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Real and Complex Fundamental Solutions

— A Way for Unifying Mathematical Analysis.∗

Wolfgang Tutschke

Goal of the mini-course

The Fundamental Theorem of Calculus says that a differentiable function h
defined in an interval a ≤ x ≤ b can be recovered from its derivative h′ and its
boundary values:

h(x) = h(a) +

x∫

a

h′(ξ)dξ.

The mini-course will show that an analogous result is true for partial differential
operators:

Suppose L is a differential operator of order k. Moreover, let u be a function
defined and k times continuously differentiable in the closure of a domain Ω of
Rn. Provided the adjoint differential operator possesses a fundamental solution,
we shall see that u can be recovered from Lu and the boundary values of u.
Strictly speaking, we shall get an integral representation of u in form of the
sum of two integrals. One of them is a boundary integral, the other is a domain
integral whose integrand is the product of Lu and the fundamental solution
of the adjoint operator. Such integral representations can be used for solving
boundary value problems.

Since for getting this result we need basic concepts of distribution theory,
the mini-course will also include an elementary approach to distribution theory
as far as it will be essential for our goals.

While the first part of the mini-course (Section 1) will prove general state-
ments, the second part (Section 2) will consider the case of the complex plane
more in detail. This concerns, especially, boundary value problems for non-
linear systems in the plane.

∗Lecture Notes of a mini-course given at Simón Boĺıvar University, Caracas, Venezuela,
12.-23. November 2001



142 W. Tutschke

The third part (Section 3), finally, deals with initial value problems of type

∂u

∂t
= F

(
t, x, u,

∂u

∂x1
, ...,

∂u

∂xn

)

u(0, x) = ϕ(x).

We shall see that such initial value problems can be solved using interior esti-
mates for solutions of elliptic differential equations. Since interior estimates can
be obtained from integral representations by fundamental solutions, the above
mentioned initial value problems can also be solved within the framework of the
theory of fundamental solutions.

At the end of the mini-course (Section 4) we shall discuss some further
generalizations and open problems.

1 Integral representations using fundamental solutions

1.1 Differential operators of divergence type and their Green’s
Formulae

Let Ω be a bounded domain in Rn with sufficiently smooth boundary. A differ-
ential operator L of order k is called a differential operator of divergence type
if there exist another operator L∗ of order k and n differential operators Pi of
order k − 1 such that

vLu + (−1)k+1uL∗v =
n∑

i=1

∂Pi

∂xi
[u, v],

u and v being k times continuously differentiable. The operator L∗ is called
adjoint to L. In case L∗ = L, the operator L is called self-adjoint.

Example 1 The Laplace operator L = ∆ is a self-adjoint differential oper-
ator of divergence type because

Pi = v
∂u

∂xi
− u

∂v

∂xi

leads to
n∑

i=1

∂Pi

∂xi
[u, v] = v∆u − u∆v.

Example 2

Lu =
∑
i,j

∂

∂xj

(
aij(x)

) ∂u

∂xj
+

∑
k

bk(x)
∂u

∂xk
+ c(x)u
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is a differential operator of divergence type. Here we have

Pi = v
∑

j

aij
∂u

∂xj
− u

∑
j

aji
∂v

∂xj
+ biuv,

and the adjoint diferential operator is

L∗v =
∑
i,j

∂

∂xi

(
aji(x)

∂v

∂xj

)
−

∑
i

∂

∂xi
(bi(x)v) + c(x)v.

Applying the Gauss Integral Formula, one gets the following Green Integral
Formula for differential operators of divergence type

∫

Ω

(
vLu + (−1)k+1uL∗v

)
dx =

∫

∂Ω

n∑
i=1

Pi[u, v]Nidµ (1)

where (N1, ..., Nn) = N is the outer unit normal and dµ is the measure element
of ∂Ω.

1.2 The concept of distributional solutions

Using the Green Integral Formula for differential operators of divergence type,
one gets a characterization of solutions by integral relations. For this purpose
introduce so-called test functions. A test function for a differential equation of
order k is a k times continuously differentiable function vanishing identically in
a neighbourhood of the boundary. Consequently, replacing v by a test function,
the boundary integral in the Green Integral Formula (1) is equal to zero and
thus we have ∫

Ω

(
ϕLu + (−1)k+1uL∗ϕ

)
dx = 0 (2)

for each choice of the test function ϕ.
Now assume that u is a classical solution of the differential equation Lu = 0,

i.e., u is k times continuously differentiable and the differential equation is
pointwise satisfied everywhere in Ω. Then (2) implies that

∫

Ω

uL∗ϕdx = 0 (3)

for each choice of the test function ϕ. Conversely, if the relation (3) is satisfied
for any ϕ, then one has also ∫

Ω

ϕLudx = 0
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for each ϕ in view of (2). Taking into account the Fundamental Lemma of
Variational Calculus, the last relation implies Lu = 0 everywhere in Ω. To sum
up, the following statement has been proved:

A k times continuously differentiable function u is a classical solution of
Lu = 0 if and only if relation (3) is true for each ϕ.

On the other hand, it may happen that relation (3) is satisfied for each ϕ
if u is only an integrable function. Then u is called a distributional solution of
Lu = 0.

Similarly, if u is a (classical) solution of the inhomogeneous equation Lu = h
where the right-hand side h = h(x) is a given function in Ω, then instead of (3)
the relation ∫

Ω

(
ϕh + (−1)k+1uL∗ϕ

)
dx = 0 (4)

is satisfied for each ϕ. Therefore, a distributional solution of the inhomogeneous
equation Lu = h is an integrable function u satisfying (4) for each ϕ.

1.3 The concept of fundamental solutions

In order to apply Green’s Integral Formula to functions having an isolated
singularity at an interior point ξ of Ω, one has to omit a neighbourhood of ξ.
Introduce the domain Ωε = Ω \ Uε where Uε means the ε-neighbourhood of ξ.
Notice that the boundary of Ωε consists of two parts, the boundary ∂Ω of the
given domain Ω and of the ε-sphere centred at ξ.

Now let u be any (k times continuously differentiable) function, while v =
E∗(x, ξ) is supposed to be a solution of the adjoint equation L∗v = 0 having
an isolated singularity at ξ. Then the Green Integral Formula applied to u and
v = E∗(x, ξ) yields the relation

∫

Ωε

E∗(x, ξ)Ludx = (5)

∫

∂Ω

n∑
i=1

Pi[u, E∗(x, ξ)]Nidµ +
∫

|x−ξ|=ε

n∑
i=1

Pi[u, E∗(x, ξ)]Nidµ.

This relation leads to the concept of a fundamental solution (see [23]):
Definition The function v = E∗(x, ξ) is said to be a fundamental solution of

the equation L∗v = 0 with the singularity at ξ if the following three conditions
are satisfied:
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1. E∗(x, ξ) is a solution of L∗v = 0 for x �= ξ.

2. The boundary integral over the ε-sphere in (5) tends to (−1)ku(ξ) as ε
tends to zero, i.e., if one has

lim
ε→0

∫

|x−ξ|=ε

n∑
i=1

Pi[u, E∗(x, ξ)]Nidµ = (−1)ku(ξ)

where u is any k times continuously differentiable function.

3. The function E∗(x, ξ) is weakly singular at ξ, i.e., it can be estimated by

|E∗(x, ξ)| ≤ const
|x − ξ|α

where α < n.

Example If ωn means the surface measure of the unit sphere in Rn, then

− 1
(n − 2)ωn|x − ξ|n−2

is a fundamental solution of the Laplace equation in Rn, n ≥ 3. Indeed, Exam-
ple 1 of Section 1.1 implies that

∑
i

Pi[u, v]Ni = v
∂u

∂N
− u

∂v

∂N
.

On the ε-sphere centered at ξ one has

∂

∂N
= − ∂

∂r

where r = |x − ξ|. Hence for v = c/rn−2 where c is a constant it follows

∑
i

Pi[u, v]Ni = − c

εn−2
· ∂u

∂r
− c(n − 2)

εn−1
· u

on the sphere r = ε. Moreover, dµ = εn−1dµ1 where dµ1 is the measure element
of the unit sphere. This shows that the limit of the integral over the ε-sphere
equals u(ξ) in case −c(n − 2)ωn = 1.
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1.4 Integral representations for smooth functions

In view of the third condition on fundamental solutions (see the preceding Sec-
tion 1.3), a fundamental solution is integrable in Ω and thus the limiting process
ε → 0 in (5) leads to the integral representation formula

u(ξ) = (−1)k+1

∫

∂Ω

n∑
i=1

Pi[u, E∗(x, ξ)]Nidµ + (−1)k

∫

Ω

E∗(x, ξ)Ludx (6)

where u is any k times continuously differentiable function and E∗(x, ξ) is a
fundamental solution of the adjoint equation L∗v = 0. Formula (6) is called the
generalized Cauchy-Pompeiu Formula because in the special case of the Cauchy-
Riemann operator in the complex plane it passes into the Cauchy-Pompeiu For-
mula. Replacing the function u in (6) by a (k times continuously differentiable)
test function u = ϕ, one gets the important relation

ϕ(ξ) = (−1)k

∫

Ω

E∗(x, ξ)Lϕdx. (7)

showing that a test function ϕ can be recovered from Lϕ by an integration
provided a fundamental solution of L∗u = 0 is known. Interchanging L and L∗,
formula (7) leads to

ϕ(ξ) = (−1)k

∫

Ω

E(x, ξ)L∗ϕdx

Taking into account this relation, and using Fubini’s Theorem for weakly sin-
gular integrals, the following theorem can be proved easily:

Theorem 1 Suppose E(x, ξ) is a fundamental solution of Lu = 0 with singu-
larity at ξ. Then the function u defined by

u(x) =
∫

Ω

E(x, ξ)h(ξ)dξ (8)

turns out to be a distributional solution of the inhomogeneous equation Lu = h.

Proof Denoting Ω as domain of the x- and the ξ-space by Ωx and Ωξ resp., one
has

∫

Ωx

uL∗ϕdx =
∫

Ωx

( ∫

Ωξ

E(x, ξ)h(ξ)dξ

)
L∗ϕdx
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=
∫

Ωξ

h(ξ)
( ∫

Ωx

E(x, ξ)L∗ϕ(x)dx

)
dξ

= (−1)k

∫

Ωξ

h(ξ)ϕ(ξ)dξ.

1.5 Integral representations for solutions

Another important special case of a generalized Cauchy-Pompeiu Formula can
be obtained for solutions of (homogeneous) differential equations. Suppose u is
a solution of the differential equation Lu = 0, then formula (6) passes into the
boundary integral representation

u(ξ) = (−1)k+1

∫

∂Ω

n∑
i=1

Pi[u, E∗(x, ξ)]Nidµ. (9)

This formula (9) shows that each solution u can be expressed in (the interior
of) Ω by its values and its derivatives (up to the order k − 1) on the boundary
∂Ω of Ω.

1.6 Reduction of boundary value problems to fixed-point problems

Next consider a non-linear equation of type

Lu = F(·, u) (10)

where L is again a differential operator of divergence type. Suppose u is a given
solution of this equation (10). Define u0 by

u0(x) = u(x) −
∫

Ω

E(x, ξ)F(ξ, u(ξ))dξ.

In view of the above Theorem 1 one gets Lu0 = 0, i.e., to a given solution u of
equation (10) there exists a solution u0 of the simplified equation Lu0 = 0 such
that u satisfies the integral relation

u(x) = u0(x) +
∫

Ω

E(x, ξ)F(ξ, u(ξ))dξ.

This statement leads to the following method for the construction of solutions
of (10):
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Let u be any function belonging to a suitably chosen function space. Define
an operator by

U(x) = u0(x) +
∫

Ω

E(x, ξ)F(ξ, u(ξ))dξ (11)

where u0 is a solution of Lu0 = 0. Then a fixed element of this operator satisfies
equation (10).

Now suppose that a certain boundary condition

Bu = g

has to be satisfied. Choosing u0 as solution of the boundary value problem

B


u0 +

∫

Ω

E(x, ξ)F(ξ, u(ξ))dξ


 = g

for Lu0 = 0, one sees that all of the images U satisfy the given boundary
condition. The same is true, consequently, for every possibly existing fixed
element. To sum up, the following theorem has been proved:

Theorem 2 Boundary value problems for the non-linear differential equation
Lu = F(·, u) can be constructed as fixed points of the operator (11) provided u0

is a solution of the simplified equation Lu = 0 having suitably chosen boundary
values.

Examples for the solution of boundary value problems by fixed-point meth-
ods can be found, for instance, in Section 2.5 below where boundary value
problems for non-linear elliptic first order systems in the plane are reduced to
fixed-point problems using a complex normal form for the systems under con-
sideration. In F. Rihawi’s papers [17, 18] the Dirichlet boundary value problem
for

∆2u = F (z, u)

is solved where ∆ is the Laplace operator in the z-plane. A fixed-point argument
is also applied in C. J. Vanegas paper [28] where mainly non-linearly perturbed
systems of form

D0w = f

(
x, w,

∂w

∂x1
, ...,

∂w

∂xn

)

for a desired vector w = (w1, ..., wm) in a domain in Rn are considered, m ≥ n.
Here D0 is a matrix differential operator of first order with constant coefficients.
Using the adjoint operator to D0 and the determinant of D0, the Dirichlet
boundary value problem can be reduced to a fixed-point problem.



real and complex fundamental solutions 149

Remark Note that to each differential operator L belongs his own funda-
mental solution, in general. We shall see, however, that the Cauchy kernel

1
z − ζ

of Complex Analysis (and its square) are sufficient in order to construct the
necessary integral operators provided one uses a complex rewriting of the equa-
tions under consideration. In other words, general systems in the plane can be
solved using the fundamental solution of the Cauchy-Riemann system (see the
next Section 2)

2 Complex versions of the method of fundamental
solutions

2.1 The Cauchy kernel as fundamental solution of the
Cauchy-Riemann system

In the complex plane the Gauss Integral Formula for a complex-valued f reads
∫∫

Ω

∂f

∂x
dxdy =

∫

∂Ω

fdy (12)

and
∫∫

Ω

∂f

∂y
dxdy = −

∫

∂Ω

fdx. (13)

Define the partial complex differentiations ∂/∂z and ∂/∂z by

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)

∂

∂z
=

1
2

(
∂

∂x
+ i

∂

∂y

)
.

Multiplying (13) by i and adding the multiplied equation to (12), one gets the
following complex version of Gauss’ Integral Formula

∫∫

Ω

∂f

∂z
dxdy =

1
2i

∫

∂Ω

fdz, (14)

whereas subtraction gives
∫∫

Ω

∂f

∂z
dxdy = − 1

2i

∫

∂Ω

fdz.
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Substituting f = w1w2 into the complex version (14) of Gauss’ Integral
Formula, one obtains the complex Green Formula

∫∫

Ω

(
w1

∂w2

∂z
+ w2

∂w1

∂z

)
dxdy =

1
2i

∫

∂Ω

w1w2dz. (15)

This formula is the special case of (1) for the Cauchy-Riemann operator

L =
∂

∂z
.

It shows that the Cauchy-Riemann operator ∂/∂z is self-adjoint.

Applying this complex Green Integral Formula with

w1 = w and w2 =
c

z − ζ

in Ωε = Ω \ Uε (where c is a complex constant), one gets
∫∫

Ωε

∂w

∂z

c

z − ζ
dxdy (16)

=
1
2i

∫

∂Ω

w(z)
c

z − ζ
dz − 1

2i

∫

|z−ζ|=ε

w(z)
c

z − ζ
dz

which is the special case of (5) for the Cauchy-Riemann operator. The second
term on the right-hand side tends to

− 1
2i

w(ζ)c · 2πi

as ε tends to zero. Consequently,

E(z, ζ) =
1
π

1
z − ζ

(17)

turns out to be a fundamental solution of the Cauchy-Riemann system. More-
over, formula (16) leads to the Cauchy-Pompeiu Formula

w(ζ) =
1

2iπ

∫

∂Ω

w(z)
z − ζ

dz − 1
π

∫∫

Ω

∂w

∂z

1
z − ζ

dxdy. (18)

Note that (18) is the special case of formula (6) in Section 1.4 for the Cauchy-
Riemann operator L = ∂/∂z.
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2.2 Complex normal forms for linear and non-linear first order
systems in the plane

Let Ω be a bounded domain in the x, y-plane with sufficiently smooth bound-
ary. We are looking for two real-valued functions u = u(x, y) and v = v(x, y)
satisfying a system of form

Hj

(
x, y, u, v,

∂u

∂x
,
∂u

∂y
,
∂v

∂x
,
∂v

∂y

)
= 0, j = 1, 2, (19)

in Ω. One of the simplest special cases of this system is the Cauchy-Riemann
system

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −∂u

∂y

which can be written in the complex form
∂w

∂z
= 0

where z = x+iy and w = u+iv. In order to get an analogous complex rewriting
of the system (19), we use the formulae

∂w

∂z
=

1
2

(
∂u

∂x
+

∂v

∂y

)
+

i

2

(
∂v

∂x
− ∂u

∂y

)

∂w

∂z
=

1
2

(
∂u

∂x
− ∂v

∂y

)
+

i

2

(
∂v

∂x
+

∂u

∂y

)
.

Now introduce the following abbreviations:

1
2

(
∂u

∂x
+

∂v

∂y

)
= p1

1
2

(
∂v

∂x
− ∂u

∂y

)
= p2

1
2

(
∂u

∂x
− ∂v

∂y

)
= q1

1
2

(
∂v

∂x
+

∂u

∂y

)
= q2.

Then one has
∂u

∂x
= p1 + q1

∂u

∂y
= −p2 + q2

∂v

∂x
= p2 + q2

∂v

∂y
= p1 − q1.
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Substituting these expressions into the system (19), this system passes into

Hj (x, y, u, v, p1 + q1,−p2 + q2, p2 + q2, p1 − q1) = 0, j = 1, 2.

Now suppose that this system can be solved for q1 and q2. Then one gets
real-valued representations

qj = Fj(x, y, u, v, p1, p2), j = 1, 2. (20)

Since x + iy = z, u + iv = w and p1 + ip2 = ∂w/∂z, the variables on the
right-hand sides of these equations can be expressed by z, w and ∂w/∂z (and
their conjugate complex values). Denoting F1 + iF2 by F , and taking into
consideration that q1 + iq2 = ∂w/∂z, the two equations (20) can be combined
to the one complex equation

∂w

∂z
= F

(
z, w,

∂w

∂z

)
. (21)

This equation (21) is the desired complex rewriting of the real first order system
(19).
Remark Consider instead of (19) a system of 2m first order equations for
2m desired real-valued functions u1, v1, ..., um, vm. Introducing the vector w =
(w1, ..., wm) where wµ = uµ +ivµ, µ = 1, ..., m, such systems can also be written
in the form (21), where both the desired w and the right-hand side F are vectors
having m complex-valued components.

2.3 Distributional solutions of partial complex differential
equations. The TΩ- and the ΠΩ-operators

The inhomogeneous Cauchy-Riemann equation is the equation

∂w

∂z
= h (22)

where h is a given function in a bounded domain Ω. In accordance with Section
1.2 a distributional solution of this equation is an integrable function w = w(z)
such that ∫∫

Ω

(
ϕh + w

∂ϕ

∂z

)
dxdy = 0

for each (continuously differentiable and complex-valued) test function ϕ. Since
1
π

1
z − ζ

is a fundamental solution of the Cauchy-Riemann system, Theorem 1

of Section 1.4 shows that the so-called TΩ -operator

(TΩh)[z] =
1
π

∫∫

Ω

h(ζ)
z − ζ

dξdη = − 1
π

∫∫

Ω

h(ζ)
ζ − z

dξdη,
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(where ζ = ξ + iη) defines a (special) distributional solution of the inhomo-
geneous Cauchy-Riemann equation (22). This statement can be formulated as
follows:
Theorem 3

∂

∂z
TΩh = h.

Denote by ΠΩ the strongly singular operator

(ΠΩh)[z] = − 1
π

∫∫

Ω

h(ζ)
(ζ − z)2

dξdη.

Then similar considerations lead to the following theorem

Theorem 4

∂

∂z
TΩh = ΠΩh.

Remark
The strongly singular integral ΠΩh is defined as Cauchy’s Principal Value

provided it exists. Notice that Cauchy’s Principal Value of an integral∫∫

Ω

gdξdη

of a function g having a strong singularity at ζ is defined as limit

lim
ε→0

∫∫

Ω\Uε(ζ)

gdξdη,

i.e., one has to omit an ε-neighbourhood, not an arbitrary neighbourhood of
the singularity. For

g(ζ) =
h(ζ)

(ζ − z)2

one has

g(ζ) =
h(ζ) − h(z)

(ζ − z)2
+ h(z) · 1

(ζ − z)2
. (23)

If h is Hölder continuous with exponent λ, 0 < λ ≤ 1, then one has

|h(ζ) − h(z)| ≤ H · |ζ − z|λ.

Consequently, the absolute value of the first term in (23) can be estimated by

H

|ζ − z|2−λ
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and is thus weakly singular at ζ. This implies that the ΠΩ -operator exists for
Hölder continuous integrands. — In order to prove Theorem 4 one has to use
the Fubini Theorem for Principal Values of strongly singular integrals.

In order to determine the general solution of the inhomogeneous Cauchy-
Riemann equation (22), consider an arbitrary solution w = w(z) of that equa-
tion and define

Φ = w − TΩh.

Obviously,
∂Φ
∂z

= 0

in the distributional sense, i.e.,
∫∫

Ω

Φ
∂ϕ

∂z
dxdy = 0 (24)

for each test function. Of course, every holomorphic function in the classical
sense is a solution of the latter equation. The question is whether this equation
(24) can have distributional solutions which are not holomorphic functions in
the classical sense. The answer to this question is no in view of the famous
Weyl Lemma which will be proved in the next section.

2.4 The Weyl Lemma and its applications to elliptic first order
systems in the plane

Theorem 5 A distributional solution of the homogeneous Cauchy-Riemann
equation is necessarily a holomorphic function in the classical sense, i.e., it
is everywhere complex differentiable.

This statement will be proved by approximating a given distributional solution
by classical solutions. For this purpose we need the concept of a mollifier.

Take any real-valued (continuously differentiable) function ω = ω(ζ) defined
in the whole complex plane and satisfying the following conditions:

• ω(ζ) > 0 if |ζ| < 1

• ω(ζ) ≡ 0 if |ζ| ≥ 1

•
∫∫

ω(ζ)dξdη = 1
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where the integration is to be carried out over the whole complex plane. A
special function having these properties is defined by

ω(ζ) =
{

c(1 − r2)2, if r < 1,
0, if r ≥ 1.

where r = |ζ| and c is suitably chosen. For fixedly chosen z define a further
function ωδ by

ωδ(ζ, z) =
1
δ2

ω

(
ζ − z

δ

)
.

Then ωδ is positive in the δ-neighbourhood of x, whereas ωδ vanishes identically
outside this δ-neighbourhood. Moreover, one has∫∫

IC

ωδ(ζ, z)dξdη =
∫∫

|ζ−z|≤δ

ωδ(ζ, z)dξdη = 1. (25)

The function ωδ is called a mollifier.

Using the mollifier ωδ, one defines the regularization fδ = fδ(z) of an inte-
grable function f = f(z) by

fδ(z) =
∫∫

|ζ−z|≤δ

f(ζ)ωδ(ζ, z)dξdη,

i.e., the values fδ(z) are the mean values of f = f(z) with the weight ωδ in the
δ-neighbourhood of z.

In view of (25) the value f(z) can be rewritten in the form

f(z) =
∫∫

|ζ−z|≤δ

f(z)ωδ(ζ, z)dξdη.

Thus one gets

fδ(z) − f(z) =
∫∫

|ζ−z|≤δ

(f(ζ) − f(z))ωδ(ζ, z)dξdη. (26)

Now suppose that f = f(z) is continuous. Then the supremum

sup
|ζ−z|≤δ

|f(ζ) − f(z)|

is arbitrarily small in case δ is sufficiently small. Moreover, in view of (26) one
has

|fδ(z) − f(z)| ≤ sup
|ζ−z|≤δ

|f(ζ) − f(z)| ·
∫∫

|ζ−z|≤δ

ωδ(ζ, z)dξdη

≤ sup
|ζ−z|≤δ

|f(ζ) − f(z)|
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where (25) has been applied once more. Thus the fδ = fδ(z) tend uniformly
to f = f(z) as δ → 0 provided z runs in a compact subset of the domain of
definition.
Proof of Weyl’s Lemma

Using chain rule, one has

∂ωδ

∂z
= −∂ωδ

∂ζ

and, consequently,

∂fδ

∂z
(z) =

∫∫

|ζ−z|≤δ

f(ζ)
∂ωδ

∂z
(ζ, z)dξdη

= −
∫∫

|ζ−z|≤δ

f(ζ)
∂ωδ

∂ζ
(ζ, z)dξdη = 0 (27)

because f = f(z) is a distributional solution of the (homogeneous) Cauchy-
Riemann system by hypothesis and ωδ(ζ, z) is (for each z) a special test function.

Formula (27) shows that all of the fδ = fδ(z) are solutions of the (homo-
geneous) Cauchy-Riemann system. On the other hand, the fδ = fδ(z) are
continuously differentiable because the mollifiers have this property. Thus the
fδ = fδ(z) are holomorphic functions in the classical sense.

Now consider any compact subset of the domain under consideration. Ap-
plying Weierstrass’ Convergence Theorem, the function f = f(z) turns out to
be holomorphic, too, as limit of uniformly convergent holomorphic functions.
Since the compact subset can be chosen arbitrarily, the function f = f(z) turns
out to be holomorphic everywhere in the domain under consideration. This
completes the proof of Weyl’s Lemma.

Consider again the non-linear first order system (19) in its complex form
(21). Let w = w(z) be an arbitrary solution in the (bounded) domain Ω.
Define

Φ = w − TΩF

(
z, w,

∂w

∂z

)
.

By virtue of Weyl’s Lemma, Φ turns out to be a classical holomorphic function.
Consequently, each solution w = w(z) of equation (21) is a fixed point of the
operator

W = Φ + TΩF

(
z, w,

∂w

∂z

)
(28)

where Φ is a suitable chosen holomorphic function. Therefore, boundary value
problems for (21) can be reduced to boundary value problems for holomorphic
functions. This will be sketched in the next section.
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2.5 Fixed-point methods for linear and non-linear systems in the
plane

In order to construct fixed points of the operator (28), one has to choose a
suitable function space in which the TΩ - and the ΠΩ -operators are bounded.
Such spaces are the Hölder spaces or the Lebesgue spaces with p > 2. While
the TΩ -operator is also bounded in the space of continuous functions (the TΩ -
operator is even a bounded operator mapping Lp(Ω) into Cβ(Ω) with β = 1− 2

p ),
the ΠΩ -operator is not a bounded operator in the space of continuous functions.

In the paper [13], for instance, some boundary value problems for the non-
linear system (21) are solved in the following space:

w has to belong to Cβ(Ω), while ∂w/∂z has to be an element of
Lp(Ω) where p has to satisfy the inequality

2 < p <
1

1 − α
. (29)

The left-hand side of this inequality (29) implies that the TΩ -operator maps
Lp(Ω) into the Hölder space Cβ(Ω) with

β = 1 − 2
p
.

Indeed,

(TΩ)[ζ1] − (TΩ)[ζ1] = − 1
π

(z1 − z2)
∫∫

Ω

h(ζ) · 1
(ζ − z1)(ζ − z2)

dξdη

and thus by virtue of Hölder’s inequality

|(TΩh)[ζ1] − (TΩh)[ζ1]| ≤
1
π
· |z1−z2| · ‖h‖Lp(Ω) ·

∥∥∥∥ 1
|ζ − z1| · |ζ − z2|

∥∥∥∥
Lq(Ω)

(30)

where p and q are conjugate exponents,

1
p

+
1
q

= 1.

Since ∫∫

Ω

1
|ζ − z1|q · |ζ − z2|q

≤ C1|z1 − z2|2−2q + C2 ≤ C3|z1 − z2|2−2q

provided q > 1, the exponent of |z1 − z2| on the right-hand side of (30) is equal
to

1 +
2 − 2q

q
=

2
q
− 1 = 1 − 2

p
.
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Consequently, TΩh turns out to be Hölder continuous with exponent β if p > 2.
The right-hand side of inequality (29) ensures that the derivative of a holo-

morphic function belongs to Lp(Ω) if the boundary values of the holomorphic
function are Hölder-continuous with exponent α. Further, the right-hand side
of (29) is equivalent to

α > 1 − 1
p

and thus we see that β < α.
Since the real part of a holomorphic function is a solution of the Laplace

equation, a suitable boundary value problem for holomorphic functions and,
therefore, for solutions of (21), too, is the following so-called Dirichlet boundary
value problem:

One prescribes the real part of the desired solution on the whole
boundary, whereas the imaginary part can be prescribed at one point
z0 only.

In order to solve the boundary value problem for the equation (21), let Ψ be
the holomorphic solution of the boundary value problem under consideration.
Further, let Φ(w) be a holomorphic function such that

Φ(w) + TΩF

(
z, w,

∂w

∂z

)

satisfy the homogeneous boundary condition of the given (linear) boundary
value problem. While Ψ depends on the prescribed data only, the holomorphic
function Φ(w) depends on the choice of w. Choosing

Φ = Ψ + Φ(w) (31)

in the definition (28) of the corresponding operator, we see that all images
W satify the prescribed boundary condition. The same is true for a possibly
existing fixed point. Consequently, in order to solve a boundary value problem
for the partial complex differential equation (21), one has to find fixed points
of the operator (28) where the holomorphic function Φ is to be chosen by (31).

The Dirichlet boundary value problem for a desired holomorphic function
can always be reduced to the Dirichlet boundary value problem for the Laplace
equation. However, there are also other ways for solving this auxiliary problem.

Let Ω be the unit disk
{

z : |z| < 1
}

, and let g be a real-valued continuous
function defined on the boundary |z| = 1. Then

1
2π

∫

|z|=1

g(z)
z + ζ

z − ζ
ds + i · C
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is the most general holomorphic function in Ω where C is an arbitrary real
constant and ds means the arc length element of the boundary ∂Ω.

Another useful method for the unit disk is connected with a modified TΩ -
operator (see B. Bojarski [6]):

Let h be defined in Ω, and suppose that h belongs to the underlying function
space. Then

H = TΩh

is continuous in the whole complex plane (and holomorphic outside Ω). For
points z on the boundary of Ω we have z = 1/z and, therefore,

H(z) = − 1
π

∫∫

Ω

h(ζ)
ζ − z

dξdη =
z

π

∫∫

Ω

h(ζ)
1 − zζ

dξdη. (32)

On the other hand, the right-hand side of (32) is holomorphic in the unit disk
Ω. To sum up, the following statement has been proved:

H = TΩh is a holomorphic function in Ω having the same real part as TΩh
on ∂Ω.

This statement can be used in order to estimate the auxiliary function Φ(w)

and its derivative Φ′
(w) provided Ω is the unit disk. Details and also the solution

of other boundary value problems (such as Riemann-Hilbert’s one) for (21) can
be found, for instance, in [13].

3 Reduction of initial value problems to fixed-point
problems

3.1 Related integro-differential operators

Let u = u(t, x) be the desired function where t means the time and x =
(x1, ..., xn) is a spacelike variable. Consider an initial value problem of type

∂u

∂t
= F

(
t, x, u,

∂u

∂x1
, ...,

∂u

∂xn

)
(33)

u(0, x) = ϕ(x). (34)

Then the initial value problem (33), (34) can be rewritten in the integral form1

u(t, x) = ϕ(x) +

t∫

0

F
(

τ, x, u(τ, x),
∂u

∂x1
(τ, x), ...,

∂u

∂xn
(τ, x)

)
dτ. (35)

1M. Nagumo [14] was the first who used such an equivalent integro-differential equation
for a functional-analytic proof of the classical Cauchy-Kovalewskaya Theorem.
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Since the integrand in (35) contains derivatives of the desired function with
respect to spacelike variables, the equation (35) is an integro-differential equa-
tions.

In order to construct the solution of the integro-differential equation (35),
define the integro-differential operator

U(t, x) = ϕ(x) +

t∫

0

F
(

τ, x, u(τ, x),
∂u

∂x1
(τ, x), ...,

∂u

∂xn
(τ, x)

)
dτ. (36)

Then a fixed-point of this operator is a solution of the integro-differential equa-
tion (35) and thus a solution of the initial value problem (33), (34).

3.2 Behaviour of derivatives at the boundary. Weighted norms

Suppose the right-hand side of the differential equation (33) does not depend
on the derivatives ∂u/∂xj . Suppose, further, that the right-hand side satisfies
a Lipschitz condition with respect to u. Then the operator (36) is contrac-
tive provided the time interval is short enough. Since the differentiation is not
a bounded operator, this argument is not applicable if the right-hand side F
depends also of the derivatives (even if a Lipschitz condition is satisfied with
respect to the derivatives, too). However, an analogous estimate of the operator
(36) will be possible if u(t, x) belongs to a class of functions for which the un-
boundedness of the differentiation is moderate in a certain sense. The following
easy example will show how such unboundedness can be overcome.

Let Ω be the unit disk |z| < 1. Denote by H(Ω) the set of all holomorphic

functions in Ω. Choosing
π

2
< arg(z − 1) <

3π

2
, the function

Φ(z) = (z − 1) log(z − 1) = (z − 1)
(

ln |z − 1| + i · arg(z − 1)
)

is uniquely defined and belongs to H(Ω). Defining Φ(1) = 0, the function is
continuous and thus bounded in the closed unit disk |z| ≤ 1, i.e., Φ ∈ H(Ω) ∩
C(Ω). Moreover,

Φ′(z) = 1 + log(z − 1) → ∞ as z → 1.

Consequently, the complex differentiation d/dz does not map Φ ∈ H(Ω)∩C(Ω)
into itself and thus the latter space is not suitable for solving the integro-
differential equation (35), at least not when using the ordinary supremum norm.
On the other hand,

(1 − z) · Φ′(z) = (1 − z) + (1 − z) log(z − 1)
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is bounded and belongs, therefore, to H(Ω) ∩ C(Ω). Since the distance d(z) of
a point z ∈ Ω from the boundary ∂Ω satisfies the estimate

d(z) = inf
|ζ|=1

|ζ − z| ≤ |1 − ζ|

it follows that
sup
Ω

d(z)|Φ′(z)|

is finite. The last expression, however, is nothing but a weighted supremum
norm with the weight d(z). Of course, the weighted supremum norm of the
function Φ itself is also finite. Hence the complex differentiation d/dz transforms
the function Φ whose weighted supremum norm is finite in the function Φ′

having also a finite weighted supremum norm.
Later on we shall see that the integral operator (36) is bounded in a suitably

chosen space equipped with a weighted norm. The space consists of functions
depending on the time t and a spacelike variable x or z. For fixed t the elements
of the space under consideration have to satisfy a partial differential equation of
elliptic type (in particular, they have to be holomorphic or generalized analytic
functions).

3.3 Weighted norms for time-dependent functions

The following easy example shows that singularities of the initial functions at
the boundary can come into the domain in the course of time. This may lead
to a reduction of the length of the time interval in which the solution exists.

Let Ω be the positive x-axis. The initial value problem

∂u

∂t
= −∂u

∂x

u(0, x) =
1
x

has the solution
u(x, t) =

1
x − t

.

The initial function has a singularity at the boundary point x = 0 of Ω. At the
point x ∈ Ω the solution u(x, t) tends to ∞ as t tends to x, i.e., at the point
x the solution exists only in a time interval of length x. In other words, the
shorter the distance of x from the boundary of Ω, the shorter the time interval
in which the solution exists.

Now let Ω be again an arbitrary bounded domain in Rn. In order to measure
the distance of a point x ∈ Ω from the boundary ∂Ω of Ω, introduce an exhaus-
tion of Ω by a family of subdomains Ωs, 0 < s < s0, satisfying the following
conditions:
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• If 0 < s′ < s′′ < s0, then Ωs′ is a subdomain of Ωs′′ , and the distance of
Ωs′ from the boundary ∂Ωs′′ of Ωs′′ can be estimated by

dist (Ωs′ , ∂Ωs′′) ≥ c1(s′′ − s′).

where c1 does not depend on the choice of s′ and s′′.

• To each point x �= x0 of Ω where x0 ∈ Ω is fixedly chosen there exists a
uniquely determined s(x) with 0 < s(x) < s0 such that x ∈ ∂Ωs(x).

Define, finally s(x0) = 0. Then s0 − s(x) is a measure of the distance of a point
x of Ω from the boundary ∂Ωs(x).

Now consider the conical set

M =
{

(t, x) : x ∈ Ω, 0 ≤ t < η
(
s0 − s(x)

)}

in the t, x-space. Its height is equal to ηs0 where η will be fixed later. The base
of M is the given domain Ω, whereas its lateral surface is defined by

t = η(s0 − s(x)). (37)

The nearer a point x to the boundary ∂Ω, the shorter the correponding time
interval (37). The expression

d(t, x) = s0 − s(x) − t

η
(38)

is positive in M , while it vanishes identically on the lateral surface of M . Thus
(38) can be interpreted as some pseudo-distance of a point (x, t) of M from the
lateral surface of M . Later on this expression will be used as a certain weight
for functions u = u(x, t) defined in M .

In order to construct a suitable Banach space of functions defined in the
conical domain M in the t, x-space, let Bs be the space of all Hölder continuous
functions in Ωs equipped with the Hölder norm

‖u‖s = max

(
sup
Ωs

|u|, sup
x′ �=x′′

|u(x′) − u(x′′)|
|x′ − x′′|λ

)
, 0 < λ ≤ 1.

For a fixed t̃ < ηs0 the intersection of M with the plane t = t̃ in the t, x-space
is given by {

(t, x) : t = t̃, s(x) < s̃
}

where

s̃ = s0 −
t̃

η
. (39)

Let B∗(M) be the set of all (real-valued) functions u = u(t, x) satisfying the
following conditions:
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1. u(t, x) is continuous in M .

2. u(t̃, x) belongs to Bs(x) for fixed t̃ if only s(x) < s̃ where s̃ is given by
(39).

3. The norm

‖u‖∗ = sup
(t,x)∈M

‖u(t, ·)‖s(x) d(t, x) (40)

is finite.

The definition (40) of the norm ‖·‖∗ implies the estimate

‖u(t, ·)‖s(x) ≤
‖u‖∗
d(t, x)

(41)

for any point (t, x) in M .

Proposition 1 B∗(M) is a Banach space.

Proof Note that the inequality d(t, x) ≥ δ > 0 defines a closed subset Mδ

of the conical domain M . Each point of M is contained in such a subset Mδ

provided δ is suitably chosen. For points (t, x) in Mδ, the definition (40) implies
the estimate

‖u(t, ·)‖s(x) ≤
1
δ
‖u‖∗

Now consider a fundamental sequence u1, u2, ... with respect to the norm ‖·‖∗.
Then one has

‖un(t, ·) − um(t, ·)‖s(x) ≤
1
δ
· ε (42)

for points in Mδ provided n and m are sufficiently large. This implies also

|un − um| ≤ 1
δ
· ε

for points in Mδ. Consequently, a fundamental sequence converges uniformly in
each Mδ, i.e., the un have a continuous limit function u∗(t, x) in M . Similarly,
estimate (42) shows that for t = t̃ and s(x) < s̃ the limit function belongs to
Bs(x) because of the completeness of this space. Carrying out the limiting pro-
cess m → ∞ in the inequality ‖un − um‖∗ < ε, it follows, finally, ‖un − u∗‖∗ ≤ ε
and, therefore, ‖u∗‖∗ is finite.
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3.4 Associated differential operators and consequences of interior
estimates

Of course, the operator (36) is defined only for functions u = u(t, x) for which
the first order derivatives ∂u/∂xj exist. Suppose such a function u = u(t, x) be-
longs to B∗(M) (while the first order derivatives have to belong to the Bs(x)). We
are going to answer the question under which conditions the image U = U(t, x)
belongs also to B∗(M). Consider again the Banach spaces B(Ω) introduced
above.

Definition Suppose Ω′ is any subdomain of Ω′′ having a positive distance
dist (Ω′, ∂Ω′′) from the boundary of Ω′′. Then a function u ∈ B(Ω′′) is called a
function with a first order interior estimate if ∂u/∂xj belongs to B(Ω′) and

∥∥∥∥ ∂u

∂xj

∥∥∥∥
B(Ω′)

≤ c2

dist (Ω′, ∂Ω′′)
‖u‖B(Ω′′) (43)

where the constant c2 depends neither on the special choice of u nor on the
choice of the pair Ω′, Ω′′.

Applying this estimate to the exhaustion Ωs of Ω, 0 < s < s0, one gets
∥∥∥∥ ∂u

∂xj

∥∥∥∥
s′
≤ c2

c1
· 1
s′′ − s′

· ‖u‖s′′ (44)

provided s′ < s′′.
Now let (t, x) be an arbitrary point of M . Then

d(t, x) = s0 − s(x) − t

η
> 0.

Define
s̃ = s(x) +

1
2
d(t, x)

implying

s̃ ≤ s(x) +
1
2

(
s0 − s(x)

)
=

1
2
s(x) +

1
2
s0 < s0

and thus there exists a point x̃ with s(x̃) = s̃, i.e., x̃ ∈ ∂Ωs̃. One has

d(t, x̃) = s0 − s(x̃) − t

η
=

1
2
d(t, x).

Taking into account the estimate (41), the last relation gives

‖u(t, ·)‖s̃ ≤ ‖u‖∗
d(t, x̃)

=
2 ‖u‖∗
d(t, x)

.
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In view of (44) one gets, therefore,
∥∥∥∥ ∂u

∂xj

∥∥∥∥
s(x)

≤ c2

c1
· 1
s̃ − s(x)

· ‖u‖s̃ ≤ c2

c1
· 4
d2(t, x)

· ‖u‖∗ . (45)

To be short denote F
(

t, x, u,
∂u

∂xj

)
by Fu, i.e., in particular one has FΘ =

F
(
t, x, 0, 0

)
. Next we have to estimate the norm of Fu. For this purpose we

assume that the right-hand side F of (33) satisfies the following conditions:

1. FΘ is continuous.

2. The norms ‖FΘ‖s are bounded and thus ‖FΘ‖∗ is finite.

3. Fu satisfies the (global) Lipschitz condition

‖Fu −Fv‖s ≤ L0 ‖u − v‖s +
∑

j

Lj

∥∥∥∥ ∂u

∂xj
− ∂v

∂xj

∥∥∥∥
s

. (46)

Note that Fu = FΘ+(Fu−FΘ). Using (41) and (45), the Lipschitz condition
(46) implies

‖Fu‖s(x) ≤ ‖FΘ‖s(x) + L0 ‖u‖s(x) +
∑

j

Lj

∥∥∥∥ ∂u

∂xj

∥∥∥∥
s(x)

≤ ‖FΘ‖∗
1

d(t, x)
+ L0 ‖u‖∗

1
d(t, x)

+
4c2

c1

∑
j

Lj ‖u‖∗
1

d2(t, x)

≤ ‖FΘ‖∗
s0

d2(t, x)
+ L0 ‖u‖∗

s0

d2(t, x)
+

4c2

c1

∑
j

Lj ‖u‖∗
1

d2(t, x)

since d(t, x) ≤ s0. The definition (38) of the weight function d(t, x) implies

t∫

0

1
d2(τ, x)

dτ <
η

d(t, x)

and thus it follows∥∥∥∥∥∥
t∫

0

Fu · dτ

∥∥∥∥∥∥
s(x)

≤ η

d(t, x)

(
‖FΘ‖∗ s0 + c3 ‖u‖∗

)
(47)

where
c3 = s0L0 +

4c2

c1

∑
j

Lj .
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The estimate (47) of the s(x)-norm yields
∥∥∥∥∥∥

t∫

0

Fu · dτ

∥∥∥∥∥∥
∗

≤ η
(
‖FΘ‖∗ s0 + c3 ‖u‖∗

)
.

Suppose, finally, that the norms ‖ϕ‖s, 0 < s < s0, are bounded. Then ‖ϕ‖∗
is finite, and the following statement for the image U(t, x) defined by (36) has
been proved:

Proposition 2

‖U‖∗ ≤ ‖ϕ‖∗ + η
(
‖FΘ‖∗ s0 + c3 ‖u‖∗

)
.

Together with u(t, x) consider a second element v(t, x) of B∗(M) with the same
properties listed above. Let V (t, x) be the corresponding image defined by an
equation analogous to (36). Then

U(t, x) − V (t, x) =

t∫

0

(Fu −Fv)dτ.

Again in view of (46), (41) and (45), one gets

‖Fu −Fv‖s(x) ≤ L0 ‖u − v‖s(x) +
∑

j

Lj

∥∥∥∥ ∂u

∂xj
− ∂v

∂xj

∥∥∥∥
s(x)

≤ L0 ‖u − v‖∗
1

d(t, x)
+

4c2

c1

∑
j

Lj ‖u − v‖∗
1

d2(t, x)

≤ L0 ‖u − v‖∗
s0

d2(t, x)
+

4c2

c1

∑
j

Lj ‖u − v‖∗
1

d2(t, x)

and, consequently,
∥∥∥∥∥∥

t∫

0

(Fu −Fv)dτ

∥∥∥∥∥∥
s(x)

≤ η

d(t, x)
c3 ‖u − v‖∗ .

Thus the following statement has been proved:

Proposition 3

‖U − V ‖∗ ≤ ηc3 ‖u − v‖∗ .
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3.5 An existence theorem

The Propositions 2 and 3 are true only under the hypothesis that the first order
derivatives of u(t, x) with respect to the spacelike variables xj exist (and belong
to Bs(x)). In addition, u(t, x) must be a function with a first order interior
estimate.

This is not the case for an arbitrary element of B∗(M). In order to apply
the above estimations, one has to find a closed subset of B∗(M) such that the
assumptions mentioned above are true everywhere in this subset. Such a subset
can be defined as kernel of an elliptic operator G. Define

BG
∗ (M) =

{
u ∈ B∗(M) : Gu(t, ·) = 0 for each fixed t

}
.

Notice that G has to be an elliptic operator whose coefficients do not depend
on t. Condition (43) can be verified using an interior estimate for solutions of
elliptic differential equations (see A. Douglis and L. Nirenberg [9] and also S.
Agmon, A. Douglis and L. Nirenberg [2]), whereas BG

∗ (M) is closed in view of
a Weierstrass convergence theorem for elliptic equations.

In order to apply the contraction mapping principle, the operator (36) has
to map this subspace BG

∗ (M) into itself.
Definition Let F be a first order differential operator depending on t, x,

u = u(t, x) and on the spacelike first order derivatives ∂u
∂xj

, while G is any
differential operator with respect to the spacelike variables xj whose coefficients
do not depend on the time t. Then F , G is called an associated pair if F
transforms solutions of Gu = 0 into solutions of the same equation for fixedly
chosen t, i.e., Gu = 0 implies G(Fu) = 0.

Note that G needs not be of first order [11].
In view of Proposition 3, the corresponding integral operator (36) is con-

tractive in case the height ηs0 of the conical domain M is small enough, and
thus the following statement has been proved:

Theorem 6 Suppose that F ,G is an associated pair. Suppose, further, that the
solutions of Gu = 0 satisfy an interior estimate of first order. Then the initial
value problem

∂u

∂t
= Fu

u(0, ·) = ϕ

is solvable provided the initial function ϕ satisfies the side condition Gϕ = 0.
Moreover, the solution u = u(t, x) satisfies the side condition Gu(t, ·) = 0 for
each t.
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There are two possiblities for the application of Theorem 6: In case F is
given, then one has to find an associated G. If, however, G is given, then one
can look for operators F such that initial value problems with initial functions
ϕ satisfying Gϕ = 0 can be solved. Moreover, it is possible that to a given
F there exist several so-called co-associated [11] operators G. This leads to
decomposition theorems [10] for the solution of initial value problems.

3.6 Conservation laws

Theorem 6 does not only show the existence of a solution u = u(t, x) of the
initial value problem (33), (34), but also it says that the constructed solution
satisfies the side condition Gu = 0 for each t. Thus this side condition Gu = 0
may be interpreted as a conservation law for the evolution equation (33).

3.7 The special case of Complex Analysis

Interior estimates for holomorphic functions Φ can be obtained from Cauchy’s
Integral Formula for the derivative Φ′. Indeed, let Φ be holomorphic in the
bounded domain Ω and continuous in its closure Ω. If ζ ∈ Ω has at least the
distance δ from the boundary ∂Ω, then the Cauchy Integral Formula applied to
the disk {z : |z − ζ| ≤ δ} yields

|Φ′(ζ)| ≤ 1
2π

· 1
δ2

· sup
Ω

|Φ| · 2πδ =
1
δ
· ‖Φ‖

where ‖·‖ means the supremum norm. Similar estimates are true for the Hölder
norm and the Lp-norm as well (see [22]).

Interior estimates for generalized analytic functions can be obtained using
the TΩ - and the ΠΩ operators. Suppose w = w(z) is a solution of the Vekua
equation

∂w

∂z
= a(z)w + b(z)w.

Then in view of Theorem 3 (Section 2.3) and Weyl’s Lemma (Section 2.4, The-
orem 5) the function

Φ = w − TΩ(aw + bw)

turns out to be holomorphic. In view of Theorem 4 of Section 2.3, differentiation
with respect to z implies

∂w

∂z
= Φ′ + ΠΩ(aw + bw).

Since the TΩ - and the ΠΩ operators are bounded (cf. Section 2.5), an interior
estimate for Φ gives thus an interior estimate for generalized analytic func-
tions. Taking into account Theorem 6, in this way initial value problems with
generalized analytic functions as initial functions can be solved (see [22]).
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3.8 The scale method

Initial value problems of type (33), (34) can also be solved using an abstract
Cauchy-Kovalevskaya Theorem instead of applying the contraction-mapping
principle to the Banach space BG

∗ (M) introduced in Section 3.5. Here one starts
from a scale of Banach spaces, i.e., one has a family of (abstract) Banach spaces
Bs with norms ‖·‖s, 0 < s < s0, which are embedded into each other. The latter
means that Bs is a subspace of Bs′ if 0 < s′ < s < s0 where ‖u‖s′ ≤ ‖u‖s. An
example of such a scale is given by the Banach spaces Bs = B(Ωs) introduced
in Section 3.3 where the Ωs form an exhaustion of a given domain Ω in Rn. In
this case embedding means nothing but the restriction of a function in Ωs to a
smaller domain Ωs′ .

Suppose that for every t an operator F(t, u) is given mapping Bs into Bs′

where s′ < s. Suppose, further, that the condition

‖F(t, u) −F(t, v)‖s′ ≤
c ‖u − v‖s

s − s′

is satisfied with a constant c not depending on t, u, v, s, s′. Under this condition
the abstract initial value problem

du

dt
= F(t, u)

u(0) = u0

is solvable (by successive approximations) in the scale Bs, 0 < s < s0. In the
linear case a proof of the abstract Cauchy-Kovalevskaya Theorem can be found
in F. Treves’ book [19], while T.Nishida’s paper [16] and L. Nirenberg’s book
[15] prove non-linear versions. In these publications [19, 15, 16] there are also
further references.

In the booklet [22] initial value problems with generalized analytic initial
functions are solved using not only the method of weighted norms but also
the scale method which is based on the above mentioned abstract Cauchy-
Kovalevskaya Theorem.

4 Outlook to further generalizations and open problems

4.1 Interactions between different generalizations of classical
Complex Analysis

There are various generalizations of classical Complex Analysis dealing with
several complex variables, monogenic functions and generalized analytic func-
tions.
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Generalized analytic functions
A generalized analytic function is a (complex-valued) solution w = w(z) of

a differential equation of the form

∂w

∂z
= F

(
z, w,

∂w

∂z

)
. (48)

Important special cases of this equation are

∂w

∂z
= 0 (Cauchy − Riemann system)

∂w

∂z
= a(z)w + b(z)w (Vekua equation) (49)

∂w

∂z
= q(z)

∂w

∂z
, |q(z)| ≤ q0 < 1 (Beltrami equation).

If w = (w1, ..., wm) is a desired vector satisfying an equation (48) with a vector-
valued right-hand side, then w is said to be a generalized analytic vector.

Definition of poly-analytic functions
A complex-valued function w = w(z) is a poly-analytic function if it is a

solution of the differential equation

∂nw

∂zn = 0, (50)

where n is a natural number, i.e., a poly-analytic function has the form

w(z) =
n−1∑
ν=0

aν(z)zν

where the aν(z) are holomorphic coefficients.

Holomorphic functions in several complex variables
A (complex-valued) function depending on n ≥ 2 complex variables z1, z2,

. . . , zn is said to be a holomorphic function in several complex variables in case
the n-dimensional Cauchy-Riemann system

∂w

∂zj
= 0, j = 1, ..., n,

is satisfied.

Definition of monogenic functions
Consider a Clifford Algebra with the basis

e0 = 1, e1, ..., en, e12, ..., e12...n
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over the (n + 1)-dimensional Euclidian space Rn+1 with the coordinates x =
(x0, x1, ..., xn). Define the (n + 1)-dimensional Cauchy-Riemann operator D by

D =
n∑

ν=0

eν
∂

∂xν
.

Then a Clifford-Algebra-valued function u = u(x) defined in a domain Ω of
Rn+1 is called (left-)monogenic in Ω in case the first order equation

Du = 0

is satisfied. This equation is a system of 2n equations for the 2n real-valued
components of u.

A main feature of present trends in Complex Analysis is the combination of
methods developed in different branches. For instance, in the theory of multi-
monogenic functions one can apply ideas coming from the theory of holomorphic
functions in several complex variables such as methods for proving extension
theorems.

Recent trends concern the following problems:

• Characterization of the set of all zeros of a solution, including factorization
theorems

• Characterization and classification of the singularities of solutions

• Partial complex differential equations with singular coefficients

• Degeneration of the ellipticity, e.g., non-uniformly elliptic equations such
as ∂w/∂z = (1−z)(∂w/∂z) and ∂w/∂z = |z|(∂w/∂z) in the unit disk (note
that the Beltrami equation ∂w/∂z = q(z)(∂w/∂z) is uniformly elliptic if
|q(z)| ≤ q0 < 1)

• Solution of overdetermined systems

In order to illustrate these tendencies, we consider the following four exam-
ples:

Example 1: A factorization theorem for generalized analytic func-
tions

A holomorphic functions has isolated zeros unless it vanishes identically.
The same is also true for solution w = w(z) of the Vekua equation (49). This
statement can be proved easily using the TΩ -operator:
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Suppose the coefficients a(z) and b(z) are continuous. Let w = w(z) be a
continuous solution. Define

g =
{

a + bw
w in case w �= 0

0 otherwise

and
h = TΩg.

Then Φ = w · exp(−h) turns out to be holomorphic because

∂Φ
∂z

=
∂w

∂z
· exp(−h) + w · exp(−h) ·

(
−∂h

∂z

)

= exp(−h) ·
((

aw + bw
)
− w

(
a + b

w

w

))
= 0.

To sum up, we have proved the factorization

w = Φ · exph (51)

of a generalized analytic function w by a holomorphic factor Φ and a (con-
tinuous) factor exph which is different from zero everywhere. Consequently,
concerning the distribution of the zeros a generalized analytic function behaves
like a holomorphic one.

As a by-product of the factorization (51) one gets a modified maximum
principle for generalized analytic functions. Note that

|w| = |Φ| · exp(Re h).

Since h is bounded, there exist constants c1 and c2 such that

c1 ≤ Re h ≤ c2

and, therefore,

|w| ≤ |Φ| · exp c2

|Φ| ≤ |w| · exp(−c1).

Applying the maximum modulus principle for holomorphic functions, it follows

sup
Ω

|w| ≤ sup
∂Ω

|w| · exp(c2 − c1).
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Example 2: The inhomogeneous Cauchy-Riemann system in se-
veral complex variables (∂-equation)

In the case of n complex variables z1, ..., zn the inhomogeneous Cauchy-
Riemann systems reads

∂w

∂zj
= hj , j = 1, ..., n, (52)

where the right-hand sides hj are given functions. Suppose the compatibility
conditions

∂hj

∂zk
=

∂hk

∂zj
(53)

are satisfied.
Suppose, additionally, that the hj are compactly supported. Then we shall

show that a solution of (52) is given by the TΩ -operator in one of the zj-planes
where Ω is here the whole zj-plane. Choosing j = 1, we have

w(z1, z2, ..., zn) = − 1
π

∫∫
h1(ζ1, z2, ..., zn)

ζ1 − z1
dξ1dη1 (54)

where ζ1 = ξ1 + iη1. Indeed, Theorem 3 of Section 2.3 gives ∂w/∂z1 = h1.
Further, for k �= 1 we get

∂w

∂zk
= − 1

π

∫∫
∂h1

∂zk
(ζ1, z2, ..., zn)

1
ζ1 − z1

dξ1dη1. (55)

In view of the compatibility conditions, ∂h1/∂zk can be replaced by ∂hk/∂z1.
Since hk has a compact support, then formula (7) of Section 1.4 is applicable
for the Cauchy-Riemann operator in the z1-plane. Consequently, the right-hand
side of (55) equals hk. This proves formula (54).

The above formula (54) is true if the hj are given in the whole of Cn and
are identically equal to zero outside a bounded set of Cn. Next assume that the
hk are given only in a (bounded) poly-cylinder Ω1 × · · · × Ωn of Cn. Suppose,
however, that the compatibility conditions (53) are satisfied and, moreover, that
the derivatives of the hj with respect to different variables zk exist up to the
order n − 1. Then a special solution of the inhomogeneous Cauchy-Riemann
system (52) is given by iterated TΩj

-operators:

w =
n∑

λ=1

(−1)λ+1
∑

j1,...,jλ

∗
TΩj1

· · ·TΩjλ
hj1...jλ

(56)

where the hj1...jλ
are defined recursively,

hj1...jλk =
∂hj1...jλ

∂zk
,
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and
∑

j1,...,jλ

∗
means summation over combinations of different indices j1, ..., jλ.

We prove formula (56) for the case n = 2 where formula (56) reads

w = TΩ1h1 + TΩ2h2 − TΩ1TΩ2h12.

This implies
∂w

∂z1
= h1 + TΩ2h21 − TΩ2h12 = h1.

Similarly, we can prove the second equation ∂w/∂z2 = h2. The proof for the
general case (56) works in the same way.

Now consider a generalized analytic function in several complex variables
which satisfies a system of the form

∂w

∂zj
= fj(z1, ..., zn, w). (57)

Under suitable conditions on the right-hand sides one can show that a solution
w = w(z1, ..., zn) can be factorized in the form (51) where Φ is now a holomor-
phic function in n complex variables z1, ..., zn. This shows that the set of all
zeros is an analytic set in Cn provided suitable conditions on the right-hand
sides of the system (57) are satisfied (see [20]).

Example 3: Proof of Hartogs Continuation Theorem via the in-
homogeneous Cauchy-Riemann system

The Hartogs Continuation Theorem is the following statement:
Let Ω be a domain in Cn with n ≥ 2 and K a compact subset of Ω such that

Ω \ K is connected. Then each holomorphic function in Ω \ K can be extended
holomorphically into K.

An easy proof of this theorem can be given with the help of the inhomoge-
neous Cauchy-Riemann equation in several complex variables (see L. Hörmander
[12]). For this purpose choose any infinitely differentiable function λ which is
identically equal to 1 in a neighbourhood of K, and which vanishes identically
in a neighbourhood of the boundary ∂Ω of Ω.

Suppose h is the given holomorphic function in Ω. Define h0 = (1 − λ)h.
Then we have h0 ≡ h in a neighbourhood of ∂Ω, while h0 vanishes identically in
a neighbourhood of K. Therefore h0 is defined and infinitely often differentiable
everywhere in Ω if we define h0 ≡ 0 in K.

Now we look for a function g in Ω such that

H = h0 − g
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is holomorphic everywhere in Ω. This is the case if g satisfies the inhomogeneous
Cauchy-Riemann system

∂g

∂zj
= fj (58)

where

fj =
{ −h ∂λ

∂zj
in Ω \ K

0 in K.

Since the fj vanish identically in a neighbourhood of Ω, they are infinitely
differentiable in the whole of Cn if one defines fj ≡ 0 outside Ω. Moreover,
they have compact supports and thus the solution of (58) is given by

g(z1, z2, ..., zn) = − 1
π

∫∫
f1(ζ1, z2, ..., zn)

ζ1 − z1
dξ1dη1

where ζ1 = ξ1 + iη1 (cf. formula (54)). If, for instance, |z2| is large enough, then
f1 vanishes identically and thus g vanishes identically, too. Since there are such
points of Ω which do not belong to the support of g, we have

H ≡ h0 ≡ h

in an open subset of Ω. In view of the Unique Continuation Theorem the func-
tions H and h coincide in the whole of Ω \K, and H is the desired holomorphic
extension.

Example 4: The iterated Vekua equation
Recently a combination of poly-analytic and generalized analytic functions

has been investigated by P. Berglez who considered the differential equation

Dnw = 0

where Dw =
∂w

∂z
− A(z)w − B(z)w. Details can be found in P. Berglez’ paper

[5] in the Proceedings [8] of the Graz Workshop which took place in February
2001.

4.2 Boundary value problems

Using complex methods, boundary value problems can be solved not only for
first order systems but also for equations and systems of higher order (see the
book [31] written by Wen Guo Chun and H. Begehr).

Boundary value problems can also be solved for poly-analytic functions. In
other words, these are boundary value problems for the differential equation
(50) which is of order n.
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In connexion with the general boundary value problem

Lu = F(., u) in Ω
Bu = g on ∂Ω

(see Theorem 2 in Section 1.6) the following two problems have to be answered:

• Find a fundamental solution of the operator L.

• Which boundary value problem is well-posed for Lu = 0?

Generally speaking, a well-posed boundary value problem for Lu = 0 is well-
posed for Lu = F(., u), too.

Note, finally, that fundamental solutions can also be used for getting interior
estimates (see, for instance, [27]).

4.3 Initial value problems

Concerning the application of Complex Analysis to initial value problems, main-
ly the following questions are to be answered:

• Proof of interior estimates, especially it is to be investigated how the
constant in the estimate depends on the distance of a compact subset
from the distance from the boundary.

• Construction of associated differential operators. Example: Which dif-
ferential operators map monogenic functions into themselves? Note that
associated spaces in connexion with initial value problems lead to conser-
vation laws.

• Formulation and proof of uniqueness theorems for general initial value
problems (generalized Holmgren type theorems).

• Investigation of the behaviour of the integral operators of Complex Anal-
ysis in weighted function spaces.

4.4 A unified approach to Mathematical Analysis

Calculus should be taught within the framework of Banach spaces (simultaneous
investigation of real-valued functions of one real variable, systems of real-valued
functions depending on several real variables, complex-valued functions of one
complex variable, mappings between Banach spaces such as integral operators
mapping the space of continuous functions into itself).

Of course, concerning Complex Analysis, Generalized Analytic Functions
cannot be a subject compulsory of all students of Mathematics. However, the
spirit of that theory should be used when teaching Complex Analysis. That
means, especially,
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• Complex differentiation has to be introduced in the framework of partial
complex differentiation.

• Instead of starting from the classical Cauchy Integral Formula, the starting
point should be the generalized Cauchy Integral Formula

w(ζ) =
1

2πi

∫

∂Ω

w(z)
z − ζ

dz − 1
π

∫∫

Ω

∂w

∂z
(z)

1
z − ζ

dxdy

(Cauchy-Pompeiu Integral Representation, see Section 2, formula (18)).

• Weak (distributional) derivatives in connexion with the concept of distri-
butional solutions of Partial Differential Equations should be compulsory
for each student of Mathematics.

As far as possible, existence theorems should be proved using methods of
high generality such as the contraction-mapping principle. E.g., in analogy
to the integral rewriting of ordinary differential equations, partial differential
equations with a linear elliptic principal part should be reduced to fixed-point
problems in suitable function spaces (example: W. Walter’s proof [30] of the
Cauchy-Kovalevskaya Theorem by the contraction-mapping principle).
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[14] M. Nagumo, Über das Anfangswertproblem partieller Differentialgleichungen.
Japan. Journ. Math., vol. 18, 41-47, 1941.

[15] L. Nirenberg, Topics in nonlinear Functional Analysis. New York 1974. Russian
transl.: Moscow 1977.

[16] T. Nishida, A note on Nirenberg’s theorem as an abstract form of the non-linear
Cauchy-Kovalewski theorem in a scale of Banach spaces. Journ. Diff. Geom., vol.
12, 629-633, 1977.

[17] F. Rihawi, Comparison of fixed-points methods for plane boundary value prob-
lems of quasilinear first order systems (in German). Grazer Math. Ber. 317, pp.
1-26, 1992.

[18] —, Remarks on the solvability of Dirichlet problems in different function spaces.
Contained in [4], pp.289-293.

[19] F. Treves, Basic linear differential operators. New York / San Franzisco / London,
1975.

[20] —, Partial Complex Differential Equations in One and in Several Complex Vari-
ables (in German). Berlin 1977.

[21] —, Partial Differential Equations. Classical, functional-analytic and complex
methods (in German). Teubner Leipzig 1983.

[22] —, Solution of initial value problems in classes of generalized analytic functions.
Teubner Leipzig and Springer-Verlag 1989.

[23] —, Inhomogeneous equations in Complex Analysis. Functional-analytic methods
of Complex Analysis in the complex plane and in higher dimensions. Textos de
Matemátika. Série B, Coimbra. 41 pp. 1995.

[24] —, Complex methods in the theory of initial value problems. Contained in [4],
pp. 295-311.

[25] —, The method of weighted function spaces for solving initial value and boundary
value problems. Contained in [8], pp. 75-90.

[26] —, Generalized Analytic Functions and their contributions to the development
of Mathematical Analysis. Proceedings of the Hanoi Conference on ”Finite or
Infinite Dimensional Complex Analysis and applications to partial differential
equations” (in preparation).



real and complex fundamental solutions 179
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While references to special research papers are given at corresponding places, trend-
setting monographs whose results are used at various places throughout the present
report will be listed in the sequel:

Theory and applications of generalized analytic functions can be found in I. N.
Vekua’s book [29]. Complex methods for non-linear systems are discussed in the
booklet [21]. M. B. Balk’s book [3] deals with polyanalytic functions. An approach to
holomorphic functions in several complex variables making use of the inhomogeneous
Cauchy-Riemann equation is given in L. Hörmander’s book [12]. Monogenic functions
are discussed in F. Brackx’, R. Delanghe’s and F. Sommen’s Research Notes [7]. Mol-
lifiers (which are in use in order to approximate weak solutions by smooth functions)
are introduced in R. A. Adam’s monograph [1].
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