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Binomial coefficients

Edgar E. Enochs

Abstract

Among some of the most interesting natural numbers are the bino-
mial coefficients. They have uses not only in combinatorics but in other
branches of mathematics such as algebra, analysis and topology. In this
article we give some of the basic properties of binomial coefficients and
their generalizations.

This article is based on the inaugural address given at the XVI Escuela
Venezolana de Matemáticas on September 8, 2003 at the Universidad de
los Andes in Mérida, Venezuela. I take this opportunity to thank the
organizers of the congress for the honor of having invited me to give this
address.

Definitions of the binomial coefficients

We will give three different ways of defining the binomial coefficients. Each
method has its own uses. One is algebraic, one is combinatorial and one is
arithmetic.

Definition 1. Consider the polynomial (1+x)n in Q[x] (the ring of polynomial
with rational coefficients) and where n ≥ 0 is an integer. If we expand (1 + x)n

then we let
(
n
k

)
be the coefficient of xk for any integer k > 0

We have

(1 + x)n =
(

n

0

)
+
(

n

1

)
x +

(
n

2

)
x2 + · · · =

∞∑
k=0

(
n

k

)
xk

So easily
(
n
0

)
= 1,

(
n
n

)
= 1 and

(
n
k

)
= 0 if k > n.

We now consider the combinatorial approach. Let n, k ≥ 0 be integers.
Let C(n, k) be the number of subsets A having k elements of a set X with n
elements.

So, for example, let X = {1, 2, ..., n} when n ≥ 1. So C(n, k) is the number
of A ⊂ X with |A| = k (|A| denotes the cardinality of A.)
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Then it is clear that C(n, 0) = 1 for any n ≥ 0 (A = ∅ is the only possibility),
that C(n, n) = 1 (A = X is the only possibility) and that C(n, k) = 0 if k > n
(there is no such A).

Our third and arithmetic approach to defining the binomial coefficients is

initially given by the formula
n!

k!(n− k)!
. But the formula only makes sense for

0 ≤ k ≤ n since we do not have a definition of (n− k)! if n− k < 0 (but recall
that 0! = 1). But canceling we have:

k!
n!

(n− k)!
=

n(n− 1) · · · (n− k + 1)
k!

The formula on the right makes sense for any natural numbers k, n > 0. If we
interpret an empty product as 1 we see the formula gives 1 when k = 0. Then
the formula also gives 1 when k = n and gives 0 when k > n since we get a
factor of 0 in the numerator in this case.

Pascal’s Identity

We now argue that we have the so-called Pascal’s identity for our three
versions of the binomial coefficients. Then using this fact and the fact that the
three definitions agree when k = 0, when k = n and when k > n we will get
that they agree for all k, n ≥ 0.

Given n ≥ 0 we have

(1 + x)n+1 =
∞∑

k=0

(
n + 1

k

)
xk

= (1 + x)n(1 + x) =

( ∞∑
k=0

(
n

k

)
xk

)
(1 + x).

But in the last product it is clear that the coefficient of xk is
(
n
k

)
+
(

n
k−1

)
. Hence

we have (
n + 1

k

)
=
(

n

k

)
+
(

n

k − 1

)
for all n ≥ 0 and k ≥ 1.

Now we consider the numbers C(n + 1, k). So we want to find the number
of subsets A ⊂ {1, 2, ..., n, n + 1} where |A| = k. These include all the A ⊂
{1, 2, ..., n} with |A| = k and there are C(n, k) of these A’s. If A 6⊂ {1, 2, ..., n}
then n+1 ∈ A and A = B∪{n+1} with B ⊂ {1, 2, ..., n} and with |B| = k−1.
There are C(n, k − 1) such B’s. So we get

C(n + 1, k) = C(n, k) + C(n, k − 1)
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for all n ≥ 0 and k ≥ 1.
Note that we are tacitly assuming k ≤ n. We also see that the identity holds

if k = n + 1 (we get 1 = 0 + 1) and if k > n + 1 (we get 0 = 0 + 0).
Now we consider the arithmetic version of our coefficients. The formula

(n + 1)!
k!(n + 1− k)!

=
n!

k!(n− k)!
+

n!
(k − 1)!(n− k + 1)!

when 1 ≤ k ≤ n is just a matter of finding a common denominator and adding
fractions. But we want the identity

(n + 1)n · · · (n− k)
k!

=
n(n− 1) · · · (n− k + 1)

k!
+

n(n− 1) · · · (n− k + 2)
(k − 1)!

to hold for all n ≥ 0 and k ≥ 1. If k ≤ n this follows from the above. If k = n+1
the equation becomes 1 = 0 + 1 and if k > n + 1 it becomes 0 = 0 + 0. So the
equation holds for all n ≥ 0 and k ≥ 1.

Now by a double induction on n ≥ 0 and k ≥ 0 we use the fact that our
three versions agree in case k = 0, in case k = n and in case k > n and then
use Pascal’s identity to get(

n

k

)
= C(n, k) =

n(n− 1) · · · (n− k + 1)
k!

holds for all n ≥ 0 and k ≥ 0.
So we can (and will) freely use the most convenient version in any situation.

Note (for example) that we immediately get that
n!

k!(n− k)!
is an integer for

any n, k with 0 ≤ k ≤ n.

Computing
(

n

k

)
If 0 ≤ k ≤ n we can compute

(
n
k

)
using the formula

(
n
k

)
=

n!
k!(n− k)!

. But we

know
(
n
k

)
is an integer so then we can write

(
n
k

)
as a product of primes. Clearly

this can be a hard and tedious procedure. But using a result of Legendre we
see we can quickly write

(
n
k

)
as a product of primes. Legendre’s result shows us

how to write n! for n ≥ 0 as a product of primes.
Let p be a prime. We want to find the largest power of p that divides n!.

But
n! = (1 · 2 · · · (p− 1))p((p + 1 · · · (2p− 1))2p((2p + 1) · · ·

i.e. we isolate the multiples of p (the only factors among 1, 2, ..., n divisible by p.
The last such multiple is

[
n
p

]
p where

[
n
p

]
is the greatest integer in the fraction
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n
p . Dividing out each factor of p we get

n! = p[n
p ]
[
n

p

]
! · l

where p |/ l.
So now our problem is reduced to finding the largest power of p dividing[

n
p

]
!. So we have the same problem with n replaced by

[
n
p

]
.

Using the same procedure again we get

n! = p[ n
p ] · p

[
[ n

p
]

p

]
·

[
[n
p ]

p

]
! ·m

with p |/ m.
Repeating the procedure we see that if e is the largest e ≥ 0 such that pe|n!

we have

e =
[
n

p

]
+

[
[n
p ]

p

]
+ · · ·

Example. If n = 100, p = 7 then
[
100
7

]
= 14 and e = 14 + 2 + 0 + · · · = 16.

We note that it is not hard to argue that

[
[n
p ]

p

]
=
[

n

p2

]
and that in fact

e =
[
n

p

]
+
[

n

p2

]
+
[

n

p3

]
+ · · ·. Also note that

[
n

pk

]
= 0 if k is sufficiently large.

So now this makes it easy to write, for example,
(
100
13

)
as a product of primes.

We can argue that for integers a, b, c with c > 0 we have[a
c

]
+
[
b

c

]
≤
[
a + b

c

]
Using this and Legendre’s result above we can argue that for 0 ≤ k ≤ n,

n!
k!(n− k)!

=
(
n
k

)
is an integer. We argue that for any prime p the largest power

of p dividing k!(n− k)! divides n!.
We also note that as consequence of the above we get that if n = p with p

a prime and if 0 < k < p then p|
(

p
k

)
=

p!
k!(p− k)!

since

[
p

p

]
= 1 and

[
k

p

]
=
[
n− k

p

]
= 0
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We now use another version of our coefficients and see that this means that

(1 + x)p ∼= 1 + xp(mod p)

(two polynomials are congruent if the corresponding coefficients of each xk are
congruent). Then of course for any polynomial f(x)) ∈ Z[x] with integer coef-
ficients

(1 + f(x))p ∼= 1 + f(x)p(mod p)

Letting f(x) = xp we get

(1 + x)p2
= ((1 + x)p)p ∼= (1 + xp)p ∼= |+ xp2

(mod p)

and so that
(1 + x)ps ∼= 1 + xps

(mod p)

for any s ≥ 1. Since (1 + x)ps

=
∞∑

k=0

(
ps

k

)
xk we get that p|

(
ps

k

)
if s > 0 and if

0 < k < ps. This will be useful in the next section.

Remainders

If p is a prime and 0 ≤ k ≤ n we can decide whether p|
(
n
k

)
by using Legendre’s

procedure. In this section we will find a method for finding the remainder when
we divide

(
n
k

)
by p (so whether p divides

(
n
k

)
or not). We will use the C(n, k)

version of our binomial coefficients. And we will use a special technique for
computing C(n, k). We think of C(n, k) as the number of ways of choosing k
balls but where the balls are distributed into two boxes containing n1 and n2 of
the balls respectively. So n = n1 + n2. So we can choose k balls by choosing k1

balls from the first box and k2 balls from the second where k1 + k2 = k. This
can be done in C(n1, k1) ·C(n2, k2) ways. When we make a choice of some such
k1 and k2 we will say that we have specified the form of choosing our k balls.

Clearly, this method can be generalized to the situation where we have more
than two boxes. But even with two boxes we get something of interest. Namely
that if n = n1 + n2 (n1, n2 ≥ 0 then

C(n, k) =
∑

k1 + k2 = k
k1, k2 ≥ 0

C(n1, k1) · C(n2, k2)

or the more familiar form(
n1 + n2

k

)
=

k∑
k1=0

(
n1

k1

)(
n2

k − k1

)
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If we think of n + 1 as the sum n1 + n2 = n + 1 we recover Pascal’s identity.
Now let p be a prime. Recall that any n ≥ 0 can be written in a unique

manner to the base p, i.e. we can write

n = a0 + a1p + · · ·+ asp
s

with 0 ≤ ai < p.
Likewise for k ≥ 0 we have

k = b0 + b1p + + · · ·+ bsp
s

with 0 ≤ bi < p. With this notation we have:

Theorem (Lucas). (
n

k

)
∼=
(

a0

b0

)
· · ·
(

as

bs

)
(mod p)

Proof. If k > n then
(
n
k

)
= 0. But then clearly bi > ai for at least one

i = 0, 1, ..., s and so
(
ai

bi

)
= 0 for this i. Hence we assume 0 ≤ k ≤ n. We now

use our box technique for studying
(
n
k

)
= C(n, k). Since n = a0+a1p+· · ·+asp

s

we will suppose our n balls are distributed in a = a0 + a1 + · · ·+ as boxes with
each of the first a0 boxes having a single ball, then each of the next a1 boxes
having p balls each and so forth (of course some ai may be 0 and so then there
are no such boxes). We now consider all the possible forms for choosing k balls
from our n balls distributed inour a boxes. This corresponds to writing

k = k1 + k2 + · · ·+ ka

where we are required to choose kj balls from the j-th box. If the corresponding
box has pl balls with l ≥ 1 and 0 < kj < pl, we know from the last section that
p|
(

pl

kj

)
. This gives us that in this case the number of ways of choosing k balls

of this particular form is divisible by p. Hence when computing the remainder
when we divide

(
n
k

)
= C(n, k) by p we only need concern ourselves with the

special forms where from each box we choose either none of the balls or all of
the balls (for the boxes with a single ball this is already necessarily so).

So choosing the balls in the special forms just means we pick the boxes from
which we choose all the balls. Consider one such form. This means we pick c0

of the first a0 boxes, c1 of the next a1 boxes etc. But then 0 ≤ ci < p for each
i and we must have

k = c0 + c1p + · · ·+ csp
s

Since k = b0 + b1p+ · · ·+ bsp
s this means we must have c0 = b0, ..., cs = bs. But

then
(
a0
b0

)
·
(
a1
b1

)
· · ·
(
as

bs

)
is the number of ways of choosing our k balls from the
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n balls in our special forms (all or none from each box). Then with what was
noted above we get that

(
n
k

)
and

(
a0
b0

)
· · ·
(
as

bs

)
have the same remainder when

divided by p and so they are congruent modulo p. Note that if bi > ai for some
i, 0 ≤ i ≤ s then

(
ai

bi

)
= 0 and so p divides

(
n
k

)
.

Example. If we divide
(
87
31

)
by 5 we have

87 = 2 · 2.5 + 52

31 = 0 + 1 · 5 + 1 · 52

But
(
2
0

)(
2
1

)(
3
1

)
= 6 and so the remainder when we divide

(
87
31

)
by 5 is 1.

Exercise 1. Find a way to find the last digit of
(
n
k

)
when

(
n
k

)
is written as a

decimal integer (use the Chinese remainder theorem).

Exercise 2. Argue that (
pn

pk

)
∼=
(

n

k

)
(mod p)

for any k, n ≥ 0.

Exercise 3. Find all n ≥ 0 such that all the binomial coefficients
(
n
k

)
with

0 ≤ k ≤ n are odd.

Pascal’s Formula and Discrete Derivatives

If we consider functions f defined on the natural numbers N (with f(n) say
any integer) then since δ = 1 is the smallest of all positive integers we define
the discrete derivative ∆f of f to be such that

(∆f)(n) = f(n + 1)− f(n)

for all n ≥ 0. Then we see that ∆f = 0 if and only if f = c (i.e. f(n) = c
for all n ≥ 0 for some constant c), that ∆f = ∆g if and only if f = g + c for
some constant and then that if k ≥ 1 and if f(n) =

(
n
k

)
for all n ≥ 0 then

(∆f)(n) =
(

n
k−1

)
.

This means that (
n + 1

k

)
−
(

n

k

)
=
(

n

k − 1

)
which is just Pascal’s identity. So by abuse of notation we write ∆

(
n
k

)
=
(

n
k−1

)
.

Since ∆
(
n
1

)
= 1 we see that ∆k+1

(
n
k

)
= 0 for k ≥ 0. Recall that from Calculus
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f (k+1)(x) = 0 for a real valued function f(x) (with suitable hypotheses on
f(x)) implies f(x) is a polynomial function of degree at most k i.e. f(x) =
r0 + r1x + · · · + rkxk for some r0, ..., rk ∈ IR. Here we get that if ∆k+1f = 0
then

f(n) = a0 + a1

(
n

1

)
+ · · ·+ ak

(
n

k

)
for all n ≥ 0 for some a0, ..., ak ∈ ZZ. And we see that to find the ak we only
need note that

f(0) = a0 + a1

(
0
1

)
+ · · ·+ ak

(
0
k

)
= a0,

(∆f)(0) = a1 + a2

(
0
1

)
+ a3

(
0
2

)
+ · · ·+ ak

(
0

k − 1

)
= a1

and similarly (∆2f)(0) = a2, ..., (∆kf)(0) = ak. For example if f(0) = 0 and
f(n) = 1+2+ · · ·+n for n ≥ 1 then (∆f)(n) = n+1 for all n. So (∆2f)(n) = 1
and ∆3f = 0. using the above we find that

1 + 2 + · · ·+ n =
(

n

1

)
+
(

n

2

)
for all n ≥ 1 and in fact for n = 0 if we interpret the empty sum as 0. In
a similar manner we can find formulas for the sums 12 + 22 + · · · + n2 and
13 + 23 + · · ·+ n3. Note that ∆(2n) = 2n+1 − 2n = 2n(2− 1) = 2n. So in some
sense the function 2n is the discrete version of the function ex of Calculus.

The Binomial Polynomial
(

x

k

)
Using the fact that (

n

k

)
=

n(n− 1) · · · (n + 1− k)
k!

we can define polynomials
(
x
k

)
where(

x

k

)
=

x(x− 1) · · · (x + 1− k)
k!

if k ≥ 1 and where
(
x
0

)
= 1. Then the degree of

(
x
k

)
is k and the coefficients of(

x
k

)
are rational numbers.
We have the identity (

x + 1
k

)
=
(

x

k

)
+
(

x

k − 1

)
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since the polynomials on each side of the equation have the same values for an
infinite number of values of x, namely x = 0, 1, 2, ...

One advantage of now having the binomial polynomials
(
x
k

)
is that we can

now give a meaning to the symbol
(
n
k

)
for any n ∈ Z (so also for n ≤ 0). So,

for example,
(−1

k

)
=

(−1)(−2) · · · (−k)
k!

= (−1)k. But of course we also have

a meaning for
(

z
n

)
for any complex number z. So now the original binomial

theorem

(1 + x)n = 1 +
(

n

1

)
x +

(
n

2

)
x2 + · · ·

for these more general n becomes Newton’s binomial theorem.
For example, if n = −1 we get (1 + x)−1 = 1 − x + x2 − x3 + x4 − · · · i.e.

that
1

1 + x
= 1− x + x2 − x3 + · · ·.

Here we are operating in the ring Z[[x]] of formal power series with coeffi-
cients mZ so with no concern about questions of convergence. If we consider
(1 + x)z for z ∈ C (C the field of complex numbers) then we operate in C[[x]].

Noting that deg
(
x
k

)
= k, we see that if P (x) ∈ Q[x] is any polynomial of

degree k, then for some rational number q ∈ Q, P (x) and q
(
x
k

)
have the same

dominant coefficient, or equivalently that

deg (P (x)− q

(
x

k

)
) ≤ k − 1

(for k ≥ 1).
From this it follows that we get P (x) = a0 + a1

(
x
1

)
+ · · · + ak

(
x
k

)
for some

rational numbers a0, a1, ..., ak.
Now noting that P (0) = a0

P (1) = a0 + a1, P (2) = a0 + 2a1 + a2, ...

P (k) = a0 +
(

k

1

)
a1 + · · ·+

(
k

k

)
ak

we see that if the polynomial P (x) ∈ Q[x] is such that P (n) ∈ Z for all n ≥ 0
then in fact a0, ..., ak ∈ Z. And also if a0, ..., ak ∈ Z and if P (x) = a0 + a1

(
x
1

)
+

· · ·+ ak

(
x
k

)
then P (n) ∈ Z for all n ≥ 0.

We let Z
[(

x
1

)
,
(
x
2

)
, ...
]

denote the set all such polynomials

a0 + a1

(
x

1

)
+ · · ·+ ak

(
x

k

)
(with a0, ..., ak ∈ Z)

By the above Z
[(

x
1

)
,
(
x
2

)
, ...
]

consists of all the P (x) ∈ Q[x] such that P (m) ∈ Z
for m = 0, 1, 2, ... These are called the integer valued polynomials. Using this
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characterization of the P (x) ∈ Z
[(

x
1

)
,
(
x
2

)
, ...
]

we see that Z
[(

x
1

)
,
(
x
2

)
, ...
]

is a
ring. So, for example, if k ≥ 1 then

(
x
1

)
·
(
x
k

)
∈ Z

[(
x
1

)
,
(
x
2

)
, ...
]
.

To write
(
x
1

)(
x
k

)
as a0 + a1

(
x
1

)
+ · · ·+ we revert to the viewpoint of com-

binatorics. If n ≥ 0, to compute
(
n
1

)(
n
k

)
means to compute C(n, 1) · C(n, k).

This is the number of ways to simultaneously choose two subsets of X where
|X| = n with the first subset T having one elements and the second subset S
having n elements. The number of ways of choosing T and S with T ⊂ S is
C(k, 1)C(n, k) (i.e. choose S and choose one of its elementss to form T ) and the
number of ways with T 6⊂ S is C(k + 1, 1) · C(n, k + 1) (so first choose T ∪ S)
then choose T ). So

C(k, 1)C(n, k) = kC(n, k) + (k + 1)C(n, k + 1)

or (
n

1

)(
n

k

)
= k

(
n

k

)
+ (k + 1)

(
n

k + 1

)
.

This gives the polynomial identity(
x

1

)(
x

k

)
= k

(
x

k

)
+ (k + 1)

(
x

k + 1

)
In a similar manner

(
x
k

)(
x
l

)
can be computed for any k, l ≥ 0.

Remark. Given a formal sum U(x) = a0 + a1

(
x
1

)
+ a2

(
x
2

)
+ a3

(
x
3

)
+ · · · we can

make sense of the expression U(n) for any n ≥ 0 since
(

n
m

)
= 0 for m > n.

So such a U(x) can be used to define a function N → ZZ. In fact each such
function N → ZZ is given by a unique such U(x). The functions N → ZZ can
be made into a ring, so the set of such U(x) can be made into a ring. This ring
is denoted

ZZ

[[(
x

1

)
,

(
x

2

)
,

(
x

3

)
, ...

]]
Then Z

[(
x
1

)
,
(
x
2

)
, ...
]

as above is a subring of Z
[[(

x
1

)
,
(
x
2

)
, ...
]]

.
But we also have elements such as U(x) = 1 +

(
x
1

)
+
(
x
2

)
+ · · · If n ≥ 1 then

U(n) = 1 +
(
n
1

)
+ · · ·+

(
n
n

)
= (1 + 1)n = 2n. So this U(x) is denoted 2x.

The notion of the discrete derivative ∆ can easily be extended to the ring
Z
[[(

x
1

)
,
(
x
2

)
, ...
]]

. The simplest way to define it is so that

∆(a0 + a1

(
x

1

)
a2

(
x

2

)
+ · · ·) = a1 + a2

(
x

1

)
+ a3

(
x

2

)
+ · · ·

So then ∆(2x) = ∆(1+
(
x
1

)
+a3

(
x
2

)
+ · · ·) = 1+

(
x
1

)
+
(
x
2

)
+ · · · = 2x as expected.

Note that for any U(x) ∈ ZZ
[[(

x
1

)
,
(
x
2

)
, ...
]]

we can associate the symbol 2U(x)

with the function N → ZZ that maps n to 2U(n).
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Such a function in turn gives us an elements V (x) ∈
[[(

x
1

)
,
(
x
2

)
, ...
]]

. So we
write 2U(x) = V (x). This raises the interesting question of the existence of a
natural logarithm in this setting.

As an exercise one could try to write 0x as a series

a0 + a1

(
x

1

)
+ a2

(
x

2

)
+ · · · (where 00 = 1 and 0n = 0 if n ≥ 1)

Final Remarks

The first proof of the binomial theorem (in the form (1 + x)n =
n∑

k=0

(
n
k

)
xk)

for n ≥ 1 was given by Jakob Bernoulli in his posthumously published “Ars
Conjectandi” (1713). In 1676 Newton had stated the more general (1 + x)n =
∞∑

k=0

(
n
k

)
xk for arbitrary n in a letter, but without proof. In 1878 Lucas gave

a method for finding the remainder when
(
n
k

)
is divided by a prime p. The

study of integer valued polynomials with rational coefficients goes back to the
seventeen century. A study of them in their own right was initiated by Pólya
and Ostrowski in 1919. In 1936 Skolem began the study of the set of integer
valued polynomials with rational coefficients as a ring. The association of a
function defined on N with a series a0 +a1

(
x
1

)
+a2

(
x
2

)
+ · · · is widely used in the

field of p-adic analysis and naturally leads to the extension of Skolem’s approach
and to the definition of the ring Z

[[(
x
1

)
,
(
x
2

)
, ...
]]

or in fact to R
[[(

x
1

)
,
(
x
2

)
, ...
]]

for any ring R. A study of these rings and of the many intriguing questions
about them has been initiated by Todorka Nedeva.
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[[(
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1
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