Intuitionistic Fuzzy θ -Closure Operator

I. M. Hanafy, A. M. Abd El-Aziz & T. M. Salman

Abstract

The concepts of fuzzy θ -open (θ -closed)sets and fuzzy θ -closure operator are introduced and discussed in intuitionistic fuzzy topological spaces. As applications of these concepts, certain functions are characterized in terms of intuitionistic fuzzy θ -closure operator.

Keywords: Intuitionistic fuzzy θ -closed set, intuitionistic fuzzy θ -closure, intuitionistic fuzzy strongly θ -continuous, intuitionistic fuzzy weakly continuous, intuitionistic fuzzy $\lambda\theta$ -continuous.

1. Introduction

Fuzzy sets were introduced by Zadeh[10] in 1965. A fuzzy set U in a universe X is a mapping from X to the unit interval [0, 1]. For any $x \in X$, the number U(x) is called the membership degree of x in U. As a generalization of this notion, Atanassov[1] introduced the fundamental concept of intuitionistic fuzzy sets. While fuzzy sets give a degree of membership of an element in a given set, intuitionistic fuzzy sets give both a degree of membership and of non-membership. Both degrees belong to the interval [0, 1], and their sum shoud not exceed 1 (we will, formally, define the intuitionistic fuzzy set in section 2). Coker[2-4] and Hanafy[6] introduced the notion of intuitionistic fuzzy topological space, fuzzy continuity and some other related concepts. The concept of θ -closure operator in a fuzzy topological spaces is introduced in [9]. In the present paper our aim is to introduce and study the concept of θ -closure operator in intuitionistic fuzzy topological spaces. In section 3 of this paper we develop the concept of intuitionistic fuzzy θ -closure operators. Intuitionistic fuzzy regular space is introduced and characterized in terms of intuitionistic fuzzy θ -closure. The functions of fuzzy strongly θ -continuous[8], fuzzy θ -continuous[9], fuzzy weakly continuous[9] and fuzzy $\lambda\theta$ -continuous[7] were introduced in fuzzy topological spaces. Section 4 is devoted to introduce these functions in intuitionistic fuzzy topological spaces and also includes the characterizations of these functions with the help of the notion of intuitionistic fuzzy θ -closures. For definitions and results not explained in this paper, we refer to the papers [1, 2, 4].

2. Preliminaries

Definition 2.1[1]. Let X be a nonempty fixed set. An intuitionistic fuzzy set (IFS, for short) U is an object having the form $U = \{\langle x, \mu_U(x), \gamma_U(x) \rangle : x \in X\}$ where the functions $\mu_U : X \to I$ and $\gamma_U : X \to I$ denote respectively the degree of membership (namely $\mu_U(x)$) and the degree of nonmembership (namely $\gamma_U(x)$) of each element $x \in X$ to the set U, and $0 \le \mu_U(x) + \gamma_U(x) \le 1$ for each $x \in X$.

For the sake of simplicity, we shall frequently use the symbol $U = \langle x, \mu_U(x), \gamma_U(x) \rangle$ for the IFS $U = \{ \langle x, \mu_U(x), \gamma_U(x) \rangle : x \in X \}$. Every fuzzy set U on a nonempty set X is obviously an IFS having the form $U = \langle x, \mu_U(x), 1 - \mu_U(x) \rangle$.

Definition 2.2[1]. Let X be a nonempty set and let the IFS's U and V be in the form $U = \langle x, \mu_U(x), \gamma_U(x) \rangle$, $V = \langle x, \mu_V(x), \gamma_V(x) \rangle$ and let $\{U_j : j \in J\}$ be an arbitrary family of IFS's in X. Then (i) $U \leq V$ iff $\mu_U(x) \leq \mu_V(x)$ and $\gamma_U(x) \geq \gamma_V(x), \forall x \in X$;

 $\begin{aligned} &(i) \ \overline{U} \leq V \quad ij \ j \ \mu_{U}(x) \leq \mu_{V}(x) \text{ and } \gamma_{U}(x) \geq \gamma_{V}(x), \forall x \in X \\ &(ii) \ \overline{U} = \{\langle x, \gamma_{U}(x), \mu_{U}(x) \rangle : x \in X\}; \\ &(iii) \ \cap U_{j} = \{\langle x, \wedge \mu_{U_{j}}(x), \vee \gamma_{U_{j}}(x) \rangle : x \in X\}; \\ &(iv) \ \cup U_{j} = \{\langle x, \vee \mu_{U_{j}}(x), \wedge \gamma_{U_{j}}(x) \rangle : x \in X\}; \\ &(v) \ \overline{1} = \{\langle x, \underline{1}, 0 \rangle : x \in X\} \text{ and } \ \overline{0} = \{\langle x, 0, 1 \rangle : x \in X\}; \\ &(vi) \ \overline{\overline{U}} = U, \ \overline{0} = 1 \text{ and } \ \overline{1} = 0. \end{aligned}$

Definition 2.3[2]. An intuitionistic fuzzy topology (*IFT*, for short) on a nonempty set X is a family Ψ of IFS's in X satisfying the following axioms:

(*i*) $0, 1 \in \Psi;$

(*ii*) $U_1 \cap U_2 \in \Psi$ for any $U_1, U_2 \in \Psi$;

 $(iii) \cup U_j \in \Psi$ for any $\{ U_j : j \in J \} \subseteq \Psi$.

In this case the pair (X, Ψ) is called an intuitionistic fuzzy topological space (IFTS, for short) and each IFS in Ψ is known as an intuitionistic fuzzy open set (IFOS, for short) in X. The complement \overline{U} of *IFOS* U in *IFTS* (X, Ψ) is called an intuitionistic fuzzy closed set (IFCS, for short).

Definition 2.4[2]. Let X and Y be two nonempty sets and $f : X \to Y$ a function.

(i) If $V = \{\langle y, \mu_V(y), \gamma_V(y) \rangle : y \in Y\}$ is an IFS in Y, then the preimage of V under f is denoted and defined by

$$f^{-1}(V) = \{ \langle x, f^{-1}(\mu_V)(x), f^{-1}(\gamma_V)(x) \rangle : x \in X \}$$

where $f^{-1}(\mu_V)(x) = \mu_V(f(x))$ and $f^{-1}(\gamma_V)(x) = \gamma_V(f(x))$.

(ii) If $U = \{\langle x, \lambda_U(x), \delta_U(x) \rangle : x \in X\}$ is an IFS in X, then the image of U under f is denoted and defined by

$$f(U) = \{ \langle y, f(\lambda_{\scriptscriptstyle U})(y), f_{\scriptscriptstyle -}(\delta_{\scriptscriptstyle U})(y) \rangle : y \in Y \}$$

where

$$f(\lambda_{\scriptscriptstyle U})(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \lambda_{\scriptscriptstyle U}(x), & f^{-1}(y) \neq 0\\ \\ 0 & & \\ 0 & & otherwise. \end{cases}$$

and

$$f_{-}(\delta_{U})(y) = 1 - f(1 - \delta_{U})(y) = \begin{cases} \inf_{x \in f^{-1}(y)} \delta_{U}(x), & f^{-1}(y) \neq 0\\ \\ x \in f^{-1}(y) \\ 1 & otherwise. \end{cases}$$

Corollary 2.5.[5]. Let $U, U_j (j \in J)$ IFS's in $X, V, V_j (j \in J)$ IFS's in Y and $f: X \to Y$ a function. Then:

 $\begin{array}{l} (i) \ U_1 \leq U_2 \Rightarrow f(U_1) \leq f(U_2). \\ (ii) \ V_1 \leq V_2 \Rightarrow f^{-1}(V_1) \leq f^{-1}(V_2). \\ (iii) \ U \leq f^{-1}f(U) \quad (\text{If } f \text{ is injective, then } U = f^{-1}f(U) \). \\ (iv) \ ff^{-1}(V) \leq V \quad (\text{If } f \text{ is surjective, then } ff^{-1}(V) = V \). \\ (v) \ f^{-1}(\cup V_j) = \cup f^{-1}(V_j) \text{ and } f^{-1}(\cap V_j) = \cap f^{-1}(V_j) \ . \\ (vi) \ f(\cup V_j) = \cup f(V_j) \ . \\ (vii) \ f(\cap U_j) \leq \cap f(U_j), \text{ (If } f \text{ is injective, then } f(\cap U_j) = \cap f(U_j) \). \\ (viii) \ f^{-1}(\overline{V}) = \overline{f^{-1}(V)} \ . \end{array}$

Definition 2.6[2]. Let (X, Ψ) be an IFTS and $U = \langle x, \mu_U(x), \gamma_U(x) \rangle$ an IFS in X. Then the fuzzy interior and the fuzzy closure of U are defined by:

 $cl(U) = \cap \{K : K \text{ is an IFCS in } X \text{ and } U \leq K\}$ and $int(U) = \cup \{G : G \text{ is an IFOS in } X \text{ and } G \leq U\}.$

Definition 2.7[5]. An IFS U of an IFTS X is called: (i) an intuitionistic fuzzy regular open set (IFROS, for short) of X if int(cl(U)) = U; (ii) an intuitionistic fuzzy λ -open set (IF λ OS, for short) of X if $U \leq int(cl(int(U)))$. The complement of IFROS (resp. IF λ OS) is called intuitionistic fuzzy regular closed set (resp. λ -closed set)(IFRCS (resp. IF λ CS), for short) of X.

Proposition 2.8[2]. For any IFS U in (X, Ψ) we have: (i) $cl(\overline{U}) = \overline{int(U)}$, (ii) $int(\overline{U}) = \overline{cl(U)}$.

Definition 2.9[4]. Let X be a non empty set and $c \in X$ a fixed element in X. If $a \in (0,1]$ and $b \in [0,1)$ are two fixed real numbers such that $a + b \leq 1$, then the *IFS* $c(a,b) = \langle x, c_a, 1 - c_{1-b} \rangle$ is called an intuitionistic fuzzy point (*IFP*, for short) in X, where a denotes the degree of membership of c(a,b), b the degree of nonmembership of c(a,b), and $c \in X$ the support of c(a,b).

Definition 2.10[4]. Let c(a, b) be an *IFP* in X and $U = \langle x, \mu_U, \gamma_U \rangle$ be an *IFS* in X. Suppose further that $a, b \in (0, 1)$. c(a, b) is said to be properly contained in U ($c(a, b) \in U$, for short) iff $a < \mu_U(c)$ and $b > \gamma_U(c)$.

Definition 2.11[4]. (i) An *IFP* c(a, b) in X is said to be quasi-coincident with the *IFS* $U = \langle x, \mu_U, \gamma_U \rangle$, denoted by c(a, b)qU, iff $a > \gamma_U(c)$ or $b < \mu_U(c)$. (ii) Let $U = \langle x, \mu_U, \gamma_U \rangle$ and $V = \langle x, \mu_V, \gamma_V \rangle$ are two *IFSs* in X. Then, U and V are said to be quasi-coincident, denoted by UqV, iff there exists an

element $x \in X$ such that $\mu_U(x) > \gamma_V(x)$ or $\gamma_U(x) < \mu_V(x)$.

The expression 'not quasi-coincident' will be abbreviated as \tilde{q} .

Proposition 2.12[4]. Let U and V be two IFS's and c(a, b) an *IFP* in X. Then:

 $\begin{array}{ll} (i) \ U \ \widetilde{q} \ \overline{V} \ iff \ U \leq V, \\ (iii) \ c(a,b) \leq U \ iff \ c(a,b) \widetilde{q} \ \overline{U} \ , \end{array} \begin{array}{ll} (ii) \ U \ q \ V \ iff \ U \notin \overline{V}, \\ (iv) \ c(a,b) \ q \ U \ iff \ c(a,b) \notin \overline{U}. \end{array}$

Definition 2.13[4]. Let $f: X \to Y$ be a function and c(a, b) an IFP in X. Then the image of c(a, b) under f, denoted by f(c(a, b)), is defined by

$$f(c(a,b)) = \langle y, f(c)_a , 1 - f(c)_{1-b} \rangle.$$

Proposition 2.14[6]. Let $f : X \to Y$ be a function and c(a, b) an IFP in X.

(i) If for IFS V in Y we have $f(c(a,b)) \neq V$, then $c(a,b) \neq f^{-1}(V)$.

(*ii*) If for IFS U in X we have c(a,b)) q U, then f(c(a,b)) q f(U).

Definition 2.15. Let (X, Ψ) be an IFTS on X and c(a, b) an IFP in X. An IFS A is called $\varepsilon q - nbd(\varepsilon \lambda q - nbd)$ of c(a, b), if there exists an *IFOS* $(IF\lambda OS)U$ in X such that c(a, b)qU and $U \leq A$.

The family of all $\varepsilon q - nbd(\varepsilon \lambda q - nbd)$ of c(a, b) will be denoted by $N_{\varepsilon}^q(N_{\varepsilon}^{\lambda q})(c(a, b))$.

Definition 2.16[6]. An IFTS (X, Ψ) is said to be intuitionistic fuzzy extremely disconnected (IFEDS, for short) iff the intuitionistic fuzzy closure of each IFOS in X is IFOS.

3. θ -closure operator in IFTS's

Definition 3.1. An IFP c(a, b) is said to be intuitionistic fuzzy θ -cluster point (IF θ -cluster point, for short) of an IFS U iff for each $A \in N^q_{\varepsilon}(c(a, b))$, $cl(A) \neq U$.

The set of all $IF\theta$ -cluster points of U is called the intuitionistic fuzzy θ -closure of U and denoted by $cl_{\theta}(U)$. An IFS U will be called $IF\theta$ -closed(IF θ CS, for short) iff $U = cl_{\theta}(U)$. The complement of an $IF\theta$ -closed set is $IF\theta$ -open (IF θ OS, for short). The θ -interior of U is denoted and defined by

 $int_{\theta}(U) = 1 - cl_{\theta}(1 - U).$

Definition 3.2. An IFS U of an IFTS X is said to be $\varepsilon \theta q - nbd$ of an IFP c(a, b) if there exists an $\varepsilon q - nbd$ A of c(a, b) such that $cl(A) \tilde{q} \overline{U}$.

The family of all $\varepsilon \theta q - nbd$ of c(a, b) will be denoted by $N_{\varepsilon}^{\theta q}(c(a, b))$.

Remark 3.3. It is clear that :

(i) $IF\theta OS \subseteq IFOS$ and $IFROS \subseteq IFOS$

(*ii*) For any IFS U in an IFTS X, $cl(U) \leq cl_{\theta}(U)$.

Example 3.4. Let $X = \{a, b\}$ and $U = \langle x, (\frac{a}{0.4}, \frac{b}{0.5}), (\frac{a}{0.4}, \frac{b}{0.4}) \rangle$. Then the family $\Psi = \{0, 1, U\}$ of IFS's in X is an IFT on X. Clearly U is an IFOS in X but not IFROS (Indeed $int(cl(U)) = 1 \neq U$).

Example 3.5. Let $X = \{a, b, c\}$ and $U = \left\langle x, \left(\frac{a}{0.0}, \frac{b}{0.0}, \frac{c}{0.5}\right), \left(\frac{a}{1.0}, \frac{b}{0.0}, \frac{c}{0.0}\right) \right\rangle, V = \left\langle x, \left(\frac{a}{1.0}, \frac{b}{0.5}, \frac{c}{0.0}\right), \left(\frac{a}{0.0}, \frac{b}{0.5}, \frac{c}{1.0}\right) \right\rangle.$

Then the family $\Psi = \{0, 1, U, V, U \cup V\}$ of IFS's in X is an IFT on X. Clearly U is an IFROS but not IF θ OS.

Theorem 3.6. If U is an IFOS in an IFTS X, then $cl(U) = cl_{\theta}(U)$.

Proof. It is enough to prove $cl_{\theta}(U) \leq cl(U)$.

Let c(a, b) be an IFP in X such that $c(a, b) \notin cl(U)$, then there exists $V \in N^q_{\varepsilon}(c(a, b))$ such that $V\tilde{q}U$ and hence $V \leq \overline{U}$. Then $cl(V) \leq \overline{int(U)} \leq \overline{U}$, since U is an IFOS in X. Hence $cl(V)\tilde{q}U$ which implies $c(a, b) \notin cl_{\theta}(U)$. Then $cl_{\theta}(U) \leq cl(U)$. Thus $cl(U) = cl_{\theta}(U)$.

Theorem 3.7. In an IFTS (X, Ψ) , the following hold :

(i) Finite union and arbitrary intersection of $IF\theta CS$'s in X is an $IF\theta CS$.

(ii) For two IFS's U and V in X , if $U \leq V$, then $cl_{\theta}(U) \leq cl_{\theta}(V)$.

(*iii*) The IFS's 0 and 1 are IF θ -closed.

Proof. The straightforward proofs are omitted.

Remark 3.8. The set of all IF θ OS's in an IFTS (X, Ψ) induce an IFTS (X, Ψ_{θ}) (say) which is coarser than the IFTS (X, Ψ) .

Remark 3.9. For an IFS U in an IFTS X, $cl_{\theta}(U)$ is evidently IFCS but not necessarily IF θ CS as is seen in the following example.

Example 3.10. Let $X = \{a, b, c\}$ and $U = \langle x, (\frac{a}{0.5}, \frac{b}{0.6}, \frac{c}{0.2}), (\frac{a}{0.4}, \frac{b}{0.4}, \frac{c}{0.1}) \rangle$, $V = \langle x, (\frac{a}{0.4}, \frac{b}{0.3}, \frac{c}{0.2}), (\frac{a}{0.5}, \frac{b}{0.6}, \frac{c}{0.3}) \rangle$. Then the family $\Psi = \{0, 1, U, V\}$ of IFS's in X is an IFT on X.

Let $A = \langle x, (\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.0}), (\frac{a}{0.6}, \frac{b}{0.7}, \frac{c}{0.1}) \rangle$ be an IFS in X. Then an IFP $a(0.6, 0.3) \in cl_{\theta}(A)$ (because $a(0.6, 0.3)qU \leq U$, cl(U) = 1 qA), also $a(0.8, 0.1) \notin cl_{\theta}(A)$ (because a(0.8, 0.1)qV, $cl(V) = \overline{V}\widetilde{q}A$). But $a(0.8, 0.1) \in cl_{\theta}(a(0.6, 0.3))$

 $\leq cl_{\theta}(cl_{\theta}(A))$. Hence, $cl_{\theta}(A)$ is not IF θ CS.

Lemma 3.11. If U, V are IFOS's in an IFEDS X, then $cl(V)\tilde{q}U \Rightarrow cl(V)\tilde{q}cl_{\theta}(U)$.

Proof. Let $cl(V)\tilde{q}U \Rightarrow U \leq \overline{cl(V)} \Rightarrow cl(U) \leq \overline{cl(V)}$ since X is an IFEDS. Hence $cl(V)\tilde{q}U \Rightarrow cl(V)\tilde{q}cl(U) \Rightarrow cl(V)\tilde{q}cl_{\theta}(U)$, by Remark 3.3.

Theorem 3.12. If U is an IFOS in an IFEDS (X, Ψ) , then $cl_{\theta}(U)$ is an IF θ CS in X.

Proof. Let c(a, b) be an IFP in X and let $c(a, b) \notin cl_{\theta}(U)$. Then there is $V \in N_{\varepsilon}^{q}(c(a, b))$ such that $cl(V)\tilde{q}U$. By Lemma 3.11, $cl(V)\tilde{q}cl_{\theta}(U)$ and hence $c(a, b) > cl_{\theta}(U)$ implies $c(a, b) \notin cl_{\theta}(cl_{\theta}(U))$. Then $cl_{\theta}(cl_{\theta}(U)) \leq cl_{\theta}(U)$. But $cl_{\theta}(U) \leq cl_{\theta}(cl_{\theta}(U))$, then $cl_{\theta}(U) = cl_{\theta}(cl_{\theta}(U))$. Thus $cl_{\theta}(U)$ is an IF θ CS.

Theorem 3.13. In an IFEDS (X, Ψ) , every IFROS in X is an IF θ OS.

Proof. Let U be an IFROS in an IFEDS (X, Ψ) . Then U = int(cl(U)) = cl(U) = int(U). Since U is an IFCS, \overline{U} is an IFOS and by Theorem 3.6, $cl(\overline{U}) = cl_{\theta}(\overline{U})$. Now $\overline{cl(\overline{U})} = \overline{cl_{\theta}(\overline{U})}$, i.e. $int(U) = int_{\theta}(U)$ (by Proposition 2.8). Thus $U = int(U) = int_{\theta}(U)$, and hence U is an IF θ OS in (X, Ψ) .

Theorem 3.14. An IFS U in an IFTS X is IF θ O iff for each IFP c(a, b) in X with c(a, b)qU, U is an $\varepsilon \theta q - nbd$ of c(a, b).

Proof. Let U be an $IF\theta OS$ and c(a, b) be an IFP in X with c(a, b)qU. Then by Proposition 2.12, $c(a, b) \notin \overline{U}$. Since \overline{U} is an $IF\theta CS$, $c(a, b) \notin U = cl_{\theta}(U)$. Then there exists $\varepsilon q - nbd$ A of c(a, b) such that $cl(A)\overline{q}\overline{U}$. Hence U is an $\varepsilon \theta q - nbd$ of c(a, b).

Conversely, if $c(a,b) \notin \overline{U}$, then by by Proposition2.12, c(a,b)qU. Since U is an $\varepsilon \theta q - nbd$ of c(a,b), then there exists $\varepsilon q - nbd$ A of c(a,b) such that cl(A) $\tilde{q} \ \overline{U}$ and so $c(a,b) \notin cl_{\theta}(\overline{U})$. Hence \overline{U} is an IF θ CS and then U is an IF θ OS.

Theorem 3.15. For any IFS U in an IFTS (X, Ψ) , $cl_{\theta}(U) = \cap \{cl_{\theta}(A) : A \in \Psi \text{ and } U \leq A\}.$

Proof. Obviously that $cl_{\theta}(U) \leq \cap \{cl_{\theta}(A) : A \in \Psi \text{ and } U \leq A\}.$

Now, let $c(a, b) \in \cap \{cl_{\theta}(A) : A \in \Psi \text{ and } U \leq A\}$, but $c(a, b) \notin cl_{\theta}(U)$. Then there exists an $\varepsilon q - nbd \ G$ of c(a, b) such that $cl(G) \ \tilde{q} \ U$ and hence by Proposition 2.12, $U \leq \overline{cl(G)}$. Then $c(a, b) \in cl_{\theta}(\overline{cl(G)})$ and consequently, $cl(G)q\overline{cl(G)}$ which is not true. Hence the result.

Definition 3.16. An IFTS X is said to be intuitionistic fuzzy regular (IFRS, for short) iff for each IFP c(a, b) in X and each $\varepsilon q - nbd U$ of c(a, b), there exists $\varepsilon q - nbd V$ of c(a, b) such that $cl(V) \leq U$.

Theorem 3.17. An IFTS X is IFRS iff for any IFS U in X, $cl(U) = cl_{\theta}(U)$.

Proof. Let X be an IFRS. It is always true that $cl(U) \leq cl_{\theta}(U)$ for any IFS U. Now, let c(a, b) be an *IFP* in X with $c(a, b) \in cl_{\theta}(U)$ and let A be an $\varepsilon q - nbd$ of c(a, b). Then by IFRS X, there exists $\varepsilon q - nbd$ V of c(a, b) such that $cl(V) \leq A$. Now, $c(a, b) \in cl_{\theta}(U)$ implies cl(V)qU implies AqU implies $c(a, b) \in cl(U)$. Hence $cl_{\theta}(U) \leq cl(U)$. Thus $cl_{\theta}(U) = cl(U)$.

Conversely, let c(a, b) be an *IFP* in X and U an $\varepsilon q - nbd$ of c(a, b). Then $c(a, b) \notin \overline{U} = cl(\overline{U}) = cl_{\theta}(\overline{U})$. Thus there exists an $\varepsilon q - nbd$ V of c(a, b) such that $cl(V)\tilde{q}\overline{U}$ and then $cl(V) \leq U$. Hence X is IFRS.

Corollary 3.18 In an IFRS (X, Ψ) , an IFCS is an IF θ CS and hence for any IFS U in X, $cl_{\theta}(U)$ is an IF θ CS.

4. Characterizations for some types of functions in terms of $IF\theta$ closure

Definition 4.1. A function $f: (X, \Psi) \to (Y, \Phi)$ is said to be intuitionistic fuzzy strongly θ -continuous (*IFStr*- θ continuous, for short), if for each *IFP* c(a,b) in X and $V \in N^q_{\varepsilon}$ (f(c(a,b))), there exists $U \in N^q_{\varepsilon}(c(a,b))$ such that $f(cl(U)) \leq V$. **Theorem 4.2.** For a function $f : (X, \Psi) \to (Y, \Phi)$, the following are equivalent:

(i) f is $IFStr - \theta$ continuous. (ii) $f(cl_{\theta}(U)) \leq cl(f(U))$ for each IFS U in X. (iii) $cl_{\theta}(f^{-1}(V)) \leq f^{-1}(cl(V))$ for each IFS V in Y. (iv) $f^{-1}(V)$ is an $IF\theta CS$ in X for each IFCS V in Y. (v) $f^{-1}(V)$ is an $IF\theta OS$ in X for each IFOS V in Y.

Proof. $(i) \Longrightarrow (ii)$: Let $c(a, b) \in cl_{\theta}(U)$ and $B \in N_{\varepsilon}^{q}(f(c(a, b)))$. By (i), there exists $A \in N_{\varepsilon}^{q}(c(a, b))$ such that $f(cl(A)) \leq B$. Now, using Definition 3.1 and Proposition 2.14, we have $c(a, b) \in cl_{\theta}(U) \Rightarrow cl(A)qU \Rightarrow f(cl(A))qf(U) \Rightarrow$ $Bqf(U) \Rightarrow f(c(a, b)) \in cl(f(U)) \Rightarrow c(a, b) \in f^{-1}(cl(f(U)))$. Hence $cl_{\theta}(U) \leq$ $f^{-1}(cl(f(U)))$ and so $f(cl_{\theta}(U) \leq cl(f(U))$.

 $(ii) \Longrightarrow (iii)$: Obvious by putting $U = f^{-1}(V)$.

 $(iii) \Longrightarrow (iv)$: Let V be an *IFCS* in Y. By (iii), we have $cl_{\theta}(f^{-1}(V)) \leq f^{-1}(cl(V)) = f^{-1}(V)$ which implies that $f^{-1}(V) = cl_{\theta}(V)$. Hence $f^{-1}(V)$ is an IF θ CS in X.

 $(iv) \Longrightarrow (v)$: By taking the complement.

 $(v) \Longrightarrow (i)$: Let c(a, b) be an IFP and $B \in N_{\varepsilon}^{e}(f(c(a, b)))$. By $(v), f^{-1}(B)$ is an $IF\theta OS$ in X. Now, using Proposition 2.14, we have $f(c(a, b))qB \Rightarrow c(a, b)qf^{-1}(B) \Rightarrow c(a, b) \notin \overline{f^{-1}(B)}$. Hence $\overline{f^{-1}(B)}$ is an IF θCS such that $c(a, b) \notin \overline{f^{-1}(B)}$. Then there exists $A \in N_{\varepsilon}^{q}(c(a, b))$ such that $c(A) \ \tilde{q}f^{-1}(B)$ which implies that $f(cl(A)) \leq B$. Hence f is an $IFStr - \theta$ continuous.

Definition 4.3. A function $f: (X, \Psi) \to (Y, \Phi)$ is said to be intuitionistic fuzzy weakly continuous (IFw continuous, for short), iff for each *IFOS* V in Y, $f^{-1}(V) \leq int(f^{-1}(cl(V)))$.

Lemma 4.4. Let $f: (X, \Psi) \to (Y, \Phi)$ be a function. Then for an IFS *B* in $Y, f(\overline{f^{-1}(B)}) \leq \overline{B}$, where equality holds if f is onto.

Proof. Let $B = \{\langle y, \mu_B(y), \gamma_B(y) \rangle : y \in Y\}$ be an IFS in Y. From Definition 2.4, if $f^{-1}(y) = 0$, then $(f(\overline{f^{-1}(B)}))(y) = 0 \leq \overline{B}(y)$. But if $f^{-1}(y) \neq 0$ and since $f^{-1}(B) = \langle x, f^{-1}(\mu_B)(x), f^{-1}(\gamma_B)(x) \rangle$ implies $\overline{f^{-1}(B)} = \langle x, f^{-1}(\gamma_B)(x) \rangle$, $f^{-1}(\mu_B)(x) \rangle$. Then, we have:

$$f(\overline{f^{-1}(B)})(y) = \langle y, f(f^{-1}(\gamma_B))(y), (1 - f(1 - f^{-1}(\mu_B)))(y) \rangle$$

where

$$f(f^{-1}(\gamma_B))(y) = \sup_{x \in f^{-1}(y)} f^{-1}(\gamma_B)(x) = \sup_{x \in f^{-1}(y)} \gamma_B f(x) = \gamma_B(y)$$

and

$$(1 - f(1 - f^{-1}(\mu_B)))(y) = \inf_{x \in f^{-1}(y)} f^{-1}(\mu_B)(y) = \inf_{x \in f^{-1}(y)} \mu_B f(x) = \mu_B(y)$$

i.e.

$$f(\overline{f^{-1}(B)})(y) = \langle y, \gamma_B(y), \ \mu_B(y) \rangle = \overline{B}(y).$$

If f is onto, then for each $y \in Y$, $f^{-1}(y) \neq 0$ and hence we have $f(\overline{f^{-1}(B)}) = \overline{B}$.

Lemma 4.5. Let U be an IFS and c(a, b) be IFP in an IFTS (X, Ψ) . Then for a function $f: (X, \Psi) \to (Y, \Phi)$ if $c(a, b) \in U$ then $f(c(a, b)) \in f(U)$.

Proof. Let $c(a,b) \in U = \langle x, \mu_U, \gamma_U \rangle$. Using Definitions 2.10 and 2.13, we have $a < \mu_U(c)$ and $b > \gamma_U(c)$

 $\begin{array}{ll} \Rightarrow f(c)_{a}(y) < f(\mu_{U}(U))(y) \quad \text{and} \quad 1-b < 1- \ \gamma_{U}(c) \\ \Rightarrow f(c)_{a}(y) < f(\mu_{U}(U))(y) \quad \text{and} \quad f(c)_{1-b}(y) < f(1- \ \gamma_{U}(c))(y) \\ \Rightarrow f(c)_{a}(y) < f(\mu_{U}(U))(y) \quad \text{and} \quad (1-f(c)_{1-b})(y) > (1-f(1- \ \gamma_{U}(c)))(y) \\ \Rightarrow f(c(a,b)) \in f(U). \end{array}$

Theorem 4.6. For a function $f : (X, \Psi) \to (Y, \Phi)$, the following are equivalent:

(i) f is an IFw continuous. (ii) $f(cl(U)) \leq cl_{\theta}(f(U))$ for each *IFS* U in X. (iii) $cl(f^{-1}(V)) \leq f^{-1}(cl_{\theta}(V))$ for each *IFS* V in Y. (iv) $cl(f^{-1}(V)) \leq f^{-1}(cl(V))$ for each *IFOS* V in Y.

Proof. $(i) \Rightarrow (ii)$: Let f be an IFw continuous and U any IFS in X. Suppose $c(a,b) \in cl(U)$, then by Lemma 4.5 $f(c(a,b)) \in f(cl(U))$. It is enough to show that $f(c(a,b)) \in cl_{\theta}(f(U))$. Let $G \in N_{\varepsilon}^{q}(f(c(a,b)))$. Then by Proposition 2.14, we have $f^{-1}(G)qc(a,b)$. By IFw continuous of f, $f^{-1}(G) \leq int(f^{-1}(cl(G)))$ and $int(f^{-1}(cl(G))) \in N_{\varepsilon}^{q}(c(a,b))$. Since $c(a,b) \in cl(U)$, we have $int(f^{-1}(cl(G))) qU$ and hence cl(G)qf(U). Thus $f(c(a,b)) \in cl_{\theta}(f(U))$.

 $(ii) \Rightarrow (iii)$: Let V be an IFS in Y, then $f^{-1}(V)$ is an IFS in X. By (ii) we have $f(cl(f^{-1}(V))) \leq cl_{\theta}(f(f^{-1}(V))) \leq cl_{\theta}(V)$. Hence $cl(f^{-1}(V)) \leq f^{-1}(cl_{\theta}(V))$.

 $(iii) \Rightarrow (iv)$: Let V be an IFOS in Y. By Theorem 3.6, $cl(V) = cl_{\theta}(V)$ and by (iii), we have $cl(f^{-1}(V)) \leq f^{-1}(cl(V))$.

 $(iv) \Rightarrow (i)$: Let V be an IFOS in Y, and $cl(f^{-1}(V)) \leq f^{-1}(cl(V))$. Then from $f^{-1}(V) \leq cl(f^{-1}(V))$ and the fact that V be an IFOS it follows that $f^{-1}(V) = int(f^{-1}(V)) \leq int(cl(f^{-1}(V))) \leq int(f^{-1}(cl(V))).$ Hence f is an IFw continuous. \blacksquare

Theorem 4.7. Let $f: (X, \Psi) \to (Y, \Phi)$ be an IFw continuous function, then:

(i) $f^{-1}(V)$ is an *IFCS* in X, for each *IF* θ *CS* V in Y. (ii) $f^{-1}(V)$ is an *IFOS* in X, for each *IF* θ *OS* V in Y.

Proof. (i) Let V be an IF θ CS in Y, then $V = cl_{\theta}(V)$. By Theorem 4.6(*iii*), we have $cl(f^{-1}(V)) \leq f^{-1}(cl_{\theta}(V)) = f^{-1}(V)$. Hence $f^{-1}(V)$ is an IFCS in X.

 $(i) \Leftrightarrow (ii)$: Obvious.

Definition 4.8. A function $f : (X, \Psi) \to (Y, \Phi)$ is called intuitionistic fuzzy θ -continuous (*IF* θ - continuous, for short), iff for each *IFP* c(a, b) in X and each $V \in N_{\varepsilon}^q$ (f(c(a, b))), there exists $U \in N_{\varepsilon}^q(c(a, b))$ such that $f(cl(U)) \leq cl(V)$.

Theorem 4.9. For a function $f : (X, \Psi) \to (Y, \Phi)$, the following are equivalent:

(i) f is an $IF\theta$ -continuous.

(*ii*) $f(cl_{\theta}(U)) \leq cl_{\theta}(f(U))$, for each IFS U in X.

(*iii*) $cl_{\theta}(f^{-1}(V)) \leq f^{-1}(cl_{\theta}(V))$, for each IFS V in Y.

 $(iv) \ cl_{\theta}(f^{-1}(V)) \leq f^{-1}(cl(V)), \text{ for each IFOS } V \text{ in } Y.$

Proof. $(i) \implies (ii)$: Let $c(a,b) \in cl_{\theta}(U)$ and $B \in N^q_{\varepsilon}(f(c(a,b)))$. By (i), there is $A \in N^q_{\varepsilon}(c(a,b))$ such that $f(cl(A)) \leq cl(B)$. Now, if $c(a,b) \in cl_{\theta}(U)$ then cl(A)qU so that f(cl(A))qf(U) and hence cl(B)qf(U). Therefore $f(c(a,b)) \in cl_{\theta}(f(U))$ and it follows that $c(a,b) \in f^{-1}(cl_{\theta}(f(U)))$. Thus $cl_{\theta}(U) \leq f^{-1}(cl_{\theta}(f(U)))$ and hence $f(cl_{\theta}(U) \leq cl_{\theta}(f(U)))$.

 $(ii) \Rightarrow (iii)$: By (ii), if $f(cl_{\theta}(f^{-1}(V))) \leq cl_{\theta}(f(f^{-1}(V))) \leq cl_{\theta}(V)$, then it follows that $cl_{\theta}(f^{-1}(V)) \leq f^{-1}(cl_{\theta}(V))$.

 $(iii) \Rightarrow (iv)$: Clear by Theorem 3.6.

 $(iv) \Rightarrow (i)$: Let c(a,b) be an IFP in X and $V \in N_{\varepsilon}^{q}(f(c(a,b)))$. Then $f(c(a,b)) \notin cl(\overline{cl(V)})$, and hence $c(a,b) \notin f^{-1}(cl(\overline{cl(V)}))$. By (iv), we have $c(a,b) \notin cl_{\theta}(f^{-1}(\overline{cl(V)}))$ and hence there exists $U \in N_{\varepsilon}^{q}(c(a,b))$ such that cl(U) $\tilde{q} f^{-1}(cl(V)) = f^{-1}(cl(V))$ which implies $f(cl(U)) \leq cl(V)$. Thus f is an $IF\theta$ -continuous.

Theorem 4.10. Let $f: (X, \Psi) \to (Y, \Phi)$ be a function. If (X, Ψ) is an IFEDS, then the following are equivalent:

- (i) f is an $IF\theta$ continuous.
- (*ii*) $f^{-1}(V)$ is an *IF* θ *CS* in *X* for each *IF* θ *CS V* in *Y*. (*iii*) $f^{-1}(V)$ is an *IF* θ *OS* in *X* for each *IF* θ *OS V* in *Y*.

Proof. $(i) \implies (ii)$: Let V be an $IF\theta CS$ in Y. Since f is an $IF\theta$ continuous, then by (iii) in Theorem 4.9 we have $cl_{\theta}(f^{-1}(V)) \leq f^{-1}(cl_{\theta}(V)) = f^{-1}(V)$ which implies that $f^{-1}(V) = cl_{\theta}(f^{-1}(V))$. Hence $f^{-1}(V)$ is an $IF\theta CS$ in X.

 $(ii) \Leftrightarrow (iii)$: Obvious.

 $(ii) \Longrightarrow (i)$: Let V be an *IFOS* in Y. Then by Theorem 3.6 $cl(V) = cl_{\theta}(V)$ which is an *IF\thetaCS* by Theorem 3.12. From (ii), $f^{-1}(cl(V)) = f^{-1}(cl_{\theta}(V))$ is an *IF\thetaCS* in X. Since $f^{-1}(V) \leq f^{-1}(cl(V))$, then $cl_{\theta}(f^{-1}(V)) \leq f^{-1}(cl(V))$. Hence f is an *IF\theta*-continuous.

Definition 4.11. A function $f: (X, \Psi) \to (Y, \Phi)$ is said to be intuitionistic fuzzy $\lambda \theta$ -continuous $(IF\lambda\theta$ - continuous, for short), if for each IFP c(a, b) in X and $V \in N_{\varepsilon}^{\lambda q}$ (f(c(a, b))), there exists $U \in N_{\varepsilon}^{\theta q}(c(a, b))$ such that $f(U) \leq V$.

Definition 4.12. Let U be an IFS of an IFTS X Then: (i) The λ -closure of U is denoted and defined by:

 $cl_{\lambda}(U) = \wedge \{K : K \text{ is } IF\lambda CS \text{ in } X \text{ and } U \leq K \}.$

(*iii*) The λ -interior of U is denoted and defined by:

 $int_{\lambda}(U) = \lor \{G : G \text{ is } IF\lambda OS \text{ in } X \text{ and } G \leq U \}.$

Theorem 4.13. Let $f: (X, \Psi) \to (Y, \Phi)$ be a function. then the following are equivalent:

(i) f is an $IF\lambda\theta$ -continuous.

(*ii*) $f^{-1}(V)$ is an $IF\theta OS$ in X, for each $IF\lambda OS V$ in Y.

(*iii*) $f^{-1}(H)$ is an $IF\theta CS$ in X, for each $IF\lambda CS$ H in Y.

 $(iv) \ cl_{\theta}(f^{-1}(V)) \leq f^{-1}(cl_{\lambda}(V)), \text{ for each } IFS \ V \text{ in } Y.$

(v) $f^{-1}(int_{\lambda}(G)) \leq int_{\theta}(f^{-1}(G))$, for each *IFS* G in Y.

Proof. (i) \implies (ii) Let V be an $IF\lambda OS$ in Y and c(a, b) be IFP in X such that $c(a, b)qf^{-1}(V)$. Since f is $IF\lambda\theta$ continuous, there exists an $U \in N_{\varepsilon}^{\theta q}(c(a, b))$ such that $f(U) \leq V$. Then $c(a, b)qU \leq f^{-1}f(U) \leq f^{-1}(V)$ which shows that $f^{-1}(V) \in N_{\varepsilon}^{\theta q}(c(a, b))$ and then is an $IF\theta OS$ of X.

 $(ii) \Longrightarrow (iii)$ by taking the complement.

 $(iii) \implies (iv)$ Let V be an IFS in Y Since $V \leq cl_{\lambda}(V)$, then $f^{-1}(V) \leq f^{-1}(cl_{\lambda}(V))$. Using (iii), $f^{-1}(cl_{\lambda}(V))$ is an IF θ CS in X. Thus $cl_{\theta}(f^{-1}(V)) \leq cl_{\theta}(f^{-1}(cl_{\lambda}(V))) = f^{-1}(cl_{\lambda}(V))$.

$$\begin{split} (iv) &\Longrightarrow (v) \; \underset{cl_{\theta}(f^{-1}(V)) \leq f^{-1}(cl_{\lambda}(V)), \text{ then } \\ f^{-1}(cl_{\lambda}(V)) \geq f^{-1}(cl_{\lambda}(V)). \end{split} \\ \text{Hence} \quad int_{\theta}(\overline{f^{-1}(V)}) \geq f^{-1}(\overline{cl_{\lambda}(V)}). \\ \text{Thus} \quad f^{-1}(int_{\lambda}(\overline{V})) \leq int_{\theta}(f^{-1}(\overline{V})). \\ \text{Put} \; G = \overline{V} \; , \; \text{then } \; f^{-1}(int_{\lambda}(G)) \leq int_{\theta}(f^{-1}(G)) \end{split}$$

 $(v) \Longrightarrow (i)$ Let V be an $IF\lambda OS$ in Y. Then $int_{\lambda}(V) = V$. Using (v), $f^{-1}(V) \leq int_{\theta}(f^{-1}(V))$. Hence $f^{-1}(V) = int_{\theta}(f^{-1}(V))$ i.e. $f^{-1}(V)$ is an $IF\theta OS$ in X. Let c(a,b) be any IFP in $f^{-1}(V)$. Then $c(a,b)qf^{-1}(V)$, hence $f(c(a,b))qff^{-1}(V) \leq V$. Thus for any IFP c(a,b) and each $V \in N_{\varepsilon}^{\lambda q}(f(c(a,b)))$, there exists $U = f^{-1}(V) \in N_{\varepsilon}^{\theta q}(c(a,b))$ such that $f(U) \leq V$. Thus f is $IF\lambda\theta$ continuous function.

Theorem 4.14. Let f be a bijective function from an $IFTS(X, \Psi)$ into an $IFTS(Y, \Phi)$. Then f is an $IF\lambda\theta$ continuous iff $int_{\lambda}(f(U)) \leq f(int_{\theta}(U))$, for each IFS U of X.

Proof. (\Longrightarrow): Let f be an $IF\lambda\theta$ continuous function and U be an IFSin X. Hence $f^{-1}(int_{\lambda}(f(U)))$ is an $IF\theta OS$ in X. Since f is injective and using Theorem 4.13(v), we have: $f^{-1}(int_{\lambda}(f(U))) \leq int_{\theta}(f^{-1}(f(U))) = int_{\theta}(U)$. Since f is surjective, $ff^{-1}(int_{\lambda}(f(U))) \leq f(int_{\theta}(U))$.i.e. $int_{\lambda}(f(U)) \leq f(int_{\theta}(U))$.

(⇐): Let V be an $IF\lambda OS$ in Y. Then $V = int_{\lambda}(V)$. Using the hypothesis, we have: $V = int_{\lambda}(V) = int_{\lambda}(ff^{-1}(V)) \leq f(int_{\theta}(f^{-1}(V)))$, which implies that $f^{-1}(V) \leq f^{-1}f(int_{\theta}(f^{-1}(V)))$. From the fact that f is injective, we have: $f^{-1}(V) \leq int_{\theta}(f^{-1}(V))$. Hence $f^{-1}(V) = int_{\theta}(f^{-1}(V))$ i.e. $f^{-1}(V)$ is an $IF\theta OS$ in X. Thus f is $IF\lambda\theta$ continuous. \blacksquare

Theorem 4.15. Let $f: (X, \Psi) \to (Y, \Phi)$ be a bijective function. Then f is an $IF\lambda\theta$ continuous iff $f(cl_{\theta}(U)) \leq cl_{\lambda}(f(U))$, for each $IFS \ U$ of X.

Proof. Similar to the proof of Theorem 4.14. ■

Remark 4.16. From the above definitions, one can illustrate the following implications:

Example 4.17. Let $X = \{1, 2, 3\}, Y = \{a, b, c\}$ and $A = \langle x, (\frac{1}{0.4}, \frac{2}{0.5}, \frac{3}{0.5}), (\frac{1}{0.3}, \frac{2}{0.4}, \frac{3}{0.4}) \rangle, B = \langle x, (\frac{1}{0.5}, \frac{2}{0.5}, \frac{3}{0.5}), (\frac{1}{0.2}, \frac{2}{0.3}, \frac{3}{0.1}) \rangle,$ $U = \langle y, (\frac{a}{0.5}, \frac{b}{0.4}, \frac{c}{0.5}), (\frac{a}{0.4}, \frac{b}{0.4}, \frac{c}{0.3}) \rangle, V = \langle y, (\frac{a}{0.4}, \frac{b}{0.2}, \frac{c}{0.4}), (\frac{a}{0.5}, \frac{b}{0.4}, \frac{c}{0.5}) \rangle.$ Then the family $\Psi = \{0, 1, A, B\}$ of IFS's in X is an IFT on X and the family

Then the family $\Psi = \{0, 1, 1, N\}$ of H S 5 in X is an H T on X and the family $\Phi = \{0, 1, U, V\}$ of IFS's in Y is an IFT on Y. Let $f : (X, \Psi) \to (Y, \Phi)$ be a function defined as follows: f(a) = 2, f(b) = 3 and f(c) = 1. Then $f^{-1}(U) \subseteq int(f^{-1}(cl(U))) = 1$ and $f^{-1}(V) \subseteq int(f^{-1}(cl(V))) = A$. Thus f is an IFw continuous but not IF-continuous.

Remark 4.18. From the above example, one can show that IFw continuous does not implies each of the concepts $IF\lambda\theta$ -continuous, IFstr θ -continuous and $IF\theta$ -continuous.

Acknowledgment. The authors remain thankful to the referee for his kind comments leading to the revision of the paper to the present form.

References

 Atanassov K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1986), 87-96.

[2] Coker D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88(1997),81-89.

[3] Coker D. and Demirci M., An introduction to intuitionistic fuzzy topological spaces in Sostak's sense, BUSEFAL, Vol. 67, 1996, 67-76.

[4] Coker D. and Demirci M., On intuitionistic fuzzy points, Notes on Intuitionistic Fuzzy Sets 1(1995), 79-84.

[5] Gurcay H., Coker D. and Es A.H., On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math.5(2) (1997), 365-378.

[6] Hanafy I. M., On fuzzy γ -open sets and fuzzy γ -continuity in intuitionistic fuzzy topological spaces, J.Fuzzy Math. Vol.10 No.1(2002), 9-19.

[7] Hanafy I. M. and Al-Saadi H. S., Strong forms of continuity in fuzzy topological spaces, Kyungpook Math. J, 41(2001), 137-147.

[8] Mukherjee M. N. and Ghosh B., Some stronger forms of fuzzy continuous mappings on fuzzy topological spaces, Fuzzy Sets and Systems 38(1990), 375-387.

[9] Mukherjee M. N.and Sinha S. P., On some near of fuzzy continuous functions between fuzzy topological spaces, Fuzzy Sets and Systems 34(1990), 245-254.
[10] Zadeh L. A., Fuzzy sets, Inform. and Control 8(1965), 338-353.

I. M. HANAFY, A. M. ABD EL-AZIZ AND T. M. SALMAN DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, SUEZ CANAL UNIVERSITY, EL-ARISH, EGYPT. e-mail: ihanafy@hotmail.com, tarek00_salman@hotmail.com