × L2 → C be given
by β′(w1, w2) = 〈XPE1w1, w2〉. Thus

β′(U1w1, w2) ≡ 〈XPE1W1w1, w2〉 ≡ 〈T2XPE1w1, w2〉 = β′(w1, U
−1
2 w2)

and |β′(w1, w2)|2 ≤ 〈w1, w1〉〈w2, w2〉 ∀(w1, w2) ∈ L1 × L2. Then (3) says that
there exists an extension β of β′ such that ||β|| ≤ 1 and β(U1v1, U2v2) =
β(v1, v2). Consequently, there exists Y ∈ L(F1, F2) such that β(v1, v2) ≡
〈Y v1, v2〉 and that (2.ii) holds. Moreover, PG′

2
Y|G1 = XPE1 ; since G′

2θE2 =
F2θG2, we see that Y G1 ⊂ G2; setting B = Y|G1 , (2.i) follows.

THE FIXED POINT PROOF OF AN EXTENDED NAGY-FOIAS
THEOREM

As an illustration of the approach to lifting problems developed in [AADM.1,2]
and [G], and related with [TV], we shall sketch the proof of a particular case of
the results obtained by means of a fixed point theorem.

It is said that W ∈ L(G) is an expansive operator if ||v|| ≤ ||Wv|| for every
v ∈ G. The following is a slightly extended version of the Nagy-Foias theorem.

(4) Theorem. Let W1 ∈ L(G1) be an expansive lifting of T1 ∈ L(E1) and
W2 ∈ L(G2) be a contracting lifting of T2 ∈ L(E2); if X ∈ L(E1, E2) and
XT1 = T2X there exists B ∈ L(G1,G2) such that BW1 = W2B, PE2B = XPE1

and ||B|| = ||X||.
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The theorem can be proved in two steps which we now sketch. We may
assume ||X|| = 1.
Assertion (i) Set β = {B ∈ L(G1,G2) : PE2B = XPE1 , ||B|| = ||X||}; for any
B ∈ β there exists B] ∈ β such that B]W1 = W2B.

Set X ′ = XPE1 ∈ L(G1, G2); then X ′ ∈ β and T2X
′ = X ′W1. Thus, B ∈ β

iff B = X ′ + K(I − X ′∗X ′)1/2 with K a contraction in L(G1,G2θE2). With
obvious notation, B]W1 = W2B iff K](I − X ′∗X ′)1/2W1 = PG2θE2W2B. Now,

||PG2θE2W2Bw||2 = ||W2Bw||2 − ||T2X
′w||2 ≤ ||w||2 − ||X ′W1w||2

≤ ||W1w||2 − ||X ′W1w||2 = ||(I − X ′∗X ′)1/2W1w||2

for every w ∈ G1; let L be the closure of (I −X ′∗X ′)1/2W1G1; a unique contrac-
tion K] ∈ L(G1,G2θE2) is defined by K] = K]PL and K](I−X ′∗X ′)1/2W1w ≡
PG2θE2W2Bw. Assertion (i) follows.
Assertion (ii) Set Σ = {K ∈ L(G1, G2θE2) : ||K|| ≤ 1}; the map λ : Σ → Σ
given by λ(K) ≡ K] has a fixed point.

With the operator topology in L(G1,G2θE2), Σ is compact and λ is contin-
uous: if Kt → K in Σ then, for every w ∈ G1 and w ∈ G2θE2,

〈λ(Kt)[(I − X ′∗X ′)1/2W1w], v〉 = 〈W2[X ′ + Kt(I − X ′∗X ′)1/2]w, x〉
→ 〈W2[X ′ + K(I − X ′∗X ′)1/2]w, x〉
= 〈λ(K)[(I − X ′∗X ′)1/2W1w], v〉

so λ(Kt) → λ(K). Thus, (ii) follows from the Schauder-Tychonov fixed point
theorem [DS].

Clearly, if λ(K) = K,B = X ′ + K(I − X ′∗X ′)1/2 is as in (II.1).
Remark The lifting problem can have no solution: set ([FF], p.100) E1 = E2 =
C, T1 = T2 = 0, X = 1, G1 = G2 = C2, W1 = [w(1)

jk ] with w11 = w12 = w21 =

0, w22 = 1, W2 = [w(2)
jk ] with w11 = w12 = w22 = 0, w21 = 1. Then an operator

B as in (II.1) does not exist. Note that W2 is a contractive lifting of T2 and
that W1 is a lifting of T1 but W1 is not expansive.

(5) Corollary. For j = 1, 2 let Sj ∈ L(Ej) be a contraction with minimal
isometric dilation Vj ∈ L(Gj) such that PEj Rj = RjPEj . If R1 is expansive,
R2 is contractive and X ∈ L(E1,E2) is such that XS1R1|E1 = R2S2X, then,
there exists B ∈ L(G1, G2) such that BV1R1 = R2V2B, PE2B = XPE1 and
||B|| = ||X||.
Proof. Set W1 = V1R1, T1 = S1R1|E1 , W2 = R2V2, T2 = R2S2. Then W1 is
expansive, W2 is contractive, PE1W1 = T1PE1 , PE2W2 = T2PE2 and XT1 =
T2X. The result follows from (4).

The corollary above was suggested by the following result due to Sebestyén
[Se].
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(6) Theorem. Let S ∈ L(E) be a contraction with minimal isometric dilation
V ∈ L(G) and R ∈ L(G) a contraction that commutes with the orthogonal
projection Pn of G onto ∨{V jE : 0 ≤ j ≤ n} for n = 0, 1, . . . If X ∈ L(E)
satisfies XS = RSX there exists B ∈ L(G) such that BV = RV B, PE2B =
xPE1 and ||B|| = ||X||.

Since P0 = Pe, (6) is a particular case of (5).

A REFORMULATION A LA COTLAR-SADOSKY OF THE EX-
TENDED NAGY-FOIAS THEOREM

As we shall see, the following result is not only quite similar but also equiv-
alent to the extended Nagy-Foias theorem (4) and it gives an extension of the
Cotlar-Sadosky theorem (7).

(6) Theorem. Let Ej be a Hilbert space and Tj ∈ L(Ej), j = 1,2 and γ :
E1 × E2 → C a sesquilinear bounded form such that γ(T1e1, e2) ≡ γ(e1, T2e2).
If W1 ∈ L(G1) is an expansive lifting of T1 and W2 ∈ L(G2) a contractive
extension of T2, there exists a sesquilinear bounded extension λ : G1 × G2 → C
of γ such that:

λ(W1g1, g2) ≡ λ(g1,W2g2) (1)
λ(g1, e2) = γ(PE1g1, e2) for every g1 ∈ G1 and e2 ∈ E2 (2)

||λ|| = ||γ|| (3)

Assertion (i) Theorem 4 implies theorem 7.
Let X ∈ L(E1, E2) be such that γ(e1, e2) ≡ 〈Xe1, e2〉, then XT1 = T ∗

2 X
and W ∗

2 is a contractive lifting of T ∗
2 , so there exists B ∈ L(G1, G2) such that

BW1 = W2B, PE2B = XPE1 and ||B|| = ||X||. Setting λ(g1, g2) ≡ 〈Bg1, g2〉
the result follows.

Assertion (ii) Theorem 7 implies theorem 4.
Set γ(e1, e2) ≡ 〈Xe1, e2〉, then γ(T1e1, e2) ≡ γ(e1, T

∗
2 e2) and W ∗

2 is a con-
tractive extension of T ∗

2 , so there exists λ as in (7); let B ∈ L(G1, G2) be such
that λ(g1, g2) ≡ 〈Bg1, g2〉 . Then ||B|| = ||λ|| = ||γ|| = ||X||; also,

〈BW1g1, g2〉 ≡ λ(W1g1, g2) ≡ λ(g1, W
∗
2 g2) ≡ 〈Bg1, W

∗
2 g2〉,

so BW1 = W2B; finally,

〈PE2Bg1, e2〉E2 ≡ λ(g1, e2) ≡ γ(PE1g1, e2) ≡ 〈XPE1g1, e2〉

so PE2B = XPE1 .

Assertion (iii) Theorem 7 implies theorem 3.
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For j = 1, 2 let Fj be the Hilbert space generated by the vector space Vj and
the positive form αj : there exists a linear operator πj : Vj → Fj such that πj(Vj)
is dense in Fj and 〈πjv, πjv

′〉 = αj(v, v′) for every v, v′ ∈ Vj. Let Uj ∈ L(Fj)
be the unitary operator given by Ujπj = πjτj and Gj be the closure in Fj of
πjLj . Let γ be a sesquilinear form γ : G1 × G2 → C such that γ(U1g1, g2) ≡
γ(g1, U

−1
2 g2) and ||γ|| ≤ 1 is defined by setting γ(π1v1, π2v2) = β′(v1, v2) for

every (v1, v2) ∈ L1 × L2.
Since U−1

2 ∈ L(F2) is a contractive extension of U−1
2 |G2

, there exists a
sesquilinear form λ : G1 ×F2 → C that extends γ and is such that ||λ|| ≤ 1 and
that λ(U1g1, U2f2) = λ(g1, f2) holds for every (g1, f2) ∈ G1 × F2.

Now set F ′
1 = ∨{U−n

1 G1 : n ≥ 0} and extend λ to a sesquilinear form λ1 :
F1 ×F2 → C by setting, for any n ≥ 0 and (g1, f2) ∈ G1 × F2, λ1(U−n

1 g1, f2) =
λ(g1, U

n
2 f2), then ||λ1|| = ||λ|| and λ1(f1, f2) ≡ λ1(U1f1, U2f2).

Setting β(v1, v2) = λ1(PF ′
1
π1v1, π2v2) for every (v1, v2) ∈ V1 × V2, the result

follows.
Final Remark.

Summing up, as Cotlar anticipated, theorems 1 and 2 are in fact very closely
related.
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