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Ramsey theory for structures:

Nešetřil’s result on finite metric spaces
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1 Introduction

The main objective of these notes is to give a mostly self contained presentation
of J. Nešetřil’s recent proof of the Ramsey property for the class of ordered
finite metric spaces [6]. This result was motivated by a question posed in [3],
where the connections between Ramsey theory and the dynamics of groups of
automorphisms are explored (see also [5]. These notes were written for a course
on Ramsey Theory given by the author in Caracas during the first term of 2005.

A class of finite ordered structures is a Ramsey class if given structures
A,B in the class, and a positive integer t, there is another structure C in the
class such that for every partition of the set of substructures of C which are
isomorphic to A into t pieces, there is a substructure of C isomorphic to B
which is homogeneous, in the sense that all of its substructures isomorphic to
A are in the same piece. Often, a partition into t pieces is seen as a t-coloring,
and a homogeneous set for the partition is then said to be monochromatic.

Finite ordered metric spaces can be seen as labelled binary relational struc-
tures of a particular kind. For such a structure the triangular inequality can be
obtained using the notion of l-metric system (see section 3); we will see that a
finite binary relational structure of the appropriate kind is a metric space if it
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is l-metric for a sufficiently large number l. The Ramsey property is proved by
induction on l for the class of l- metric systems (Main Lemma). The first step
of the induction (the case l = 1) follows from the fact that the class of finite
ordered relational structures has the Ramsey property (Theorem 4 of section
2), which is a result of [8].

Two of the most emblematic results of Ramsey Theory are Ramsey’s theorem
about partitions, or colorings, of the k element subsets of a finite set, and
the Hales -Jewett theorem about colorings of the nth power of a finite set.
Ramsey’s theorem can be considered the starting point of the theory, and has
been extended in many directions. The Hales-Jewett theorem is a powerful
result which contains the combinatorial essence of the famous result of van
der Waerden about arithmetic progressions. Both results will be used in the
following sections.

We introduce some notation in order to state these two theorems. Every
natural number n is identified with the set of its predecessors {0, 1, . . . , n− 1}.
Given a set A and k ∈ N, A[k] denotes the set {s ⊆ A : |s| = k}. Given positive
integers n, m, k, t, the partition symbol

n → (m)k
t

is used to express that for every coloring c : n[k] → t there is H ⊆ n with
|H| = m such that c is constant on H [k].

Theorem 1 (Ramsey’s Theorem) Given positive integers k, r and m there is
a positive integer n such that

n → (m)r
k.

Before stating the Hales-Jewett theorem we need some definitions. Let k ∈ N
and let Λk = {1, 2, . . . , k}. Given n ∈ N, Λn

k is the set of n-tuples of elements
of Λk, or words of length n in the alphabet Λk.

Definition 2 A combinatorial line in Λn
k is a set {x1, x2, . . . , xk} of elements

of Λn
k such that for each coordinate j, 1 ≤ j ≤ n, either

x1(j) = x2(j) = · · · = xk(j)

or
xi(j) = i for every i = 1, . . . , k,

and the second possibility occurs at least once.

Another way to define combinatorial lines is by variable words. A variable
word is a word in the alphabet {1, . . . , k, x} where x appears at least once.
The symbol x acts as a variable. Given a variable word w(x), we write w(i)
to denote the word (in the alphabet Λk) resulting from substituting i for x in
w(x). If w(x) is a variable word, the combinatorial line associated to w(x) is
{w(1), w(2), . . . , w(k)}.
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Theorem 3 (Hales-Jewett)
Given positive integers k, r ∈ N , there is a number n = n(k, r) such that for

every r-coloring Λn
k there is a monochromátic combinatorial line.

The proofs of these two theorems can be found in [2, 4].

2 Ramsey properties for relational structures.

We consider finite relational structures defined in the following way. A type is
a sequence ∆ = (δi : i ∈ I) of natural numbers, where I is a finite set. Given a
type ∆, a structure of type ∆ is a pair (X,M) such that

(i) X is a linearly ordered set, and

(ii) M = (Mi : i ∈ I), and Mi ⊆ X [δi]

The linear order of X is called the standard order.
Rel(∆) denotes the class of finite structures of type ∆. Note that these

relational structures are labelled hypergraphs.
Given structures A = (X,M) and B = (Y,N ) of type ∆, a function f :

X → Y is an embedding if

(i) f is one-one and monotone with respect to the standard linear orderings
of X and Y , and

(ii) for every i ∈ I and every subset M of X [δi], M ∈ Mi if and only if
{f(x) : x ∈ M} ∈ Ni.

We write A ≤ B to express that there is an embedding from A to B, and A ∼= B
when A and B are isomorphic.

Given structures A,B,
(
B
A

)
denotes the set of all substructures of B which

are isomorphic to A.
If A ≤ B ≤ C, the partition symbol

C → (B)A
t

expresses that for every coloring c :
(
C
A

)
→ t, there is a B′ ∈

(
C
B

)
such that the

collection
(
B′

A

)
is monochromatic.

Theorem 4 For any given type ∆, the class Rel(∆) is a Ramsey class. In other
words, given structures A,B in Rel(∆) with A ≤ B, and a positive integer t,
there is a structure C in Rel(∆) such that B ≤ C and C → (B)A

t .

To prove this theorem, we define partite systems and use the amalgamation
technique, following [4]. This is done in the next two sections.
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2.1 Partite systems.

Definition 5 Given a type ∆ = (δi : i ∈ I) and a ∈ N, an a-partite system of
type ∆ is a pair ((Xj)a

j=1,M) where

(a) X =
⋃a

i=1 Xi is a linearly ordered set satisfying X1 < X2 < · · · < Xa,
i.e., for every i, j ∈ {1, . . . , a} with i < j, if x ∈ Xi and j ∈ Xj, then
x < y.

(b) M = (Mi : i ∈ I), and Mi ⊆ X [δi]

(c) |M ∩Xj | ≤ 1 for every M ∈Mi, j = 1, . . . , a, i ∈ I.

X1 X2 Xa

p p p p p p p-6 6 6

Fig. 1 Partite system

Given a subset Y ⊆ X, we denote by tr(Y ) the trace of Y , i.e. the set
{j : Xj ∩ Y 6= ∅}.

A system A is transversal if |Xj | = 1 for every j = 1, . . . , a.
The system A is a subsystem of B = ((Yk)b

k=1,N ) if there exists a monotone
injection h : {1, . . . , a} → {1, . . . , b} such that Xj ⊆ Yh(j) for every j = 1, . . . , a
and Mi = Ni ∩X [δi] for i ∈ I. An isomorphism is an order preserving isomor-
phism of structures which also preserves parts.

Lemma 6 (The Partite Lemma) Let A and B be a-partite systems of type ∆, A
transversal, and let t be a positive integer, then there exists an a-partite system
C of type ∆ such that

C → (B)A
t .

Proof. Set A = ((Xj)a
j=1,M) and B = ((Yj)a

j=1,N ). Since A is transversal,
we may assume without loss of generality that

⋃
i∈I Mi is the set of all subsets

of X. We also can assume that every vertex y ∈ Y belongs to a copy of A. This
is so because otherwise we can work with B∗, the subsystem of B induced by(
B
A

)
, which satisfies this property, and if C∗is such that C∗ → (B∗)A

t , then we
can obtain C such that C → (B)A

t enlarging each copy of B∗ in C∗ to a copy
of B.

We fix a sufficiently large positive integer N , and define an a- partite system
C = ((Zj)a

j=1,O), O = (Oi : i ∈ I) where Zj = Yj × · · · × Yj (N times). Thus,
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every element of Zj has the form (xl : l = 1, . . . , N) with each xl ∈ Yj . We will
say more about the number N later on.

Set Z =
⋃a

j=1 Zj . For each l = 1, . . . , N , the projection πl : Z → Y is
defined by πl(xk : k = 1, . . . , N) = xl. For every l, πl maps Zl into Yl.

We now define O = (Oi : i ∈ I). Put first Ni = N ′
i ∪ N ′′

i , where N ′
i is the

set of edges of Ni which belong to a copy of A in B, and N ′′
i = Ni \ N ′

i .
We put

{(xk
1 , . . . xk

N ) : k = 1, . . . , ni} ∈ Oi

if tr({xk
j : k = 1, . . . , ni}) = tr({xk

j′ : k = 1, . . . , ni}) for all j, j′ ≤ N , and one
of the following possibilities occur:

1. {xk
j : k = 1, . . . , ni} ∈ N ′

i for every j = 1, . . . , N ,

2. there exists a non-empty set Γ ⊆ {1, . . . , N} such that

{xk
j : k = 1, . . . , ni} = {xk

j′ : k = 1, . . . , ni} ∈ N ′′
i for all j, j′ ∈ Γ, and

{xk
j : k = 1, . . . , ni} ∈ N ′

m for all j /∈ Γ
In general, m 6= i, but m is uniquely determined by tr(xk

j : k = 1, . . . , ni).
We now prove that C → (B)A

t provided N is large enough. This will follow
from the two facts stated below.

Fact 1. A′ ∈
(
C
A

)
if and only if πl(A′) ∈

(
B
A

)
for every l = 1, . . . , N . This

is an immediate consequence of the definition of O. If πl(A′) ∈
(
B
A

)
for every

l = 1, . . . , N , then clearly A′ ∈
(
C
A

)
. Conversely, let A′ = {(xk

1 , . . . , xk
N ) : k =

1, . . . , a} be a substructure of C which forms a copy of A, and suppose that
{(xk

1 , . . . , xk
N ) : k = km1 , . . . , kmni

} ∈ Oi, then for every j = 1, . . . , N , the
projection {xk

j : k = km1 , . . . , kmni
} ∈ Ni. This is so because by the definition

of Oi, this projection is always in Ni: if the second case of the definition occurs,
then either {xk

j : k = km1 , . . . , kmni
} belongs to N ′′

i and thus to Ni, or to N ′
m

for some m, but since this edge forms part of a copy of A (because it is in N ′
m),

it is also in Ni. Note that an edge of A′ in Oi must come then from the first
clause of the definition of Oi.

Let
(
B
A

)
= {A1, . . . , Ar}, and put R = {1, . . . , r}. Given α = (α1, . . . , αN ) ∈

RN , denote by V (α) the set of all the vertices x ∈ Z which satisfy πj(x) ∈ Aαj .
If L is a combinatorial line in RN , set V (L) =

⋃
α∈L V (α). By Fact 1, the set(

C
A

)
is in 1− 1 correspondence with RN .
Fact 2. Let L be a combinatorial line of RN . Then, V (L) induces a copy

of B in C.
Clear from the definition of C, since B is the union of the r copies of A it

contains. Notice that the second option in the definition of Oi is important to
obtain a copy of B in C from the union of all these copies of A; notice also that
our assumption that every subset of X is an edge of A is used here.
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Now, by the Hales-Jewett Theorem, if N was chosen large enough, for every
partition of RN into t classes, there is a combinatorial line contained in one of
the classes. This implies C → (B)A

t . In fact, if
(
C
A

)
= A1∪· · ·∪At is a partition,

it induces a partition RN = A′
1 ∪ · · · ∪ A′

t by α ∈ A′
i if V (α) induces a copy of

A which is in Ai. By the Hales-Jewett Theorem, there is a monochromatic line
L which, by Fact 2, induces a B′′ ∈

(
C
B

)
, such that

(
B′′

A

)
is contained in a single

class Ai. �

2.2 The partite construction.

To prove Theorem 4, we use an amalgamation technique called the partite
construction first used by Nešetřil and R ödl (see [8] , [4]).

Proof of Theorem 4. Let t, and A,B be given as in the statement of Theorem
4. We consider A as a transversal a-partite system and B as a transversal b-
partite system. Put B = ((y1, . . . , yb),N ) Let p be the minimal n such that
n → (b)a

t , and let q =
(

p
a

)
, and put

({1,...,p}
{1,...,a}

)
= {M1, . . . ,Mq}.

We will define a sequence P 0, P 1, . . . , P q of “pictures”, the last of which,
P q, will be the desired system C.

Let P 0 = ((X0
i )p

i=1,O) be a p-partite system such that for each choice of b
parts of P 0, X0

i1
, . . . , X0

ib
, the subsystem of P 0 induced by them contains a copy

of B. This can be obtained taking a disjoint union of copies of B.
If the picture P k = ((Xk

i )p
i=1,Ok) has been defined, consider Mk+1 and the

a-partite system Dk+1 induced in P k by the parts Xk
i for which i belongs to

Mk+1. By the Partite Lemma 6, there is an a-partite system Ek+1 such that

Ek+1 → (Dk+1)A
t .

Extend each copy of Dk+1 in Ek+1 to a copy of P k in such a way that the
distinct copies of P k intersect only in vertices of Ek+1. The resulting a-partite
system is P k+1. Finally C = P q. We claim that C has the desired properties.

By a backward induction we verify that

C → (B)A
t .

In the inductive step from k +1 to k, by the use of the partite lemma in the
construction of P k+1, we can find a copy of P k in P k+1 in which all copies of
A with trace Mk have the same color.

We end up with a copy P of P 0 such that the color of a copy of A in P
depends only on its trace. This induces a t-coloring of p[a], the collection of
a-element subsets of p: the color of s is defined as the color of any copy of A
whose trace is s. Since p → (b)a

t , there is a monochromatic subset of p of size b.
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By construction, the subsystem of P0 induced by any b elements of p contains
a copy of B, and therefore there is a monochromatic copy of B in P . �

Given a type ∆, if for every pair of structures A,B of type ∆ such that B
has substructures isomorphic to A, there is a structure C of type ∆ such that
C → (B)A

2 , then for every positive integer r, and every pair A,B of structures
with the same properties as above, there exists C such that C → (B)A

r .

3 Finite metric spaces.

In this section we present a proof due to J. Nešetřil of the Ramsey property for
the class of finite ordered metric spaces. This result answers a question of [3],
and gives information about the group of automorphisms of the Urysohn space.

A finite metric space can be viewed as a labelled complete finite graph: a
pair of elements forms an edge labelled by the distance between them. These
graphs are, in turn, special cases of relational structures.

We denote by Rel the class of all finite ordered relational structures of all
possible finite types. Given d, D ∈ R, with d < D, Rel(d,D) is the subclass of
Rel of all systems A = (X, (Ri; i ∈ I)) where I is a finite subset of the interval
[d.D], and for every i ∈ I, Ri ⊆ X [2].

Given structures A = (X, (Ri; i ∈ I)) and B = (Y, (Si; i ∈ J)), a function
f : X → Y is an embedding if

(i) f is one-one and monotone with respect to the standard linear orderings
of X and Y , and

(ii) for every i ∈ I and every pair {x, y} of elements of X, {x, y} ∈ Ri if and
only if {f(x), f(y)} ∈ Si (thus, I ⊆ J).

If the embedding f is a bijection,, we say it is an isomorphism. Given structures
A,B,

(
B
A

)
denotes the set of all substructures of B which are isomorphic to A.

As a consequence of Theorem 4 we have the following theorem, which will
be used in the proof of the result for finite ordered metric spaces.

Theorem 7 (Nešetřil, [8]) For every pair of real numbers d, D, 0 < d < D,
the class Rel(d, D) is Ramsey.

Let 0 < d < D be real numbers, and let l be a positive integer. Consider
a structure A = (X, (Ri : i ∈ I)) where I is a finite subset of the interval
[d,D] and each Ri is a symmetric binary relation. An edge of {x, y} ∈ Ri of
A is l- metric if for every path x = x0, x1, . . . , xt = y, with t ≤ l such that
{xk−1, xk} ∈ Rik

(i.e. the distance between xk−1 and xk is ik) it holds that
i ≤ i1 + i2 + · · ·+ it.
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For every positive integer l, and every pair of real numbers 0 < d < D, the
class Rell(d,D) is defined as follows. The class Rell(d, D) is the subclass of
Rel(d,D) formed by the structures A = (X, (Ri : i ∈ I)) that satisfy:

(i) for every i ∈ I, Ri ⊆ X [2] for every i ∈ I, in particular every Ri is symmet-
ric and anti-reflexive, as before, and the following additional properties

(ii) Ri ∩Rj = ∅ whenever i 6= j for i, j ∈ I,

(iii) every edge of A is l-metric.

The objects of Rell(d, D) are relational structures of type ∆ = (δi : i ∈ I),
where for each i ∈ I, δi = 2. For a pair {x, y} ∈ Ri, the index i ∈ I is a real
number which is called the length, or the weight, of the pair, and sometimes
this is expressed writing ρ(x, y) = i.

Note that Rel1(d, D) is the sub-collection of Rel(d, D) formed by the struc-
tures with pairwise disjoint binary relations.

If an edge (x, y) is l-metric for every l, then we say it is a metric edge. If for
a system A every pair (x, y) of vertices is an edge and it is a metric edge then
A is just a metric space (A, ρ).

Note that in case every pair of vertices of A is an edge, if every edge is
2-metric then every edge is metric.

The objects of Rell(d, D) need not be metric spaces, but since an edge (x, y)
cannot be shortened by paths of length ≤ l, then the larger l is the better an
approximation to a metric we have.

For l = 1, the notion of l-metric system coincides thus with the notion of
relational structure with pairwise disjoint binary relations

The following lemma generalizes Theorem 4

Lemma 8 (Main Lemma) For every positive integer l, and every pair of real
numbers 0 < d < D, if A is metric in Rel(d, D), then the class Rell(d, D)
is A- Ramsey, i.e. for every B ∈ Rell(d, D) such that A ≤ B, there exists
C ∈ Rell(d, D) such that B ≤ C and in Rell(d, D) the following partition
relation holds,

C → (B)A
2 .

Before we give the proof we need to consider partite l-metric systems and
their amalgamation. That will be done in the next section. Now we show that
from lemma 8 we can derive that the class of ordered finite metric spaces is a
Ramsey class.

Theorem 9 The class of finite ordered metric spaces is a Ramsey class.

Proof. Let (X, ρ) and (Y, σ) be finite ordered metric spaces, and assume that
(Y, σ) contains an isometric copy of (X, ρ). Let d = min{σ(x, y) : x, y ∈ Y }, and
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D = max{σ(x, y) : x, y ∈ Y }, and let l ≥ D/d. Consider the binary relational
systems A = (X, (Ri : i ∈ I)) and B = (Y, (Sj : j ∈ J)) corresponding to the
metric spaces (X, ρ) and (Y, σ). Clearly, all edges in A, and B are metric.

By lemma 8 there is a binary relational system C = (Z, (Tk : k ∈ K)) such
that C → (B)A

2 in the class Rell(d, D).
Define a metric θ on Z by θ(x, y) = min{D,SP}, where SP (x, y) (shortest

path from x to y) is the minimum value of i1+· · ·+it where x = x0, x1, . . . , xt =
y is a path such that for every r ≤ t, (xr−1, xr) ∈ Tir

. All the values taken by θ
lie in the interval [d, D], and since ld ≥ D, for every edge (x, y) of C, (x, y) ∈ Ti

if and only if θ(x, y) = i.
(Suppose (x, y) ∈ Ti, and x = x0, x1, . . . , xt = y is a path from x to y.

If t ≤ l, then, since (x, y) is l-metric, i ≤ i1 + i2 + · · · + it. And if t > l,
i1 + i2 + · · · + it > ld ≥ D. Therefore i is the length of the shortest path.
Conversely, if θ(x, y) = i, since (x, y) is an edge of C, (x, y) ∈ Tj for some
j ∈ K, and i ≤ j. If i < j, it is because there is a path x = x0, x1, . . . , xt = y
from x to y of length i, but, as before, any path x = x0, x1, . . . , xt = y must
have length ≥ j, and thus j = i.)

From this follows that any embedding from A into C (in Rell(d, D)) is
an isometry (an isometric embedding) of (X, ρ) into (Z, θ), and similarly any
embedding from B into C is an isometry from (Y, σ) into (Z, θ). From this we
conclude that Z → (Y )X

2 . �

3.1 Partite l-metric systems and their amalgamation

We define now the partite approximation classes PartiRell(d, D). An object
in PartiRell(d, D) is a triple (B,A, ι) where A and B are ordered binary re-
lational structures, A ∈ Rell−1(d, D) and B ∈ Rell(d, D) . More explicitly,
A = (X, (Ri : i ∈ I)) and B = (Y, (Sj : j ∈ J)), I, J finite sets of reals con-
tained in the interval [d,D], and ι : B → A is a monotone homomorphism
satisfying:

(i) If (x, y) ∈ Sj , then (ι(x), ι(y)) ∈ Rj (thus, J ⊆ I),

(ii) for every x ∈ A, the set ι−1(x) is an interval in the ordering of Y .

An embedding from (B,A, ι) into (B′, A′, ι′) is a pair (f, α) such that

(i) α : A → A′ is an embedding in the class Rell−1(d, D)

(ii) f : B → B′ is an embedding in the class Rell(d, D)

(iii) ι′ ◦ f = α ◦ ι
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If for (B,A, ι), the ι is an injective mapping, we say that (B,A, ι) is a
transversal system.

Any B ∈ Rell(d, D) can be viewed as a transversal system(B,B, ι) in
PartiRell(d, D) where ι is the identity function.

Lemma 10 (Amalgamation lemma)
Let C ∈ Rell(d, D), and A a metric subsystem of C (in Rell(d, D)), with

1 : A → C the inclusion map. For i = 1, 2, let (Bi, C, ιi) be systems in
PartiRell+1(d, D). Let (B0, A, ι0) be a system in PartiRell(d, D), with em-
beddings (fi, 1) : (B0, A, ι0) → (Bi, A, ιi) in PartiRell(d, D), for i = 1, 2.

Then, there exists (B3, C, ι3) ∈ PartiRell+1(d, D), and embeddings (gi, 1) :
(Bi, c, ιi) → (B3, C, ι3) in PartiRell+1(d,D) such that g1 ◦ f1 = g2 ◦ f2, and
ι3 ◦ g2 = ι2 and ι3 ◦ g1 = ι1. In other words, (B3, C, ι3) is an amalgam of the
systems (Bi, C, ιi)

B0 A

B2 C

B1 C

B3 C

-ι0

?

f1

@
@Rf2

?

1
@

@R1

-ι2

?

g2

?

1-ι1

@
@Rg1

@
@R1

-ι3

Fig.2 Amalgamation

Proof. We are given the systems (B1, C, ι1) and (B2, C, ι2), which can be
represented as in Fig.3, where the two lines marked C should be identified; the
partite subsystem (B0, A, ι0) is embedded in both (B1, C, ι1) and (B2, C, ι2).

B0

@
@
@

B1

A
@

@
@

B2

C

C

Fig. 3
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Let (B3, C, ι3) be the free amalgamation of (B1, C, ι1) and (B2, C, ι2). We
have to show that (B3, C, ι3) belongs to PartiRell+1(d, D). Let {x, y} be an
edge in B3, and P = {x0 = x, x1, . . . , xt = y} be a path in B3 from x to y of
length ≤ l + 1. We want to prove that the length ρ(x, y) of the edge {x, y} is
at most ρ(P ) =

∑t
i=1 ρ(xi−1, xi).

Consider the projection of P , i3(P ) = {i3(x0), i3(x1), . . . , i3(xt)}. For each
j = 1, . . . , t, ρ(xj−1, xj) = ρ(i3(xj−1), i3(xj)).

ι3(P ) is a sequence in C, in which some vertices and edges of P might be
identified by ι3. If this in fact occurs, then the length of i3(P ), ρ(ι3(P )) = ρ(P )
is bounded by the length of a sub-path P ′ of ι3(P ) of length ≤ l. and thus,
since C ∈ Rell(d, D), we have that ρ(x, y) = ρ(i3(x), i3(y)) ≤ ρ(P ′) ≤ ρ(P ).

We may thus assume that ι3(P ) is a path in C of length l + 1.
If ι3(P ) is a path in A, then (ι3(x), ι3(y)) is a metric edge, since A is metric,

and then ρ(x, y) = ρ(ι3(x), ι3(y)) ≤ ρ(P ).
If P is a subset of B1 or B2, then also ρ(x, y) = ρ(ι3(x), ι3(y)) ≤ ρ(P ), since

(B1, C, ι1) and (B2, C, ι2) are in PartiRell+1(d, D).
So we have to examine the case in which there are xj1 ∈ B1 \ A and xj2 ∈

B2 \A. Since B3 is a free amalgamation, there are no edges with one vertex in
B1 \ A and the other in B2 \ A, and so there are at least two vertices xk1 and
xk2 for which ι3(xk1) and i3(xk2) lie in A and {xk1 , xk2} are not consecutive in
the path P .
Any path in A between ι3(xk1) and ι3(xk2) adds up to at least ρ(ι3(xk1), ι3(xk2)),
since A is metric. Now, ρ(P ) ≥ ρ(P ′) where P ′ is the path from ι3(x) to ι3(y)
which goes through {xk1 , xk2}, i.e.

P ′ = {ι3(x) = ι3(x0), ι3(x1), . . . , ι3(xk1), ι3(xk2), . . . , ι3(xt) = ι3(y)},

and ρ(P ′) ≥ ρ(ι3(x), ι3(y)) = ρ(x, y), since P ′ is of length at most l and C is in
Rell(d, D). �

3.2 Proof of the main Lemma

Proof of lemma 8: the proof is by induction on l. For l = 1 the lemma follows
from Theorem 7. Recall that Rel1(d, D) is the subclass of Rel(d, D) of structures
for which the binary relations Ri are pairwise disjoint. Theorem 7 gives us a
structure C in Rel(d, D), but from it we can extract one in Rel1(d,D) by taking
the substructure induced by the copies of B in C. More precisely, we take only
the vertices which belong to a copy of B in C, and the edges which lie within
a copy of B. By the definition of the embeddings, a copy of B cannot have a
pair belonging to two different relations (i.e. no pair has more than one label).

Assume the lemma holds for l, and let B ∈ Rel(l+1)(d, D). Consider A,B as
transversal systems in PartiRel(l+1)(d,D), and let R ∈ Rel(l)(d, D) be a system
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satisfying R → (B)A
2 in Rel(l)(d, D). Fix R, and consider it as a transversal

system in PartiRell(d, D). We construct now a sequence P 0, P 1, . . . , P a, of
R-partite systems, where a = |

(
R
A

)
|. The system P a will satisfy the required

properties.
(P 0, R, ι0) is the lifting of R obtained by separating all the copies of B con-

tained in R. In other words, P 0 is the disjoint union of
(

R
B

)
= {B1, B2, . . . , Bb}

with the natural projection to R. Notice that P 0 ∈ PartiRell+1(d.D), since
B ∈ Rell+1(d, D).

Let {A1, . . . , Aa} list the elements of
(
R
A

)
. For the inductive step from i

to i + 1, let (P i, R, ιi) be an R-partite system in PartiRell+1(d, D), and let
(Di, A, ιi) be the subsystem of (P i, R, ιi) induced by the set (ιi)−1(Ai). Clearly
(Di, A, ιi) ∈ PartiRell+1(d,D), and by the inductive hypothesis, there is a
system (Ei, A, λi) such that

Ei → (Di)A
2 .

Let (P i+1, R, ιi+1) be a free amalgamation of copies of (P i, R, ιi) such that
every copy of (Di, A, ιi) in (Ei, A, λi) is extended to a unique copy of (P i, R, ιi).
According to lemma 10, we know that (P i+1, R, ιi+1) ∈ PartiRell+1(d, D).

Put (C,R, ι) = (P a, R, ιa) ∈ PartiRell+1(d, D). It remains to show that

C → (B)A
2 .

This is done by reverse induction from a to 0 in the same fashion as in the end
of the proof of Theorem 4 in 2.2 . �
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ory, and Topological Dynamics of Automophism Groups. Geometric
and Functional Analysis, 15 (2005) 106-189.
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