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A semi–discrete high resolution scheme for

nonlinear scalar conservation laws

Yousef Hashem Zahran

Abstract

The purpose of this paper is twofold. Firstly we carry out an ex-
tension of the fully discrete third order TVD scheme, for linear case,
presented in [8] to nonlinear scalar hyperbolic conservation laws for one
and two dimensions. Secondly, we propose a semi-discrete version of the
scheme. Time evolution is carried out by the third order TVD Runge-
Kutta method. The advantages of the scheme are its simplicity, third
order, non-oscillatory and that can be used for large time steps which
can save more time. Examples and convergence rates are presented for
the Burger equation for one and two dimensions which confirm the high
resolution content of the proposed schemes. We use exact solutions and
other methods to validate the results.
Key words: Conservation laws, difference methods, TVD schemes,
Burger equation, Runge-Kutta method.

1 Introduction

Hyperbolic conservation laws describe a variety of phenomena in several dis-
ciplines, such as physics, chemistry, environmental sciences and many others.
Analytical solutions of the problems are available under very special circums-
tances and one thus has to rely on numerical methods for solving problems of
practical interest. It is well known that the solutions of hyperbolic equations
may develop discontinuities in finite time even if the initial condition is smooth.
A major difficulty in the numerical approximation of nonlinear hyperbolic con-
servation laws is the presence of discontinuities in the solution. Traditional
schemes generate spurious oscillations in the numerical solution near these dis-
continuities. Standard methods based on central differencing together with
artificial viscosity have often been replaced, during the last few years, by the
so-called total variation diminishing (TVD) schemes. The main property of a
TVD scheme is that, unlike monotone schemes, it can be second order accurate
(or higher) and oscillation–free across discontinuities (when applied to nonlinear
equations).
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A third order TVD finite difference scheme is presented in [8], which has so
far been applied only to linear systems with constant coefficients. The scheme
is conservative, one step, explicit and fully discrete, requiring only the compu-
tation of numerical fluxes to advance the solution by a full time step. In this
paper we will present a generalization of the scheme for the case of nonlinear
scalar case for one and two dimensions by using the technique in [7].

It is well known that the semi-discrete schemes are especially effective when
they combine high resolution, non-oscillatory spatial discretisation with high
order, large step size ordinary differential equation solvers for their time evolu-
tion.

In this paper we propose a semi-discrete version of the scheme with Runge-
Kutta method for time discretisation. This scheme has the advantages of sim-
plicity, third order, non-oscillatory and that can be used for large time steps
which can save more time.

The paper is organized as follows. In section 2, we give a brief description of
the third order TVD scheme for linear equations. In section 3 we describe the
extension of the fully discrete scheme for nonlinear equations. In section 4 we
construct the semi-discrete version of the scheme with Runge-Kutta method for
time discretisation. Extension of the semi discrete scheme for two dimensions
problems are presented in section 5. Numerical tests on the nonlinear equation
with different initial conditions are performed in section 6. The numerical results
are compared with exact solutions and other methods.

2 Third order fully discrete TVD scheme

In this section we review the fully discrete third order difference scheme pre-
sented in [8].

The initial value problem (IVP) for the one-dimensional scalar hyperbolic
conservation law is considered, namely

ut + f(u)x = 0, −∞ < x <∞, t ≥ 0 (2.1)
u(x, 0) = u0(x) (2.2a)
Here u is the unknown function and f(u) is the physical flux.
First let us consider the linear case f(u) = au, so that f ′(u) = a is a constant

wave propagation speed. If the initial data consists of two constant states,

u0 =
{
uL x < 0
uR x > 0 (2.2b)

equation (2.1) with (2.2b) is called the usual Riemann problem (RP).
A uniform x-t grid, with mesh size ∆x in the x-direction and ∆t in the

t-direction, is introduced with a fixed ratio λ = ∆t/∆x Let un
j denote the

numerical solution obtained at (x, t) = (j∆x, n∆t).
The third order conservation numerical scheme introduced in [8] has the

form (for constant a)
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un+1
j = un

j − λ
[
fj+1/2

− fj−1/2

]
(2.3)

with the numerical flux

fj+1/2
=

1
2

(auj + auj+1)−
1
2
|a| ∆j+1/2

u+

|a|
{
A0∆j+1/2

u+A1∆j+L+1/2
u+A2∆j+M+1/2

u
}

(2.4)

where

A0 =
1
2
− |c|

4
, A1 = − |c|

8
− c2

8
, A2 = − |c|

8
+
c2

8
(2.5)

L = −1, M = 1 for c > 0 and L = 1, M = −1 for c < 0, where c = λa is the
Courant number and ∆j+1/2

u = uj+1 − uj .

The scheme is stable if and only if |c| ≤
√

2.
This scheme, being third order accurate scheme, is not TVD. It can be made

TVD by replacing (2.4) with the more general form
fj+1/2

= 1
2 (auj + auj+1)− 1

2 |a| ∆j+1/2
u +

|a|
{
A0∆j+1/2

u+A1∆j+L+1/2
u
}
ϕj + |a| A2 ∆j+M+1/2

uφj+M
(2.6)

where φj and φj+M are flux limiter functions.
Theorem: Scheme (2.3) with (2.6) is TVD for |c| ≤ 1 if the limiter function is
determined by

φj =


(1−|c|)θj

η(A1θj+A0−A2)
for 0 ≤ θj ≤ θL

1 for θL ≤ θj ≤ θR

1−|c|+ηA2φj+M /θ∗j
η(A1θj+A0)

for θj > θR

0 for θj < 0

(2.7a)

φj+M =

 ηθj+M for 0 ≤ θj+M < 0.5
1 for θj+M > 0.5
0 for θj = 0 (2.7b)

where θL = η (A0−A2)
1−|c|−η A1

, θR = 1−|c|−η (A0−A2φj+M /θ∗j )

η A1
, and θj is called the

local flow parameter and is defined by

θj =
∆j+L+1/2

u

∆j+1/2
u

(2.7c)

and θ∗j is called the upwind-downward flow parameter and is given by

θ∗j =
∆j+L+1/2

u

∆j+M+1/2
u

(2.7d)

and η is defined by

η =

 1− |c| for 0 ≤ |c| < 1/2

|c| for 1/2 ≤ |c| ≤ 1
(2.7e)

Proof : See [4] and [8].
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3 Extension to nonlinear scalar hyperbolic conservation
laws

In this section we extend the scheme (2.3) with (2.6) to nonlinear scalar problems

ut + f(u)x = 0, (3.1)

For nonlinear equations the TVD procedure is empirical, but in practice it
works very well as it will be demonstrated in the next sections. For more details
see [4], [6] and [7]. Here we use the technique presented in [7]. Define the wave
speed

a
j+

1
2

=


∆

j+
1
2

f

∆
j+

1
2

u ∆
j+

1
2
u 6= 0

∂f
∂u

∣∣∣
uj

∆
j+

1
2
u = 0

(3.2)

Now we redefine the θj in (2.7c) as

θj =

∣∣∣∣aj+L+
1
2

∣∣∣∣ ∆
j+L+

1
2
u∣∣∣∣aj+

1
2

∣∣∣∣ ∆
j+

1
2
u

(3.3a)

and

θ∗j =

∣∣∣aj+L+1/2

∣∣∣ ∆j+L+1/2
u∣∣∣aj+M+1/2

∣∣∣ ∆j+M+1/2
u

(3.3b)

Here c
j+

1
2

= ∆t
∆x aj+

1
2

is the Courant number.

Unlike the constant coefficient case, a
j+

1
2
and a

j− 1
2

are not always the same

sign. Then the numerical flux (2.6) takes the form

fj+1/2
= 1

2 (fj + fj+1)− 1
2

∣∣∣∣aj+
1
2

∣∣∣∣ ∆j+1/2
u +∣∣∣∣aj+

1
2

∣∣∣∣ {
A0∆j+1/2

u+A1∆j+L+1/2
u
}
φj

+
∣∣∣∣aj+

1
2

∣∣∣∣A2∆j+M+1/2
uφj+M

(3.4)

After considering all the possible combinations of the signs of a
j+

1
2
and a

j− 1
2
,

a set of sufficient conditions on φ can still be of the form similar to (2.7) (see
[8]) and is given by
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φj =



(1−

˛̨̨̨
˛aj+

1
2

˛̨̨̨
˛)θj

η(A1θj+A0−A2)
for 0 ≤ θj ≤ θL

1 for θL ≤ θj ≤ θR

1−

˛̨̨̨
˛aj+

1
2

˛̨̨̨
˛+ηA2φj+M /θ∗j

η(A1θj+A0)
for θj > θR

0 for θj < 0

(3.5a)

where

φj+M =

 ηθj+M for 0 ≤ θj+M < 0.5
1 for θj+M > 0.5
0 for θj = 0 (3.5b)

where θL = η (A0−A2)

1−

˛̨̨̨
˛aj+

1
2

˛̨̨̨
˛−η A1

, θR =
1−

˛̨̨̨
˛aj+

1
2

˛̨̨̨
˛−η (A0−A2φj+M /θ∗j )

η A1

where θj and θ∗j are defined in (3.3).
Observe that when a

j+
1
2

= 0, the scheme has zero dissipation. One way

is to approximate a
j+

1
2

by a Lipschitz continuous function [2]. For example,

instead of using (3.4), one can use
fj+1/2

= 1
2 (fj + fj+1)− 1

2ψ(a
j+

1
2
) ∆j+1/2

u

+ ψ(a
j+

1
2
)

{
A0∆j+1/2

u+A1∆j+L+1/2
u)

}
φj

+ ψ(a
j+

1
2
)A2∆j+M+1/2

uφj+M

(3.6)

Here ψ is a function of a
j+

1
2

and is defined as

ψ(x) =
{

x2

4ε + ε for |x| < 2ε
|x| for |x| ≥ 2ε

where 0 ≤ ε ≤ 0.5 .

For the third order TVD scheme the linear stability condition reads CFL ≤ 1.
Here CFL denotes the maximum Courant number over all cells at a given time
step:

CFL = max (Sn
j

∆t
∆x

)

where Sn
j is the maximum propagation speed at time level n.

4 Semi-discrete formulation

Another way to discrete (2.1) is to keep the time variable t continuous and
consider semi-discrete scheme
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d

dt
(uj(t)) = − 1

∆x

[
f

j+
1
2
− f

j− 1
2

]
= Lj(u) (4.1)

where f
j+

1
2

is defined in (3.6).

The time dicretisation will be implemented by a third order TVD Runge-
Kutta method developed in [1].

This Runge-Kutta method is used to solve a system of initial value of ordi-
nary differential equations written as

du

dt
= L(u), (4.2)

where L(u) is an approximation to the derivative (−f(u)x) in the differential
equation (2.1).

In [1], schemes up to third order were found to satisfy the TVD conditions.
The optimal third order TVD Runge-Kutta method is given by

u(1) = un + ∆t L(un)
u(2) = 3

4u
n + 1

4u
(1) + 1

4∆t L(u(1))
un+1 = 1

3u
n + 2

3u
(2) + 2

3∆t L(u(2))
(4.3)

In [1], it has been shown that, even with a very nice second order TVD
spatial discretization, if the time discretization is by a non-TVD but linearly
stable Runge-Kutta method, the result may be oscillatory. Thus it would always
be safer to use TVD Runge-Kutta methods for hyperbolic problems.

5 Extension to multidimensional problems

The present schemes can be applied to multidimensional problems by means of
space operator splitting. The original idea is attributed to Strang [5]. As an
example we consider the two dimensional Burger equation

Ut + [F (U)]x + [G(U)]y = 0 (5.1)
where F (U) = G(U) = 1

2U
2

There are several versions of space splitting. Here we take the simplest one,
whereby the two dimensional problem (5.1) is replaced by the sequence of two
one-dimensional problems

Ut + [F (U)]x = 0 (5.2a)
Ut + [G(U)]y = 0 (5.2b)
If the data Un at time level n for problem (9.1) are given, the solution Un+1

at time level n+ 1 is obtained in the following two steps:

a) solve equation (5.2a) with data Un to obtain an intermediate solution
Ūn+1 (x-sweep);

b) solve equation (5.2b) with data Ūn+1 to obtain the complete solution
Un+1 (y-sweep);

For three dimensional problems there is an extra z-sweep.
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6 Numerical experiments

In this section we present the results of our numerical experiments for the fully
discrete third order TVD scheme (2.3) with (3.6) and semi-discrete scheme (4.1).
for time evolution we use the third order Runge-Kutta method (4.3) reviewed
and developed in the previous section. We compare these methods with the
third order finite difference scheme presented in [3].

We compare the following schemes:

1. LT3 : the fully discrete third order presented in [3].

2. TVD3 : the fully discrete third order scheme (2.3) with (3.6).

3. STVD3 : the semi-discrete scheme (4.1) with (4.3).

For each scheme we select a value of CFL that satisfies the stability condition:
LT3 scheme has CFL = 0.33 and the other schemes CFL= 0.8.

6.1 Accuracy test

Example 1: We solve the nonlinear scalar Burger equation

ut + [
1
2
u2]x = 0 (6.1)

subject to two periodic initial data
u0(x) = 1 + 0.5 sin(πx) (6.2)

on [−1, 1]. When t = 1
π the solution is still smooth, and the errors and numerical

orders of accuracy are shown in Table 1. It can be seen that STVD3 scheme
is the most accurate and it is less expensive because it enjoys a less restrictive
CFL condition (λ = 0.8 versus λ = 0.33). Comparing the magnitudes of the
errors with the results obtained with LT3 and TVD3, we note that our new
scheme STVD3 scheme yields smaller errors than the others.

6.2 Test cases with shocks

Example 2: We solve the Burger equation (5.1) with periodic initial condition
u0(x) = 0.5 + sin(πx) (6.3)
We plot the results at time t = 1.5

π when the shock has already appeared
in the solution. In Figure 1 the solutions of LT3 method (a), TVD3 (b) and
STVD3 (c) with 100 grid points are shown. The solid line is the exact solution
and symbols are the numerical solutions.

Note that the results obtained by LT3 are satisfactory while the results
by TVD3 are better. The solutions obtained by STVD3 scheme are almost
indistinguishable from exact solutions.
Example 3: We solve (6.1) with initial condition
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u(x, 0) =

 −1 |x| ≥ 0.5

2 |x| < 0.5
(6.4)

The breakdown of the initial discontinuity results in a shock wave with speed
0.5 and a rarefaction with a sonic point at x = 0.5. The exact solution consists
of rarefaction wave (left) and shock wave (right). At t = 2/3 the rarefaction hits
the shock and then the solution has a rarefaction wave only. Using x = 0.01.
The numerical solution is displayed at t = 0.4 (before collision of the head of the
rarefaction with the shock ) and t = 1.1 (after collision ). Results are shown in
Figures 2 and 3 respectively, where the numerical solutions, shown by symbols,
are compared with the exact solution, shown by a full line. Figure 2 shows the
computed results at t = 0.4 using LT3, TVD3 and STVD3 schemes and Figure
3 shows the results at t = 1.1. Notice that the numerical solution obtained by
STVD3 are indistinguishable from exact solutions.
Example 4: We finally show the results obtained with Burger’s equation in
Figure 4. The initial condition is U0(x, y) = sin2(πx) sin2(πy) on (0, 1)× (0, 1).
We consider periodic boundary conditions. Figure 4 shows the results at t = 2
using TVD3 method (left) and STVD3 method (right). Also Figure 5 shows
the results at t = 4 using TVD3 (left) and STVD3 (right). We note, from the
figures 4 and 5, lack of spurious oscillations while the shocks are well resolved.
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Table 1
N LT3 TVD3 STVD3

L1 error L1 order L1 error L1 order L1 error L1 order
80 0.4281E-4 0.5492E-4 0.1799E-4
160 0.5282E-5 2.87 0.6908E-5 2.991 0.2229E-5 3.0125
320 0.9049E-6 2.69 0.9820E-6 2.814 0.2774E-6 3.0065
640 0.1591E-6 2.51 0.1621E-6 2.599 0.3463E-7 3.0020

Figure 1: Solution of example 2 by LT3 scheme (a) TVD3 scheme (b) and
STVD3 scheme (c).



50 Y. H. Zahran

Figure 2: Solution of example 3 at t = 0.4 by LT3 scheme (a), TVD3 scheme
(b) and STVD3 scheme (c).

Figure 3: Solution of example 3 at t = 1.1 by LT3 scheme (a), TVD3 (b) and
STVD3 scheme (c).
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Figure 4: The solution of two dimensional equation at t = 2 using TVD3 (left)
and STVD3 (right) methods.

Figure 5: The solution of two dimensional equation at t = 4 using TVD3 (left)
and STVD3 (right) methods.
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