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Abstract

We investigate the influence of surfactants in core-annular fluids with-
out basic flow. The surfactant is considered insoluble in both film and core
fluids. We derive a complete problem and obtain an asymptotic solution
which consists of a system of two coupled non-linear partial differential
equations. One describing the evolution of the interface and the other,
the evolution of the surfactant concentration throughout the interface.

Resumen

Investigamos la influencia de surfactantes en fluidos centro-anulares
en ausencia de flujo básico. El surfactante se considera insoluble tanto en
el ĺıquido anular como en el central. Derivamos un problema completo y
obtenemos una solución asintótica del mismo, que consiste de un sistema
acoplado de dos ecuaciones diferenciales parciales no lineales. Una para
la evolución de la interfaz y la otra para la evolución de la concentración
de surfactantes a lo largo de la interfaz.
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1 Introduction

If a liquid desplaces another one that initially is contained in a capillar cylin-
der, a layer of the first fluid remains coating the cylinder walls (Taylor [12],
1961). Core-annular flows are parallel flows of immiscible fluids inside a
cylinder. A fluid is at the center of the cylinder and the others in successive
annuli that surround the core. An important application to the oil industry is
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lubricated pipelining, where the annular liquid lubricates the core liquid move-
ment. Also, the core-annular flows occur during the liquid-liquid displacements
in pourous media, and in lung airways since the internal surfaces of them are
coated with a thin layer of liquid.

There are several studies related to core-annular flows for interfaces free of
surfactants. Goren ([4], 1962) found that an annular film is unstable in the
presence of infinitesimal sinusoidal disturbaces. He studied the linear stability
of an annular film that coats the internal surface of a cylinder when the core
fluid is inviscid or the surface of a wire when the ambient is inviscid.

A non-linear analysis for the adjustment, under surface tension, of a thin
annular film, was developed by Hammond ([7], 1983) based on lubrication theory
indicating that an initial sinusoidal disturbance of the interface could lead to
the rupture of the film in the form of axisymmetric drops or “lenses” of the
annular liquid separated by the core fluid. Later, Gauglitz and Radke ([3],
1988) developed an alternative approximation based on Hammond’s analysis,
including the exact expression of the curvature in the theory used by Hammond.
Thus, the approximate equation reduces to the Young-Laplace’s equation (see
Adamson [1], 1976) for capillar static in regions where the fluid is almost static,
and acts as the usual evolution equation when the film is thin. They found
a critical thickness which marks the transition between films that evolve into
collars and those that brakeup to form liquid lenses.

On the other hand, the presence of surfactant on a fluid-fluid interface can
have a substantial effect on the evolution of the interface (Edwards, Brenner
and Wasan [2], 1991). There are two known ways how surfactants affect the
interfacial dynamic. One way is reducing the interfacial tension; i.e. the surface
tension on an interface without surfactants is bigger than the surface tension
on an interface with surfactants. The other way is introducing the Marangoni
force caused by the presence of a gradient in the surfactant concentration. This
is a force directed from regions of high surfactant concentration to regions of
low surfactant concentration through the interface. In general, the Marangoni
force acts to oppose any external flow that promotes accumulation of surfactant
throughout the interface.

Applications to pulmonary fluid dynamics have been the motivation of most
of the works on the effects of surfactants on core-annular flows. A thin liquid
film coats the internal walls of the airways forming a liquid-air interface. The
interfacial tension tries to minimize the interfacial area, so a colapse of the fine
airways could happens due to the formation of a meniscus (from the liquid)
while exhalation is in process. The biological surfactants tend to reduce the
interfacial tension decrecing the attractive force between the film molecules.
This way, surfactants have a stabilizing effect which prevent the colapse and keep
the airways open. Halpern and Grotberg ([5], 1992) considered the stability,
including the effect of surfactants, in a flexible cylinder. In ([6], 1993), they
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developed a nonlinear model taking into account the fluid mechanic of the film,
the equation of motion of the tube and the transport equation. They concluded
that surfactant convection has the effect of reducing the surface tension which
prevent the meniscus formation.

Kas-Danouche, Papageorgiou and Siegel ([8], 2004) solved the problem of
two fluids with a core-annular configuration inside a cylindrical tube with rigid
walls. In the problem, they considered a pressure gradient (basic flow) and the
presence of insoluble surfactants at the interface.

In this article, we explore the influence of surfactants on a core-annular con-
figuration in the absence of the pressure gradient. The core liquid is sorrounded
by another (annular) liquid. We assume that the surfactant is insoluble in both
the film and the core. Physically, this corresponds to surfactants that have a
very low solubility in the film and core fluids. So, the surfactant remains at the
interface between the two fluids.

Here, as in ([8], 2004), we employ asymptotic analysis to derive very carefully
a system of two coupled nonlinear partial differential equations that govern the
evolution of the interface and the surfactant concentration.

2 Physical Problem and Governing Equations

We consider an annular liquid film, which we call fluid 2, that surrounds a
cylindrical core fluid, which we call fluid 1, infinitely long inside a cylindrical
horizontal tube of radius R. The internal surface of the tube is coated by the
liquid film. The fluid 1 has an undisturbed radius b and viscosity µ1. The
viscosity of fluid 2 is µ2. The gravitational effects are neglected (Hammond [7],
1983); i.e., the gravity does not appreciably change the shape of the interface.

Also, we consider that at the interface between the two fluids there are
surfactants. The surfactant concentration, given in units of surfactant mass
per unit of interfacial area, is denoted by Γ∗. The relationship between the
interfacial tension σ and the surfactant concentration is given by the surface
equation of state for the interfacial tension (Edwards, Brenner, and Wasan [2],
1991, Milliken, Stone, and Leal [10], 1993, and Stone and Leal [11], 1990)

σ ≡ σ(Γ) = σo + <TΓ∞ ln (1− Γ), (1)

where σo is the interfacial tension of the clean (without surfactant) interface,
< is the ideal gas constant and T is the temperature. The dimensionless sur-
factant concentration is given by Γ = Γ∗

Γ∞
, where Γ∞ is the maximum packing

concentration that the interface can support. Expanding ln (1− Γ) in Taylor
series about Γ = 0 we obtain the linear relation between the interfacial tension
σ and the surfactant concentration Γ expressed as follows

σ(Γ) = σo(1− βΓ), (2)
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where β =
<TΓ∞
σo

and σo, <, T , Γ∞, and Γ are defined as before. Expression

(2) is expected to hold in the dilute Γ limit. Even though this appears to be
a restrictive assumption, our asymptotic solution is developed for small surfac-
tant variations about a uniform state, in which instance (2) is the appropriate
starting point.

We use cylindrical coordinates ~x = (r, θ, z) with associated velocity compo-
nents ~u1 = (u1, v1, w1) for the core and ~u2 = (u2, v2, w2) for the film. Let h(z, t)
be the typical thickness of the film, we define S(z, t), the interface, as

S(z, t) = R− h(z, t), (3)

where R is the tube radius.
For the evolution of the interface we start from the Navier-Stokes equa-

tions for axisymmetric flows with kinematic viscosity and pressure ν1, p1 for
the core and, kinematic viscosity and pressure ν2, p2 for the film. We consider
both regions with the same density ρ.

In order to complete the mathematical model, we require a no slip condition
at the tube wall ~u2 = 0, continuity of velocity at the interface ~u1 = ~u2, kinematic
condition which take the form

ui =
∂S

∂t
+ wi

∂S

∂z
, (4)

where i = 1, 2. Also, we require normal stress balance[
~n · T

¯̄
· ~n
]2
1

= σ5s ·~n (5)

and tangential stress balance[
~t · T

¯̄
· ~n
]2
1

= −5s σ · ~t, (6)

where [·]21 = (·)2−(·)1, T
¯̄

is the stress tensor,5s is the surface gradient operator,
~n the normal unit vector, and ~t the tangential unit vector.

Now, for the evolution of surfactant concentration, we start from the convective-
diffusion equation for surfactant transport (Wong, Rumschitzki and Maldarelli
[14], 1996)

∂Γ
∂t
− ∂~x

∂t
· 5sΓ +5s(Γus)−Ds 52

s Γ + Γκ~u · ~n = 0, (7)

where κ is the surface curvature and Ds is the diffusivity constant. Using
the surface gradient operator 5s, surface divergence operator 5s·, the surface
Laplacian oparator 52

s (Wheeler and McFadden [13], 1994 and Kas-Danouche
[9], 2002), and parameterizing the interface in terms of θ and z; i.e., we write
~x ≡ ~x(θ, z), we obtain:
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The normal stress balance{
−p+

2µi
1 + (S′)2

[
(S′)2 ∂w

∂z
− S′

(
∂u

∂z
+
∂w

∂r

)
− ∂u

∂r

]}2

1

=

=
σ(Γ)

S
√

1 + (S′)2

{
1− SS′′

1 + (S′)2

}
, (8)

where i = 1, 2.
The tangential stress balance{

µi
1 + (S′)2

[
2S′

(
∂u

∂r
− ∂w

∂z

)
+ (1− (S′)2)

(
∂u

∂z
+
∂w

∂r

)]}2

1

=

=
−1√

1 + (S′)2

∂σ

∂z
, (9)

where i = 1, 2.
The convective-diffusion equation for surfactant transport

∂Γ
∂t

− ṠS′

1 + (S′)2

∂Γ
∂z

+
1

S
√

1 + (S′)2

{
∂

∂z

[
SΓ√

1 + (S′)2
(w + S′u)

]}

− Ds
1

S
√

1 + (S′)2

∂

∂z

(
S√

1 + (S′)2

∂Γ
∂z

)
(10)

+
Γ

S(1 + (S′)2)

[
1− SS′′

1 + (S′)2

]
(−S′w + u) = 0.

3 Non-dimensionalization Process

We non-dimensionalize using the tube radius R as the length unit, the interfacial
tension σ0 in the absence of surfactant, the film viscosity µ2 and the surfactant
uniform concentration Γ0. Γ0 is considered as the surfactant concentration at
the interface in the absence of any movement of the fluids.

This way, we re-scale the pressure with σo/R, velocities with σo/µ2, time
with µ2R/σo, and the concentration of surfactant with Γo. In what follows
we write the dimensionless equations of our model. For the Navier-Stokes
equations, the non-dimensionalization process introduces the Reynolds num-
ber (Re) which is defined as Re = σ0ρR/µ

2
2. The non-dimensionalization of

the transport equation produces the Peclet number (Pe) which is given by
Pe = σ0R/(µ2Ds). We are using the same notation for the dimensional and
non-dimensional variables.



32 S. Kas-Danouche

The non-dimensional Navier-Stokes and continuity equations are

Re [(wi)t + wi(wi)z + ui(wi)r] = −(pi)z +
µi
µ2
52 wi (11)

Re[(ui)t + wi(ui)z + ui(ui)r] = −(pi)r +
µi
µ2

(
52ui −

ui
r2

)
(12)

(wi)z +
1
r

(rui)r = 0, (13)

with i = 1 for the core and i = 2 for the film, where

52 ≡ ∂2

∂z2
+

1
r

∂

∂r

(
r
∂

∂r

)
and Re = σ0ρR/µ

2
2. (14)

The non-dimensional normal stress balance equation is{
−p+

2λi
1 + (S′)2

[
(S′)2 ∂w

∂z
− S′

(
∂u

∂z
+
∂w

∂r

)
− ∂u

∂r

]}2

1

=

=
σ(Γ)

S
√

1 + (S′)2

{
1− SS′′

1 + (S′)2

}
, (15)

where λi = µi

µ2
, i = 1, 2.

The non-dimensional tangential stress balance equation is{
λi

1 + (S′)2

[
2S′

(
∂u

∂r
− ∂w

∂z

)
+ (1− (S′)2)

(
∂u

∂z
+
∂w

∂r

)]}2

1

=

=
−1√

1 + (S′)2

∂σ

∂z
, (16)

where λi = µi

µ2
, i = 1, 2.

Finally, the non-dimensional convective-diffusion equation for the
surfactant transport is

∂Γ
∂t

− ṠS′

1 + (S′)2

∂Γ
∂z

+
1

S
√

1 + (S′)2

{
∂

∂z

[
SΓ√

1 + (S′)2
(w + S′u)

]}

− 1
Pe

1
S
√

1 + (S′)2

∂

∂z

(
S√

1 + (S′)2

∂Γ
∂z

)
(17)

+
Γ

S(1 + (S′)2)

[
1− SS′′

1 + (S′)2

]
(−S′w + u) = 0

where Pe = σ0R
µ2Ds

.



Model for core-annular fluids 33

4 Derivation of the Model

Here, we take advantage of the film thickness relative to the core thickness
and derive a coupled system of two approximated evolution equations. One
equation describes the evolution of the interface between the two fluids, and the
other one describes the evolution of surfactant concentration at the interface.
In the non-dimensional unperturbed state the tube radius is 1 and the
distance from the tube wall to the interface is ε = a/R << 1, where h(z, t) =
aH(z, t) and a = R− b.

At the film, we define the radial component of a point as r = 1− εy, where
y is 0 at the tube wall and H(z, t) on the interface. The axial component is
defined as z = ẑ. Thus,

∂

∂z
−→ ∂

∂ẑ
and

∂

∂r
−→ −1

ε

∂

∂y
. (18)

From the continuity condition we know that, in order to balance both terms,
the order of u2 must equals ε times the order of w2. From the first momentum
equation (11) for i = 2, we find the order of w2. But before that we look for
the order of pressure. Let p̄1, p̄2, p̃1, and p̃2 be the basic state pressure in
region 1 which is the core fluid, the basic state pressure in region 2 which is the
film, the perturbed pressure in region 1 and the perturbed pressure in region 2,
respectively. Then,

p1 = p̄1 + p̃1 (19)
p2 = p̄2 + p̃2. (20)

First, let us consider that the core is a non-viscous fluid, then, λ1 = µ1
µ2

= 0.
The pressure of the core fluid is constant and, by a convinient choice of reference
pressure, p1 = 0 (p̄1 = p̃1 = 0). Let us consider the asymptotic expansion of the
Navier-Stokes equation (11) in the film and Re ∼ O(1). Balancing the pressure
with the leading order term (∂2w2/∂r

2), we obtain

p̃2 ∼
1
ε2

(order of w2). (21)

The basic state for the surfactant concentration Γ is taken as a uniform cov-
ering of the interface, which in dimensionless terms is given by Γ = 1. Therefore,
the perturbed surfactant concentration can be expressed by Γ = 1 + Γ̃, where Γ̃
is the perturbation of the surfactant concentration. The dimensionless interfa-
cial tension is σ(Γ) = 1− βΓ and so, the basic state of the interfacial tension is
σ(Γ) = 1−β. All the left hand side terms of the normal stress balance equation
(15), are of order w2, except the pressure p2. Due to (21), p̄2 and p̃2 are the
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leading order terms of the left hand side of (15). In the right hand side of (15)
we have 1− β +O(ε). Thus

p̄2 = β − 1 ∼ O(1) (22)
p̃2 ∼ O(ε). (23)

4.1 Derivation of the Interface Evolution Equation

Now, let us assume that λ1 > 0, but not too big. The asymptotic expansion of
the Navier-Stokes equation (11) in the core and Re ∼ O(1) give us

p̃1 ∼ order of u1. (24)

The continuity of the axial velocity at the interface produces order of w1 =
order of w2. Therefore, order of p̃1 � order of p̃2.

Similarly, all the left hand side terms of the normal stress balance equation
(15), are of the order of w2, except the pressures which are the leading order
terms in the left hand side. In the right hand side of (15) we have 1−β+O(ε).
Then, p̄1 − p̄2 = 1− β and p̃2 ∼ O(ε).

Therefore, w2 ∼ O(ε3) and u2 ∼ O(ε4). The continuity of the axial velocity
at the interface implies that w1 ∼ O(ε3), the axial velocity in the core. Thus, in
the left hand side of Navier-Stokes equation (11), in order to balance the second
and third terms, we have u1 ∼ O(ε3). By (24) we have that p̃1 ∼ O(ε3), and
from the tangential stress balance equation (16) we need that λ1 � 1

ε for the
core to decouple from the film.

In what follows, we look for the time scale. Let us consider (4), the kinematic
condition, u and w ∂S

∂z are of order ε4; therefore, ∂S
∂t ∼ O(ε4). Since ∂S

∂t =
−εHt(z, t), we have that Ht ∼ O(ε3). This motivates the introduction of the
scaled variable for time τ = ε3t such that

∂

∂t
−→ ε3 ∂

∂τ
. (25)

Continuing in this way and keeping only the leading order terms in (11) for
i = 2, we obtain (ũ2)yy = (p̃2)z; but, from the second momentum equation
(12) for i = 2, we have py ∼ O(ε3). So, p̃2 ≡ p̃2(z) is not a function of y
in the resulting equation retaining the leading order terms. Therefore, we can
integrate twice with respect to y and apply w̃2(0) = 0 (no slip at the tube wall)
to obtain

ũ2(y) =
1
2

(p̃2)zy2 +A(z)y. (26)

However, keeping the leading order terms 1
ε (w2)y and βΓz in the tangential

stress balance (16), we obtain

1
ε

(w2)y = βΓz, (27)
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but, (w2)y ∼ O(ε3). Choosing β = ε2βo, we have (w̃2)y = β0Γz. Now, using
(26) we find

A(z) = βoΓz − (p̃2)zH. (28)

Thus,

(w̃2)(y) =
1
2

(p̃2)zy2 + (βoΓz − (p̃2)zH)y. (29)

On the other hand, using the condition of normal stress balance (15) we find
the pressure. Firstly, we take the terms of O(1) and obtain p̄1 − p̄2 = 1− β. In
the next step, we take the terms of O(ε) obtaining p̃2 = −Hzz −H. Therefore,
w̃2 becomes

(ũ2)(y) = −1
2

(Hzzz +Hz) y2 + [βoΓz + (Hzzz +Hz)H] y. (30)

Now, using the continuity condition (13) for i = 2 and the scales for w2, u2

and r, we obtain considering only leading order terms

∂ũ2

∂z
=
∂ṽ2

∂y
. (31)

So, differentiating w̃2 with respect to z and integrating it with respect to y,
we find an expression for ũ2

ũ2 = −1
6

(Hzzzz +Hzz)y3 +
1
2
βoΓzzy2 +

1
2

(Hzzzz +Hzz)Hy2

+
1
2

(Hzzz +Hz)Hzy
2. (32)

In order to obtain the evolution equation for H, we consider the kinematic
equation (4) and the fact that

∂S

∂t
= −εHt = −ε4Hτ

∂S

∂z
= −εHz.

Then,
ũ2 = −Hτ − w̃2Hz. (33)

Substituting w̃2 and ũ2 in (33), and evaluating it at the interface (y = H), we
obtain the evolution equation for the interface

Hτ = −1
3
[
(Hzzz +Hz)H3

]
z
− 1

2
βo
(
ΓzH2

)
z
. (34)
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4.2 Derivation of the Evolution Equation of Surfactant
Concentration

Now, in order to derive the equation for Γ, we use the scales in the equation of
surfactant concentration (17) and take the leading order terms, to find

Γτ +
∂

∂z
(w̃2Γ) +

1
P̃ e

∂2Γ
∂z2

= 0. (35)

Finally, substituting w̃2 evaluated at y = H, we obtain the evolution equation
of surfactant concentration through the interface

Γτ = −
[(

1
2

(Hzzz +Hz)H2 + βoΓzH
)

Γ
]
z

− 1
P̃ e

Γzz. (36)

5 Re-scaling of the Model

We want to re-scale z from [0, L] to [0, 2π]. For that, we consider the change
of variables z = 2π

L z̃ and t =
(

2π
L

)2
t̃, where z̃ ∈ [0, L], t̃ ≥ 0, and the variables

with ‘˜’ represent the non-scaled variables. Then, we have z ∈ [0, 2π], t ≥ 0,

∂

∂z̃
=

2π
L

∂

∂z
and

∂

∂t̃
=
(

2π
L

)2
∂

∂t
.

Writing (34) and (36) in terms of the new scaled variables, we obtain the
following coupled system of two non linear partial differential equations

Ht = −1
3
[
H3
(
λ2Hzzz +Hz

)]
z
− 1

2
β0

(
ΓzH2

)
z

(37)

and

Γt = −
{[

1
2
(
λ2Hzzz +Hz

)
H2 + β0ΓzH

]
Γ
}
z

− 1
Pe

Γzz
(
ΓzH2

)
z
, (38)

where λ = 2π
L . This system is more complicated than the one obtained for the

problem with basic flow studied in ([8], 2004).
Now, we are exploring numerical schemes in order to solve (37) and (38).

Thus, it is convinient to isolate the terms in (37) and (38) that contain the
derivatives of H and Γ of higher order. Therefore, we re-write them as

Ht = −1
3
λ2H3Hzzzz −

1
2
β0H

2Γzz − f(H,Hz, Hzz, Hzzz,Γz)
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and

Γt = −1
2
λ2H2ΓHzzzz −

(
β0ΓH +

1
Pe

)
Γzz − g(H,Hz, Hzz, Hzzz,Γ,Γz)

where,

f(H,Hz, Hzz, Hzzz,Γz) =
1
3
H3Hzz + λ2H2HzHzzz +H2H2

z

+ β0HHzΓz,

g(H,Hz, Hzz, Hzzz,Γ,Γz) =
1
2
H2HzzΓ + λ2HHzHzzzΓ +HH2

zΓ

+
1
2
λ2H2HzzzΓz +

1
2
H2HzΓz + β0HΓ2

z

+ β0HzΓΓz

and λ = 2π
L .

For the case when Γ = 0; i.e., there is not surfactant in our problem, we
have

Ht = −1
3
(
H3(λ2Hzzz +Hz)

)
z
, (39)

which is the equation, originally, derived by Hammond in ([7], 1983).
Hammond solved this equation numerically replacing the spacial derivatives

with finite differences (The Line Method). However, we have developed some
numerical methods that can be applied to (39). One method uses Fast Fourier
Transform (FFT) for the spacial derivatives and finite differences for Ht.
This is what is known as a Pseudospectral Method. Even though this
method is spectrally precise, has a restriction in the time step ∆t ∼ O(∆x4).
But, this explicit method is simple to code and helpful to compare with results
of implicit methods which are more complicated. An efficient implicit method
for (39) that does not have such restriction with the time step will be the sub-
ject of future work which will help us to construct a numerical scheme able to
solve the system (37) and (38).

6 Conclusion

We have derived a system of two coupled non linear partial differential equa-
tions which model the evolution of core-annular fluids without pressure gradient.
One equation describes the evolution of the interface and the other the evolution
of the surfactant concentration at the interface.

We note that, when Γ = 0, the system of equations (37) and (38) derived
in this research is transformed in equation (39) which, originally, was derived
by Hammond ([7], 1983). So, we can conclude that the presence of surfactants
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in our problem influence the evolution of the interface in the sense that a new
term appears in the interface evolution equation as we compare (37) with (39).
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