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Boundary value problems in
complex analysis II

Heinrich Begehr

Abstract

This is the continuation of an investigation of basic boundary value
problems for first order complex model partial differential equations. Model
second order equations are the Poisson and the inhomogeneous Bitsadze
equations. Different kinds of boundary conditions are posed as combina-
tions of the Schwarz, the Dirichlet, and the Neumann conditions. Solvabil-
ity conditions and the solutions are given in explicit form for the unit disc.
Exemplarily the inhomogeneous polyanalytic equation is investigated as
a model equation of arbitrary order.

1 Boundary value problems for second order equations

There are two basic second order differential operators, the Laplace operator
0,05 and the Bitsadze operator 82. The third one, 82 is just the complex conju-
gate of the Bitsadze operator and all formulas and results for this operator can
be attained by the ones for the Bitsadze operator through complex conjugation
giving dual formulas and results.

For the Laplace and the Poisson, i.e. the inhomogeneous Laplace equation, the
Dirichlet and the Neumann boundary value problems are well studied. Before
investigating them the Schwarz problem will be studied for both operators.
Theorem 1 The Schwarz problem for the Poisson equation in the unit disc

wz=finD, Rew=2, Rew, =7 on 9D, Im w(0) =cp, Im w.(0) =1

is uniquely solvable for f € L1(D;C), 0,71 € C(OD;R), o, c1 € R. The solution
18
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o [ U©os 1€~ 2 ~log(1 — 0] - T los(1 - 2)}dedy (1)

[¢l<1
‘;m[l{f«)[k’g(goﬁoglél} U[bg(go“g'“”dgd”
e

Proof This result follows from combining the solution

C+zd< 1 wl@)C(+2z w147
zco+7/ /[C C—z+ C 1-%¢ dédn

-z ¢ 2w
<=1 I¢l<1

of the Schwarz problem

w,=winD, Rew =~y on D, Im w(0) = ¢

with the solution

w(z):z’cl—k%/%(oC*'zg_i / [f(C)C+Z+f(C)1+zC}d£d

(—z(¢ 2m ¢ ¢—=2 ¢ 1—-2C
[¢l=1 I¢|<1

of the Schwarz problem

wr=finD, Rew=7; on dD, Im w(0) =¢; .
Here the relations

2 ZJFEE‘jngCdn_?Elogf—ZIQ ~2(log(1 — =) — Clog [ ¢[” +2

\<|<1

1 C+C1—|—z(d§dn
21 C Cl—ZC C

¢<1
1 [ 1+(CCHzdedy _ 2
w ) e ¢ G

I¢I<1

— —2Clog(1 —20) + Clog |C? -2,

log(1 — ZZ) +z

1 1+ {1 +7Cdedn
2w 1_251—§C ¢

I¢I<1

2 log(1—20) — 7,
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and

1 [1§+z 114+%¢
2 z

[¢l<1

are needed. More simple than this is to verify that (1) is the solution.

The uniqueness of the solution can easily be seen. In case w; and ws are two
solutions then w = w; — we would be a harmonic function with homogeneous
data,

w,z=0inD, Rew=0, Rew,=00n 9D, Im w(0) =0, Im w,(0)=0".

As w, is analytic, say ¢’ in D, then integrating the equation w, = ¢’ means
w = ¢ + 1) where ¢ is analytic in D.
Then Re w, = 0 on dD, Im w,(0) = 0 means Re ¢’ = 0,Im ¢’(0) = 0. From
[3], Theorem 6 then ¢’ is seen to be identically zero, i.e. ¢ a constant, say
a. Then from Re w = 0 on 9D, Im w(0) = 0 it follows Re ¢y = —Re a and
Im %(0) = Im a. Thus again [3], Theorem 6 shows ¢ (z) = —a identically in D.
This means w vanishes identically in D.

There is a dual result to Theorem 1 where the roles of z and Z are inter-
changed. This can be attained by setting W = w and complex conjugating
(1).

Theorem 1’ The Schwarz problem for the Poisson equation in the unit disc
w,z=finD, Rew=2, Rews=v ondD, Imw(0) = ¢y, Im wz(0) =¢ ,

for f € Li(D;C),v0,71 € C(OD;R), o, c1 € R is uniquely solvable by

w(z):icoJricl(erZ)Jr% / 70(()%%
If=1
bors [ nOIog(1 — 22 ~Tlog(1 - 70 + 2 ~31%
I¢]=1
+% / {f(O)og |¢ — z|* —=log(1 — 20)] — f(¢) log(1 — 2C) Ydédn (1)
I¢l<1
[ o[ s | - T[S s ) s
I¢l<1
1 Q) f(O12—2
- / { ot Z} dédn
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Theorem 2 The Schwarz problem for the inhomogeneous Bitsadze equation in
the unit disc

wzz=finD, Rew=2, Rews=v ondD, Imw(0) = ¢y, Im wz(0) =¢; ,

for f € Li(D;C), 0,71 € C(0D;R), co,c1 € R is uniquely solvable through

w(z) = ico—i—i(z—i—z)—i—%/%(g)g—tzd—g
[¢l=1
1 C+z d¢
T om ’“(C)g—iz ((—2z+C—=2) ¢ (2)
[¢]=1

1 fO¢C+z , fO1+2C —
o (C e 1_22)(<—z+<—z)dgdn.

I¢1<1

Proof Rewriting the problem as the system

wr=winD, Rew =1 on 0D, Im w(0) =¢ ,

wg=finD, Rew=v ondD, Imw(0) =¢ ,
and combining its solutions

w(z):iCO‘f‘Zim/’yo(C)C—’—Z%_i / (W(C)C+z w(g)1+zg

C—2¢ or C —z'7¢ _zg)dfd”’
ci=1 ci<t

. 1 C+zd¢ 1 fO¢+z  fO1+2C
ZClJFTm»/’Yl(OC_Z?*% /( +
[¢l=1 I¢|<1

w(2)

¢ ¢c-z" ¢ 1—z2>d5dn’
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formula (2) is obtained. Here the relations

1 1¢+2z 11+2C

1 (Ccfz_fl—zf)dfdn - —z-%,

\<\<1
1 CHC¢1¢+z2 _ (tz
Y CN*CEC—ngdn = 572@ z),

I¢l<1

1 14+C¢C11+2C s
I¢l<1
1 CHC1142C 142 -
o = = 577 = 7(<_2)7
2 _
ﬁ|<|<1C*CC1 <1 1—2C
1 1+<C1C+Z 1+ZZ =
— ded — > _
27T|<|<1 1-¢{CC7 o 1—z§(< g

are used. The uniqueness of the solution follows from the unique solvability of
the Schwarz problem for analytic functions, Theorem 6 and Theorem 9 in [3].
It is well known that the Dirichlet problem for the Poisson equation

wyz=finD, w=+on JdD

is well posed, i.e. it is solvable for any f € Li(D;C),y € C(0D;C) and the
solution is unique. That the solution is unique is easily seen.
Lemma 1 The Dirichlet problem for the Laplace equation

w,z=0in D, w=0on oD

is only trivially solvable.

Proof From the differential equation w, is seen to be analytic. Integrating this
quantity w = @+ 1) is seen where ¢ and 1 are both analytic in D. Without loss
of generality 1(0) = 0 may be assumed. From the boundary condition ¢ = —
on 9D follows. This Dirichlet problem is solvable if and only if, see [3], Theorem

zZd(¢ 1
T omi /T/J 1—zC 2mi ?/’(C) —z 2mi / (¢ (2)
[¢l=1 [¢|=1 I¢|=1

This also implies ¢ =0 on D so that w =0in D .
As Bitsadze [6] has realized such a result is not true for the equation wzz = 0.
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Lemma 2 The Dirichlet problem for the Bitsadze equation
wz=0inD , w =0 on D

has infinitely many linearly independent solutions.

Proof Here ws is an analytic function in . Integrating gives w(z) = ¢(2)z +
¥ (2z) with some analytic functions in D. On the boundary ¢(z) + z1(z) = 0.
As this is an analytic function this relations hold in D too, see [3], Theorem 7.
Hence, w(z) = (1— | 2 |?)¥(2) for arbitrary analytic ¢. In particular wy(z) =
(1— | 2 |?)2* is a solution of the Dirichlet problem for any k € Ny and these
solutions are linearly independent over C.

Because of this result the Dirichlet problem as formulated above is ill-posed
for the inhomogeneous Bitsadze equation.

With regard to the Dirichlet problem for the Poisson equation the represen-
tation formula [3], (15") is improper as is also [3], (15”’). The middle terms are
improper. They can easily be eliminated by applying the Gauss Theorem, see
[3]. For the respective term in [3], (15’) in the case D =D

1 — 1 s =
o [ weoglc— 2Pt = oo [ we(@og|1- TP dC
I¢1=1 I¢]=1
1 —
— = [ alug(c)tog |1 - TP ldean
I¢l<1
1 — 1 z
—— [ we@og L= =P dsan+ = [ w5 dea
I¢l<1 [¢l<1
follows. Applying the Gauss Theorem again shows
1 z 1 z
p / wZ(Oﬁ dgdn = p / %{w(C)ﬁ]dﬁdn
[¢]<1 [¢l<1
o Y &
“om ) YO % ) POF=T
I¢l=1 I¢]=1

Thus inserting these in [3], (15’) leads to the representation

1 ¢ . T ndC 1 1- 20,
we) =5 [ w@(For==) T g [ welOorl = dean
I¢l=1 I¢l<1
3)
The kernel function in the boundary integral is the Poisson kernel, the one in
the area integral is called Green function for the unit disc with respect to the
Laplace operator.
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Definition 1 The function G(z,¢) = (1/2)G1(z, () with

Ga2.¢) = log | —

is called Green function of the Laplace operator for the unit disc.

L, sceD, s4C, )

Remark The Green function has the following properties. For any fixed ( € D
as a function of z

(1) G(%,¢) is harmonic in D\ {¢},
(2) G(#,¢) +log|¢ — z| is harmonic in D ,
(3) hn% G(z,¢)=0for all t € OD ,

(4) G(2,¢) =G(¢,z) for 2, €D,z £ ¢ .
They can be checked by direct calculations.

Green functions exist for other domains than just the unit disc. The exis-
tence is related to the solvability of the Dirichlet problem for harmonic functions
in the domain. The Riemann mapping theorem can be used to find it e.g. for
regular simply connected domains. Having the Green function [3], (15’) and [3],
(15"") can be altered as above leading to the Green representation formula, see
e.g. [1]. Green functions exist also in higher dimensional spaces and for other
strongly elliptic differential operators.

For the unit disc the following result is shown.

Theorem 3 Any w € C?(D;C) N CY(D;C) can be represented as

1 ¢ 1 ,
w(z) = WO (ot ==-1)F -1 [ w06 Odedn ()

T omi
cl=1 cl<1

where G1(z, ) is defined in (4).
Formulas [3], (15") and [3], (15”") are both unsymmetric. Adding both gives
some symmetric formula which is for the unit disc

1 ¢ \d
w(z) = = w(C)(CCZ—i_CEz)Cg
[¢]=1
1 _ d
[ (Cwe(©) + T o ¢ =P f
[¢]=1
= / wee(C)log [ ¢ — = | dédn . (5)

I¢I<1
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Motivated by the procedure before, the Gauss Theorems are applied in a sym-
metric way to

= [ welcytog 11— TP dedy

m
I¢l<1
= L [ {oulug(<)Mog 11— 5T + Ol (<) tog 11— T
I¢l<1

O[O 2¢] + 0 [w(0)

z
1—2C

s

1 — — d
— oy [ T 11— TP fwel€) + O
[¢l=1
1 zZC 2 1d¢
T w(o[l =" 1_Zg}f
[¢|=1

- d
— i [ om 16— 2P [wc(¢) + Cuel0)F
[¢]=1

4rri
I<|=1
Here are two possibilities. At first the second term in (5) can be eliminated
giving

w) =g [ wlo)

= omi

¢ ¢ ¢ 1 - 1—2C
C_z‘i‘é_j—l)?—; / wgg(C)10g|ﬁ\ d&dn
[¢]=1 I<I<1

i.e. (3). Next the first term in (5) is simplified so that

d — d
W) = g [ wOF-5n [ €O +Turtog -2 T
[¢l=1 [¢|=1
1 -\ |2
o [ wg(Oog |- ) - 0P ded (6)
[¢l<1

Here the normal derivative appears in the second term while a new kernel func-
tion arises in the area integral.
Definition 2 The function N(z,() = —(1/2)N1(z,() with

N1(27C):10g|(c_z)(1_26)|2’Z?CG}Dv'Z#C? (7)
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is called Neumann function of the Laplace operator for the unit disc.
Remark The Neumann function, sometimes [7] also called Green function of
second kind or second Green function, has the properties
(1) N(z,() is harmonic in z € D\ {¢},
(2) N(z,¢)+log|¢ — z| is harmonic in z € D for any ¢ € D ,
(3) O.N(2,{()=—1for z€ D, €D,
(4) N(2,{) =N((,z2) for z, €D,z #( .

1 d¢

— N —==0.
6) 3= | N=0T =0

<=1

They can be checked by direct calculations.
The last result may therefore be formulated as follows.
Theorem 4 Any w € C?(D;C) N CY(D;C) can be represented as

d d
we) =g [ wOF -5 [ dw©oglc- 2P T
I¢1=1 [¢]=1
b [ M Odedn (®)
I¢1<1

This formula can also be written as

W) = g [ O8N O-0uON N Ty [ wONe. .

© Ami
I¢l=1 I¢l<1
(6")
Theorem 3 immediately provides the solution to the Dirichlet problem.
Theorem 5 The Dirichlet problem for the Poisson equation in the unit disc

wyz=finD, w=+~ondD,

for f € Li(D;C) and v € C(ID; C) is uniquely given by

:CZ N g_fz _ 1)%< —i / F(Q)G1(2,Q)dedn . (8)
|¢|=1 I¢I<1

we) =5 [ 20

T 2mi

This is at once clear from the properties of the Poisson kernel and the Green
function.
As the Dirichlet problem formulated as for the Poisson equation is not uniquely
solvable for the Bitsadze equation another kind Dirichlet problem is considered
which is motivated from decomposing this Bitsadze equation in a first order
system.
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Theorem 6 The Dirichlet problem for the inhomogeneous Bitsadze equation
in the unit disc

wﬁ:f’énmv W=, Wz =171 OnaDa

for f € Li(D;C),v0,71 € C(ID;C) is solvable if and only if for |z|< 1

o (170(2—“(0)d<+j / FOS"Z dgdn =0 (9)

2mi ¢ 1=%¢
I¢l=1 I¢l<1
and 1 zd¢ 1 zded
Z zd§dn
o | mor -1 [ 102 o (10)
<=1 I<l<1

The solution then is

o € 0T e [ oS
we) =g [0 g [ O dcr T [ 0 dedn
I¢l=1 I¢l=1 I¢l<1

(11)

Proof Decomposing the problem into the system
wzr=winD, w=-y on dD ,

wr=finD, w=7, ondD,

and composing its solutions

wiz)= = [ 0% L / w(¢)

~ omi (—z I
I¢l=1 I¢l<1
1 ac. 1 d€dn
o) =5 [ mO725 -1 [ 1OFE,
I¢l=1 I¢l<1
and the solvability conditions
1 zd( 1 zd&dn
2mi %(g)l—z(_w / w@l—zg ’
I¢l=1 I¢]<1
1 zd¢ 1 Zd&dn
ol EAGE e G

I¢I=1 I¢l<1
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proves (11) together with (9) and (10). Here

1/ dédn ¢—z 1 (—2z d¢  (-z
T Q0= 1= 2w ) 1= (-C 1-%
Icl<1 I¢l=1
and
1l dédyp 1 1 11 _ (=
w/<<—é><<—z> | e e
[¢l<1 [¢l<1
are used.

This problem can also be considered for the Poisson equation.

Theorem 7 The boundary value problem for the Poisson equation in the unit
disc

wz=finD, w=", w, =7y ondD,

for f € Li(D;C),v0,71 € C(OD;C) is uniquely solvable if and only if

d¢ _
5 [ 07+ g [ (@ ea(t 00
I¢l=1 I¢|=1
== [ #6051 ~ Q) (12
I<l<1
and
z i  z dédn
el IMCR T GRS (13)
I<I=1 I¢l<1
The solution then is
1 d¢ 1 _
we) = =5 [ 0O g [ s -
I<1=1 I¢1=1
1 9 _
b [ 1OU0g ¢~ 2 ~tog(1 ~ 20)dedn (14

I<I<1

Proof The system

w,=w, wy=finD, w=y, w=" ondD
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is uniquely solvable according to Theorem 10 if and only if

z d¢ oz dédn
o [0Sz = 1 [ w0
I¢l=1 [¢l<1
z iz dedn
o [ ot =2 [ o %
[¢l=1 [¢l<1

The solution then is

1 d¢ 1 déd
I¢]=1 I¢]<1

1 d§dn
w(z) = 57 / f(¢ .
I¢l=1 |C\<1
Inserting w into the first condition gives (12) for
1 dédnp 1 ) 1 dédn -
T / w(ol—zf B / C (1 - 2¢) “
I¢l<1 \<| 1 IC\
_ d&dn -
—— déd
LT C-oa- "
\c\<1 ICI
with
1 zdédn ¢
_Z S-St A | _ _ 1 _
-/ (=01 - =0) o8l =) / S rr:
I¢l<1 |C|
B = 1 log(1 — 2¢) d¢
= —log(l—zg“)—i—% / 71_52 ?
I¢l=1
= —log(l— ZZ)

Combining the two integral representations for w and w leads to (13) as

1 dédn 1 7 1 _dgdnp

o e0EE = g [ e /<< oc=9
[¢l<1 I¢]=1 \4\

_ d&dn s

déd

/f C—0k=x “

|<|<1 \<\<
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where
L dédp e 1 e 9
| ey o el g [ emiemar 2
[¢l<1 [¢l=1
- 1 d
— tog {2 | log<1—z<><_<<~
[¢l=1
1 _.d¢
2mKZ 1 T

= log [¢ — 2] —log(1 — %C) .
Remark In a similar way the problem
wz=finD, w=r", wz =2 ondD

with f € L1(D;C), v, v € C(ID;C) can be solved.

That integral representations may not always be used to solve related bound-
ary value problems as was done in the case of the Dirichlet problem with formula
(3), can be seen from (6’). If w is a solution to the Poisson equation w,z = f
in D satisfying d,w = v on 0D and being normalized by

1 d¢
i w(()? =c
I¢l=1
for proper f and 7 then on the basis of Theorem 16 it may be presented as
we) = omg [AOWElC-P
I¢l=1
1 _
b [ HOwg (¢ - )1 - ) dedn (15)
I¢l<1

But this formula although providing always a solution to w,z = f does not for
all v satisfy the respective boundary behaviour. Such a behaviour is also known
from the Cauchy integral.

Theorem 8 The Neumann problem for the Poisson equation in the unit disc

wz=finD, du=ondb. 5o [ wOF =c.

2mi
I¢1=1
for f € Li(D;C),y € C(ID;C), c € C is solvable if and only if
1 c 2
o | 0T =2 [ s, (16)

I¢l=1 I<l<1
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The unique solution is then given by (15).

Proof As the Neumann function is a fundamental solution to the Laplace
operator and the boundary integral is a harmonic function, (15) provides a
solution to the Poisson equation. For checking the boundary behaviour the first
order derivatives have to be considered. They are

1 a1 1 ¢
()= 5= [ Q) [ (e e,
I¢]=1 I<I<1

we) =5 [ 0F -1 [ HO(Es g e
<<t

" 2mi C—2¢ = —2 1-%
ici=1
so that
_ 1 ¢ RIS
ayw(z>—2mm_1 0( 5+ =17
1 z z 2C zC
I / f(o[c—z+g—7z+1—z2+1—zg}d5d"
I<I<1
_ 1 ¢ ¢ dg¢
= 2mi V(O(g—fr@_@?
ci=1
1 2 z 1 1
+|<|/ O 7 - s o o
=1

For | z|=1 this is using the property of the Poisson kernel

o) =1 - 5= [10F +2 [ srdgan.

2mi
I¢cl=1

Therefore ,w = 7 on |z |= 1 if and only if condition (16) holds. At last the
normalization condition has to be verified. It follows from |{ — z|=|1 — z(]| for
|z|=1 and

—.dz 1

1 - 1 dz
— [log|1—2(P = =— [log(1—20)—=—-— [ log(1-2()==0.
o [losl1=P E = [log1-0% - o [1os1-20F =0

|z|=1 |z|=1 |z[=1

Theorem 9 The Dirichlet-Neumann problem for the inhomogeneous Bitsadze
equation in the unit disc

wﬁ:fanD), w:7078uw22’71 on(?ID), wE(O)ZCa
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for f € L1(D;C) N C(OD;C), 9,71 € C(ID;C),c € C is solvable if and only if
for zeD

1 a1 1— |¢]? B
c—gm | WO+ 1 [ 1O A =0 D
I¢1=1 ¢]<1
and
1 ~ d¢ 1 Zf(2) B
i [ 0 O-TU O img +r [ g =0, ()
=1 i<t

The solution then is

d¢
(—=z

we) = ezt [0
I¢l=1

[ @ -2 g -0%

I¢l=1
1 €12 — 12
+f/fC7d§dn. 19
- ©) cC=2 (19)
I¢l<1
Proof The problem is equivalent to the system
wr=winD, w=-y on JdD ,

wr=finD, Qw=v0ndD, w0)=c.
The solvability conditions are
1 d 1 déd
WOt =y [ w0

omi 1-2% « -2
[¢l=1 [¢l<1

and

1 R SIS B 7 (S B
i | O-TUO S+ | ks dedn=0
I¢1=1 I<I<1

and the unique solutions

wiz)= = [ 0% L / w(¢)

" 2mi (—2z (—z
I¢l=1 I¢l<1
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and
1 _
v =e— 3= [ 0O-Trome-0% -1 [
I<I=1 \<\<1
according to [3], Theorems 10 and 11.
From
1 ddn 1 dfdn 1 = ac
I¢l<1 I<l<1 I¢1=1
and -
L[ ¢ dedy  |{P-1
¢(—¢l=2¢  ¢(1-%C)
I¢1<1
condition (17) follows. Similarly (19) follows from
déd ded — |22 =
2 [z 2 e - B - D gD

I¢l<1 I¢I<1

and

;/ ¢ dedn _ [P |2
TS (=062 (-2

I¢l<1

Theorem 10 The boundary value problem for the inhomogeneous Bitsadze
equation in the unit disc

wz=finD, w=y, 2w,z =7 on ID , wz(0) =c,

is solvable for f € L1(D;C), 9,71 € C(OD;C),c € C if and only if for z € D
condition (17) together with

1 _dédn

2mi (04 z< T / HOF=%57 =0 (20)
I¢]=1 \C\<1
holds. The solution then is uniquely given by
1 d 1 1— |22 —.d
w(z) = cf—l—% /’YO(C) <z +% 7(¢) Ed log(l—zC)?C
I¢l=1 I¢l=1

1 ¢12 = ]2

— = d&dn . 21
[ 10N aan (21)

I¢I<1
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The proof is as the last one but [3], Theorem 12 is involved rather than [3],
Theorem 11.

Theorem 11 The Neumann problem for the inhomogeneous Bitsadze equation
in the unit disc

wez=finD, dw=n, dyws =71 0n D, w(0) = co , w:(0) = &1

is uniquely solvable for f € C*(D;C),0 < a < 1,709,711 € C(ID;C),cp,c; € C
if and only if for z € OD

Cl”* / == 5 | Q=D —=Clog(1 — =0))dC
<=1 [¢l=1
1of O (H@Ee) )
Jr7T|C|Zl ¢ ((1_502 C—z)dfdnio (22)
and
[¢l=1 |Q<1

The solution then is given as

w(z) =co+c1Z — 2%1‘2 Yo(¢) log(1 — ZZ)%
[¢]=1
b [ Q) =CHOICT=) g1~ 20 / 7 o
I¢1=1 |<|<1

Proof From applying [3], Theorem 11

=c —L —Cw o -z %_i w M
w(z) = co mezl (70(¢) = Cw(()) log(1 OC W<[1 (OC(C—Z)’

w@) =5 [ @-TOM1-0F -2 [ 10727
I¢l=1 |€\<1

g7 [ 00O - E g+ [ e dedn =0,
[¢]=1 I<I<1
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i Cpen L E [ QO
[ O-UOgEg |/ T e dedn 0.

Inserting w into the first condition leads to (22) on the basis of

1 = ~

—ar- g [ O [ EIEHET

2mi 1-z¢ ¢
ICI 1 [¢|=1
f(¢ g .
—— = —— d&d
/ g / C—oci—=q “
|<|<1 I¢l=1
1
—art g [ @-troRG+ 2 [ A
[¢l=1 |g\<1
and
z w(¢) _Zz =2 ., Z =
- a1 [ oS sl | i ok
I¢l<1 I¢l<1 I¢l<1
_z (—=z z (—=z
[¢]=1 [¢l<1
where for |z|=1
z (—=z oz (—=z
omi | W—we YO =55 | T %
I¢1=1 I¢|=1
_ 1 w(¢) d¢
C o 2mi / (—z¢
I¢l=1
_ 1 N Feriy L log(1 — ¢¢) CC) ¢

|
_1 @L L dedi
n ) ¢ 2%2"4'4 oK "

I¢1<1
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= o [ Q- T Tox(1 - Zz)%
[¢]=1

N % (m(Q) = Cf()Zlog(1 — zZ)% ,
[¢]=1

1 - 1 _
From 3 / log(1 — 2¢)d¢ = ~5— / log(1 —2¢)d¢ =0,
I¢1=1 I¢1=1

or; [ osll = Olog(1 — 20T =~ [ og(1 ~ 0 log(1 - )

I¢]=1 \C\—l
+00 Z’f T i
:;km/logl—z(j Z 8’“ "og(1 — 2¢) |e=o
- I¢l=1
+°°Z k—1
= (k= 1k
= = 1 = = 1-2
= (log(1l —2() — > (log(1 — 2¢) + 2¢) = 2 log(1 —ZC)
and
1 Clog(1—20) - 1 log(1 — 2()
2mi i-¢ “ T _%/ o “
[¢l=1 I¢]=1
1 log1l —Zz(¢
- — | 2!’ -
27”4[1 L=«
the relation
! log(1 — 2¢)d(
o [ @l tog(1 20T
I¢]=1
1 = 1—2( — =\ d
— 57 [ 0@ =THON (2 o1 -0 +0) ¢

I<I=1

J\z\

(25)
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follows. Similarly from

IR =TS

|<\<1 I¢I<1 I¢l<1
L[ log(1-¢Q) CC)
e A
I<l<1
- = — = d
= )togl1 =)~ 5 [ T= ) logll D72
I¢l=1
i - : = d
= E sl =2 + 57 [ (1= Dtoal1 ~ O
I¢l=1
~ = —_ ; = —_ 2 =
= (¢ —2z)log(1 —2¢) + ! . 2 log(l— 2() = 1= |2 log(1 — 2() ,
déd
[ s - = =2 [ 02 tog(t - Qyagan
I¢l<1 I¢l<1
1 -
— 5y [ to1-0G =<,
I¢I=1
and
1 dédn 1 1 1 C—z
— = = —= = — dédn = —=
N e e RErr Y i Ly =
I<l<1 I¢I<1
it follows

et o [ (0 -G (L s - 0 +0) %

FOTZ yeqr 6)

From (25) and (26) the representation (24) follows.
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Theorem 12 The boundary value problem for the inhomogeneous Bitsadze
equation in the unit disc

wz=FfmD, zw, =7, 2w,z =21 on ID , w(0) =c¢y , wz(0) =¢1 ,

for f € Li(D;C), 9,71 € C(ID;C), co,c1 € C is uniquely solvable if and only if
for|zl=1

1 dc¢ 1 1 = d¢
By ’Yo(()m‘i‘% 71(0;10%(1—2()?
=1 ci=1
-2 [ 10 T (27)
el
and ) dedy
n_ _
| Ot [ HogSes 0. @
Ii=1 "l

The solution then is

w(z) = co—i—clf—% / 'yo(C)log(l—zZ)%
[¢l=1
1 1— |22 - =\ d
o [ n@(FLEL msa-0+0) T @)
[¢]=1
z fQ¢C—=
i / ¢ (-
[¢l<1

Proof The system
wr=winD, zw, =y on D, w(0) =cq ,
wr=finD, 2w, =7 on D, w(0) =¢ ,
is uniquely solvable if and only if
% / ’70(()(L"‘Z / W(C)MZO
[¢l=1 I<I<1

and
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The solution then is

w() 05;/ l%ha#—f/ww@@

¢ ((C—2)"
[¢l<1
~ 1 dedy
w(z)—cl—% / (g)log(l—zc / f(¢ CC*Z
[¢l=1 |§|<1

Inserting the expression for w into the first condition gives (27) because as in
the preceding proof on |z|=1

= (1“’“)2 dédn

™ - z()
I¢l<1
1 ac  z -z
= om 71(()* log(1 — z C)? - W/(I_ZOQ f(Q)d&dn .
[¢]=1
Also from
z d&dn _
;[ wogety = o
Icl<1

1 1— |22 - =\ dC
5= | mo(— log<1—zc>+<)?

O
L=

|C\<1

formula (29) follows.

Boundary value problems as in Theorem 12 can also be solved for the Poisson
equation. One case is considered in the next theorem.
Theorem 13 The boundary value problem for the Poisson equation in the unit

disc

wez=finD, Zwug=", 2w.; =v1 on 0D , w(0) =¢p, w.(0) =1

are uniquely solvable for f € L1(D;C),~o,v1 € C(ID;C),co,c1 € C if and only
if

1 i1 1 1
) T Wm/ HO( 7+ 7o~ Y)dedn (0
=1 <1
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and
1 _dédny
i | Ot [ OGS =0 6D
[¢|=1 |C|<1
The solution then is
w(z) = co—i—clz—— / Y0(¢ log(l—ZOdCC
I¢|=1
1 1—2C _ d
tom [ O g0 +2) 2 (32)
[¢l=1
s [ 5O+ 108 1 - 2 ~log(1 - 2¢) ~ log |¢* )
. 1§ g g g n-
I¢l<1

Proof The problem is equivalent to the system
w, =win D, Zwz =7 on D , w(0) = ¢ ,

wr=finD, zw=7v0n9D, w(0) =c .

It is solvable if and only if

o L S / e

2 (1—=0¢ = (- =07
I¢]=1 I<I<1
and
1 Cdedn
| Ot [ H0gEes o
ci=1 "<

and the solutions are according to [3], Theorem 12

s RN dedy
w) =5 [ w@os1-20F - [ w020
|C| 1 I<l<1

w(z)—cl——/m 1og(1_z<?< /f dgd"
[¢]=1 |C|<1

For the first problem [3], Theorem 12 is applied to @ and the formulas then
complex conjugated. For (30)
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2 dedp 1 WO\ fQ)
w/w(ou—zgy s / {85[1_@) 1_Zg}dfd’7
[¢l<1 [¢]<1
1 w@) .1 f(©)
2w 1—deC T 1— Cdfd
I¢l=1 I¢l<1
has to be evaluated. For |z|=1
1 w(C) __z Cw(¢)
omi 1—deC = om ) 1o %
<=1 I¢l=1
1 -1 = % d¢
= o [ O [ st - DT At
I{]=1 I¢I=1
f(©
/ g 2m / g gl
\C\<1 Ile
RS
\C\<1
so that

2 [ w0t =2 [ ro(Eg ¢ )

[¢l<1 [¢l<1

For (32)

i g—z

[¢l<1

1 7(¢) 1 dédn

o | PP [ e E
I¢]=1 [¢I<1

L

|q<1 |<|<1
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needs some modification. From

d
= fog1--1) = 2 [ 12 og-h- —
i €
1 dedn
i [ st - OE
I¢l<1
_ 1 CC d¢
- 27ri|C[1 (log(l = ¢0) = D=
dedn
i [ sl - O 2
I¢l<1
_ 1.1 _ 5 %edn
o A T
[¢l<1
from which also
=, déd
» [ o1 - )™ o
I¢I<1
follows, and
1 d§dn p 2 1 2 d¢
—= = log|[C—z|"—5— [ log|(—z =
2 _
|C|<1C WZC[1 <-¢
_ 1 _ dc
= log|§—z|2+27r, /log(l ZC)Z(l—EZ)
I¢|=1
d¢
o / 1Og(1_zC)<_§

—log |{ — z|* —log(1 — Z()

from what

L ]

I¢cl<1 Icl<1
=2+ ((log |¢ — z|* —log(1 — 2())
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d
h e e L 1S
m (—=¢ ¢
I<I<1
is seen,
z d€dn d¢
-~ ~/ W(C)m / log(l—z<)+z) c
I<l<1 |=1
% / f(C)(g +1log |¢ — z|* —log(1 —2¢) —log | ¢ |? )dfdn
I¢l<1
follows.

Remark Instead of this constructive way the proof can be given by verification.
From (32)

1 zZ¢ d z 1
use) = g [ OS2 [ 0 - e,
I¢l=1 I¢l<1

This obviously coincides with v on 9D if and only if (31) is satisfied. Similarly
from

w)=e- g [ m@log -0 - 7 / (2~ )dean.

[¢]=1 ¢l
1 d
fwea(2) = o m(olzc «_1 / F(¢ ded
[¢]=1 |<|<1

it is seen that zw,, coinsides with v; on 9D if and only if (31) holds. The other
two conditions are obviously satisfied.

2 The inhomogeneous polyanalytic equation

As second order equations of special type were treated in the preceding section
model equations of third, forth, fifth etc. order can be investigated. From the
material presented it is clear how to proceed and what kind of boundary condi-
tions can be posed. However, there is a variety of boundary conditions possible.
All kind of combinations of the three kinds, Schwarz, Dirichlet, Neumann con-
ditions can be posed. And there are even others e.g. boundary conditions of
mixed type which are not investigated here.

As simple examples the Schwarz problem will be studied for the inhomogeneous
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polyanalytic equation. Another possibility is the Neumann problem for the in-
homogeneous polyharmonic equation, see [4, 5], and the Dirichlet problem, see
[2].

Lemma 3 For |z|<1,|¢|< 1 and k € Ny

(71)k+1

k+1(5*2+§j)k+1:k7_~_1(z+7)k“
1 1 ¢+¢ 11+¢C —
- (, s _~,)(C—2+C—z) dedn . (33)
7T|q<1 ¢ (—¢ (¢1-(¢

Proof The function w({) = i({ — z + ¢ — 2)¥T1/(k + 1) satisfies the Schwarz
condition

(71)k+1

w=(0) = i((—24+C — 2)*in D, Rew(¢) = 00n D, Im w(0) = T

: (z+2)"F1,

so that according to [3], (33)

~ (_l)k-i-l

w() =i D - [ (G2 ) (G- T = ) dgdn.

I¢l<1

b1 4 / (1C+§ 11+CC

This is (33).
Corollary 1 For|z|< 1 and k € Ny

I¢l<1
and
¢ . _1)k+1
% (égtj_z1—fzg)(c—z+§—z)kd§dn:(klj_l(Z_;'_Z)k—i-l. (35)

I<l<1

Proof (34) and (35) are particular cases of (33) for { = 0 and ¢ = z, respec-
tively.

Theorem 14 The Schwarz problem for the inhomogeneous polyanalytic equa-
tion in the unit disc

Zw=finD, RedZw=2,0ondD, Im 5w(0) =0, 0<v<n-1,

is uniquely solvable for f € Li(D;C),v, € C(ID;R),c, € R,0 < v <n— 1.
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The solution is

S R B P S G
>0 |

2miv! ¢ 1§
=0 Igi=1
(—1)" fO¢C+z f(O1+2C -
Jr27T(n—1)! / ( ¢ C_er 15 1_ZZ>(C*Z+C*Z) Ydedn . (36)

I¢I<1

Proof For n = 1 formula (36) is just [3], (33). Assuming it holds for n — 1
rather than for n the Schwarz problem is rewritten as the system

O Mw=winD, Re d%w =+, on D , Tm Zw(0) =c¢, , 0<v<n—2,

wr=finD, Rew="v,-10n9dD, Im w(0) =c,_1 ,

having the solution

w(z):iic—”(erf)”Jri(_l.)lj /%(C)sz(z—z+m)”%

_1\n—1 w p w Zﬁ L

;
I<l<1
1 d
w2 mienat o [ malOFEED
[¢l=1

1 JQO¢+z | flO1+2¢
o / ( ¢ g—z+ ¢ 1—zZ)d£dn'

Ici<1

Using (35)

(=)t wl) ¢tz  w(@1+2¢ o
27T(n—2)!4|/1< ¢ g_z+ c 1_ZZ)(C—HC—z) 2dedn
<

= ot (z+z)”*1+£ / Tn-1(0)

(n—1)! 2mi(n —2)!
I¢l=1

><1 (C+CEC+Z

Gy = +

5+Cl1+z§)(<
A
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(=D" f(©)
+27T(n—2)! / ¢

I¢]<1

1 CH+C1¢+z 14011420\, =0y -
X5 (§_§CC_2+1_2&1_ZZ)(< 2+ C — 2)"2dedndédii

[¢l<1

=4 f©)
T orin =) /

I¢]<1

EasllirN

xi (1+CC~1C+2
21 1_<§CC—z

I¢l<1

¢lil+ Z?) (C — 24 ¢ — 2)" 2dedndédn

{+
+ =
¢-¢ol==2¢

follows. Because

§+Q<+z 1+Z§il+z§

4—4CC~—z 1-CCC1—2C

(e =D e I ()
B NP R

+<~4—Z~z <1fz<—11<>+1i%<+31122—2

2§:+z (Clgg;z)”?i(lcgg154)2*2
:_Qgtz(cié_lféc_clﬁlzzc STt
e wae

|
|
I
||+

(¢
1(+§_11+5§_1§+z+11+zf) 1
C¢—¢ C¢1-¢ ¢C—z (1-2(
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and similarly

1+¢C1¢+z (+¢11+2C
iz i -

(D (D)

4 1 ¢ 20 2

= — + _ ) = _ 4z
1—z5(<—z 1—<5> (1—45 <)

2 1 4 ( N ) 22 .2 2 1
(—z 7C 1-2(C E—E 1-2¢/ 1-20 ¢ ¢-¢ ¢
1+2C 4 1 ¢ 1 z 11

=2 = + = — = — — ) - -4+ =
1—z§(4—2 1-¢¢ ¢-¢ 1—ZC) ¢ ¢

C C 2 1

_ 1t 2 120 1 2 1 1.1
B <_§ ¢ 1-¢¢ ¢ C—Z+C+1—ZZ+Z) C+Z

1—2¢ *¢
:_1+z§<1C+§_11+<5_1C+Z+11+Z<)_1+1
G Qg TR e

and applying (33), (34), and (35)

2177<|<1 (gfﬁigfj + igg;fig)(c—zﬂ“—z)"*dmn
:_g‘iz;wcﬂ (igfg-ﬁfﬁg—igfj zizg)(é—zﬂ—z)“dwn
= gtz [j (§—z+§—z)”‘1— (;11”1—1 (z42)" 1+ (;11711—1 (z—i—?)"‘l}
= gjznll (R

1 / (c+<15+z+1+Z<11+z2)(<_z+<j)n,2d§dn

27 (—¢¢C—2z 1-((C1—2C

I<l<1

1+251/<1c+5115c14+z+11z<
1— ¢ 2m Cc—C C1-¢¢ ¢6—2 ¢1—2C

) (24T = 2)"2dedn

[¢l<1
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1

_ 1 + ZC 1 et et n—1 (_1)n71 —\n—1 (_1)”‘71 —\n—1
= Lo o T T G S ) ]
B G ST et

then

—1)1 w zZ W 2C -

I¢l<1
' — o —1 n—1 . d
:i(nc_i)! (z+72) 1+27T(i(73_1ﬂ /%—1(()% (C—z+C—2) 1?4
I¢]=1

GO Qs TR
+2ﬂ'(n1)!<|[1< ¢ sz—i_ C 125)@ z4+(—2)"""dédn .

This proves formula (36).
Theorem 15 The Dirichlet problem for the inhomogeneous polyanalytic equa-
tion in the unit disc

OZw=finD, Zw=vomdD, 0<v<n-—-1,

is uniquely solvable for f € L1(D;C),~, € C(dD;C),0 <v <n—1, if and only
if forO<v<n-1

n—1 _ (—z
[ e T
§2Wi|<|[1( ) 1-2¢ (A=) a
(—1)"vz (©) (C=—=)" ' dédn =0 . (37)

77 1-2¢ (n—1-v)!
I¢l<1

_|_

The solution then is

o) = SE [ OCr

= 2mi vl (—=z
I¢1=1
_1\n fz n—1

I<I<1
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Proof For n = 1 condition (37) coinsides with [3], (34) and (38) is [3], (35).
Assuming Theorem 27 is proved for n — 1 rather than for n the problem is
decomposed into the system

7w = winD, Fw=y,0mdD, 0<v<n—2,
Ozw = finD, Ozw=",_10ndD,

with the solvability conditions (37) for 0 < v < n—2 and w instead of f together

with B dc B dtd
Z z U
el IR (GRS

I¢l=1 I¢l<1
and the solutions (38) for n — 1 instead of n and w instead of f where

1 d 1 déd
w0 =5 [ w07 -1 [ O

I¢l=1 I¢I<1

Then for 0 <v <n-—2

L G s

™ 1-2¢ (n—2-v)!
I€l<1
= ori [ i @uCaii -1 [ 0w 2aéan
él=1 dl<1
where
- — 1 (C‘iz)n_Q_” d&dn
w(G2) = —— / (n—2-v)1-20)¢-¢

I¢l<1

(( =21 1 / C=2) 1 A&
(

(n—1-v)(1-%C) 2mi n—1-v(1-2¢)¢—¢

gi=1

(E)n—l—u o
(n—1-v)I(1-2¢)

The last equality holds because

1 (S 1 (C—z)""t7"dC
— — d = = ~.
2mi [(1—20((—() ‘T [ (€=2)(1=¢)
¢i=1 jci=1
1 C—2)"27" =
2ri 1-¢C
i¢i=1
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Thusfor 0<v<n-—2

A v 'V)\ (C _ Z))\7V
2mi / 1-z¢ (A=v)! dc
[¢]=1

(—1>”-1-”z o¢) T2
T / 1-2¢ (n—2-v)!
I¢l<1
n-1 _ —
z o) (=2
i (=1)* 1-2C (A—v)!

G
+ /1 Z¢ (n—1-v)! dedn =0

tM

d&dn

dg

This is (37). For showing (38) similarly

1 mn—Q
G (n(— 2>!<)< —) %dn
[¢]<1

o [ @@l = 2 [ £Qna (G2

271
I¢l=1 I¢)<1

oy 1+ (C—2)""2 d&dn
Yn-1(62) = =2 / (n-2WC—2) ¢

I¢I<1

I N B () A W S ()
) ”ll(n—z)!(é—z) (=t === G ey
- 1 /<(<—z>”- (C—2)"" )dC:(@—Z)"‘

27ri(n—1)!((~—z)w:l c-0  (-=z n—DI(C - 2)

1 fz n—1 1 - 1 g — (C — Z)il71
+2m(n—1)!(§—z)ll(€ ) (1—52 1—zE>Z (n—DIC -2

Hence, w(z) is equal to

= (1) V() (C=2)" —1n! w(©) (=2
5D /ﬂ)( Z)d<+(7)r /(n£;>!<<_>z dedn

I<I=1 I¢I<1
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R e A () (-1)" FQ) (=2
= 2mi |<|Z1 vl (—z de+ v {l[l n=1! (-=z

ie. (38) is valid.

|
g

d&dn
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