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The geometric structure of the Pareto

distribution ∗
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Abstract

In this paper, we characterize the Pareto manifold from the viewpoint
of information geometry and give the Ricci curvatures, the Gaussian cur-
vature, the Kullback divergence, the J-divergence and the geodesic equa-
tions. Also, some examples on the application of the Pareto distribution
are provided.

Resumen

En este art́ıculo, caracterizamos la variedad de Pareto desde el punto
de vista de la geometŕıa de la información y calculamos las curvaturas de
Ricci, la curvatura Gaussiana, la divergencia de Kullback, la J-divergencia
y las ecuaciones de las geodésicas. También damos algunas aplicaciones
de la distribución de Pareto.
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1 Introduction

It is well known that information geometry has been widely applied into
various fields, such as statistical inference, system control and neural network.
Recently, scholars studied the statistical manifolds from the viewpoint of infor-
mation geometry, and using the geometric metrics gave a new description of the
statistical distribution. Here, the parameters of the probability density func-
tion play an important role in statistical manifold and can be regarded as the
coordinate system. In [1], Amari studied the exponential distribution families
and Dodson ([4]) and his colleagues investigated some special exponential dis-
tributions such as the bivariate normal distribution, the Gamma distribution,
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the Mckay distribution and the Frund distribution and gave their geometric
structures. It is clear that the exponential distribution shows a “lovely” form
with the potential function, by using which the calculation becomes more conve-
nient. The Pareto model is very famous, but the Pareto distribution can not be
written as a form with the potential function, which means that the calculation
becomes difficult. In this paper, we study the geometric structure of the Pareto
distribution.

2 Preliminaries.

Definition 2.1. For a density function f(x; θ), where θ = (θ1, θ2, . . . , θn),
the function l(x; θ) is defined by

l(x; θ) = ln f(x; θ). (2.1)

Definition 2.2. We callM = {l(x; θ)|(θ1, θ2, . . . , θn) ∈ Rn} an n-dimensional
distribution manifold, where (θ1, θ2, . . . , θn) plays the role of the coordinate sys-
tem.

Definition 2.3. The Fisher information matrix (gij) is defined by

(gij) = (Eθ[∂il ∂j l]), i, j = 1, 2, . . . , n, (2.2)

where
∂il =

∂

∂θi
l(x; θ), i = 1, 2, . . . , n.

Then we get the inverse matrix of (gij)

(gij) = (gij)−1, i, j = 1, 2, . . . , n. (2.3)

Definition 2.4. The Riemannian connection Γijk are defined by

Γijk =
1
2

(∂igjk + ∂jgki − ∂kgij), i, j, k = 1, 2, . . . , n (2.4)

and the α-connection are defined by

Γ(α)
ijk = Γijk −

α

2
Tijk, i, j, k = 1, 2, . . . , n, (2.5)

where
Tijk = E[∂il ∂j l ∂kl], i, j, k = 1, 2, . . . , n. (2.6)

Definition 2.5. Under the θ coordinate system, the α-curvature tensors
R

(α)
ijkl are defined by

R
(α)
ijkl =

(
∂jΓ

s(α)
ik − ∂iΓs(α)

jk

)
gsl +

(
Γ(α)
jtl Γt(α)

ik − Γ(α)
itl Γt(α)

jk

)
,

i, j, k, l, s, t = 1, 2, . . . , n,
(2.7)
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where
Γk(α)
ij = Γ(α)

ijs g
sk, i, j, k, s = 1, 2, . . . , n. (2.8)

Definition 2.6. The α-Ricci curvatures R(α)
ik are given by

R
(α)
ik = R

(α)
ijklg

jl, i, j, k, l = 1, 2, . . . , n. (2.9)

Definition 2.7. The α-sectional curvatures K(α)
ijij are defined by

K
(α)
ijij =

R
(α)
ijij

giigjj − (gij)2
, i, j = 1, 2, . . . , n. (2.10)

Specially, when n = 2, the α-sectional curvature K(α)
1212 = K(α) is called the

α-Gaussian curvature and

K(α) =
R

(α)
1212

det(gij)
. (2.11)

Definition 2.8. Assume p(x; θp) and q(x; θq) are two points on the manifold
M , the Kullback divergence K(p, q) is defined by

K(p, q) = Eθp [ln
p(x; θp)
q(x; θq)

]

=
∫
p(x; θp) ln

p(x; θp)
q(x; θq)

dx

(2.12)

and the J-divergence is defined by

J(p, q) =
∫

(p(x; θp)− q(x; θq)) ln
p(x; θp)
q(x; θq)

dx. (2.13)

When the two points p(x; θp) and q(x; θq) are close enough, from the Taylor’s
formula, one can see that

K(θ, θ + dθ) =
1
2
ds2

and
J(θ, θ + dθ) = ds2.

Definition 2.9. The geodesic equations of manifold M with coordinate
θ = (θ1, θ2, . . . , θn) are defined by

d2θk

dt2
+ Γkij

dθi

dt

dθj

dt
= 0. (2.14)
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3 The Pareto manifold.

The set{
p(x; θ)|p(x; θ) = λµλx−λ−1, θ = (θ1, θ2) = (λ, µ), x > µ, λ > 0, µ > 0

}
is called the Pareto manifold, where

p(x; θ) = λµλx−λ−1, x > µ, λ > 0, µ > 0

is the probability density function of the Pareto distribution.
Proposition 3.1. The nonzero component of the α-curvature tensor is

given by

R
(α)
1212 =

(λ3 − λ)α2 + (−2λ3 + 2λ2 − 3λ+ 2)α+ 3λ− 2
4λµ2(1− λ)2

.

Proof. Defining

l(x; θ) = ln p(x, θ)
= lnλ+ λ lnµ− (λ+ 1) lnx,

then we see that
∂1l =

1
λ

+ lnµ− lnx, ∂2l =
λ

µ

and
∂1∂1l = − 1

λ2
, ∂1∂2l = ∂2∂1l =

1
µ
, ∂2∂2l = − λ

µ2
.

From (2.2), we get the Fisher information matrix

(gij) =

(
1
λ2 − 1

µ

− 1
µ

λ
µ2

)
and

det(gij) =
1− λ
µ2λ

.

Thus the square of the arc length is given by

(ds)2 =
1
λ2

(dλ)2 − 2
µ
dλdµ+

1
µ2

(dµ)2.

The inverse matrix of (gij) is given by

(gij) =

(
λ2

1−λ
λµ
1−λ

λµ
1−λ

µ2

λ(1−λ)

)
.
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From (2.6), we can get

T111 = − 2
λ3
, T121 = T211 = T112 =

1
λµ

, (3.1)

T221 = T212 = T122 = 0, T222 =
λ3

µ3
. (3.2)

And from (2.4), we can get

Γ111 = − 1
λ3
, Γ112 = Γ121 = Γ211 = 0, (3.3)

Γ122 = Γ212 = Γ221 =
1

2µ2
, Γ222 = − λ

µ3
. (3.4)

Then from (2.5), (3.1), (3.2), (3.3) and (3.4), we can get

Γ(α)
111 =

α− 1
λ3

, Γ(α)
112 = Γ(α)

121 = Γ(α)
211 = − α

2λµ
, (3.5)

Γ(α)
212 = Γ(α)

122 = Γ(α)
221 =

1
2µ2

, Γ(α)
222 = −2λ+ λ3α

2µ3
. (3.6)

From (2.8), (3.5) and (3.6), we get

Γ1(α)
11 =

2α− αλ− 2
2λ(1− λ)

, Γ2(α)
11 =

µ(α− 2)
2λ2(1− λ)

, (3.7)

Γ1(α)
12 =

λ− αλ
2µ(1− λ)

, Γ2(α)
12 =

1− αλ
2λ(1− λ)

, Γ1(α)
21 =

λ− αλ
2µ(1− λ)

(3.8)

and

Γ2(α)
21 =

1− αλ
2λ(1− λ)

, Γ1(α)
22 = − λ2 + αλ4

2µ2(1− λ)
, Γ2(α)

22 =
λ− 2 + αλ2

2µ(1− λ)
. (3.9)

From (2.7), (3.5), (3.6), (3.7), (3.8) and (3.9), we can get

R
(α)
1212 =

(λ3 − λ)α2 + (−2λ3 + 2λ2 − 3λ+ 2)α+ 3λ− 2
4λµ2(1− λ)2

. (3.10)

This completes the proof of Proposition 3.1.
Theorem 3.1. The α-Gaussian curvature and the α-Ricci curvatures of the

Pareto manifold are given by

K(α) =
(λ3 − λ)α2 + (−2λ3 + 2λ2 − 3λ+ 2)α+ 3λ− 2

4(1− λ)3
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and

R
(α)
11 =

(λ3 − λ)α2 + (−2λ3 + 2λ2 − 3λ+ 2)α+ 3λ− 2
4λ2(1− λ)3

,

R
(α)
12 = R

(α)
21 = − (λ3 − λ)α2 + (−2λ3 + 2λ2 − 3λ+ 2)α+ 3λ− 2

4µ(1− λ)3
,

R
(α)
22 =

(λ3 − λ)α2 + (−2λ3 + 2λ2 − 3λ+ 2)α+ 3λ− 2
4µ2(1− λ)3

.

Proof. From the definition 2.6 and 2.7, by a direct calculation, we can
obtain Theorem 3.1, immediately.

From Theorem 3.1 we can get the following
Corollary 3.1. When α = 0, the Gaussian curvature and the Ricci curva-

tures satisfy

K(0) =
3λ− 2

4(1− λ)3

and

R
(0)
11 =

3λ− 2
4λ2(1− λ)3

, R
(0)
12 = R

(0)
21 = − 3λ− 2

4µ(1− λ)3
, R

(0)
22 =

3λ− 2
4µ2(1− λ)3

.

Theorem 3.2. On the Pareto manifold the Kullback divergence is given by

K(p, q) = ln
λp
λq

+ λq ln
µp
µq

+
λq − λp
λp

and the J-divergence is given by

J(p, q) = (λq − λp)(lnµp − lnµq) +
(λp − λq)2

λpλq
.

Proof. From (2.12), we can get

K(p, q) = Eθp [ln
p(x; θp)
q(x; θq)

]

=
∫
p(x; θp) ln

p(x; θp)
q(x; θq)

dx

= ln
λp
λq

+ λq ln
µp
µq

+
λq − λp
λp

.

Then from (2.13), we can get

J(p, q) =
∫

(p(x; θp)− q(x; θq)) ln
p(x; θp)
q(x; θq)

dx

= K(p, q) +K(q, p)

= (λq − λp)(lnµp − lnµq) +
(λp − λq)2

λpλq
.
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Corollary 3.2. When µp = µq , then

K(p, q) = ln
λp
λq

+
λq − λp
λp

, J(p, q) =
(λp − λq)2

λpλq
.

When λp = λq = λ , then

K(p, q) = λ ln
µp
µq
, J(p, q) = 0.

Theorem 3.3. The geodesic equations are given by

d2λ

dt2
− 1
λ(1− λ)

(
dλ

dt

)2

+
λ

µ(1− λ)
dλ

dt

dµ

dt
− λ2

2µ2(1− λ)

(
dµ

dt

)2

= 0, (3.11)

d2µ

dt2
− µ

λ2(1− λ)

(
dλ

dt

)2

+
1

λ(1− λ)
dλ

dt

dµ

dt
+

λ− 2
2µ(1− λ)

(
dµ

dt

)2

= 0. (3.12)

Proof. By the definition 2.9 and using Γkij which we have calculated above,
we can get the geodesic equations immediately.

In particular, for fixed λ, from (3.12) we get the solution with respect to µ
that µ

λ
2(λ−1) = c1t + c2 or µ = constant. Similarly, for fixed µ, from (3.11) we

get the solution with respect to λ that λ− lnλ = c3t+ c4 or λ = constant.

4 Applications.

The Pareto distribution can been used in various fields. J. Shi and H. Zhu
([5]) modeled the TELNET originator traffic by using the Pareto distribution
and shown that packet interarrivals of the TELNET originator can be well
modeled by Pareto distribution in large time scales. In [6], three modified
Edf-type tests, the Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D), and
Cramer-von Mises (C-vM), were developed for the Pareto distribution with
unknown parameters of location and scale and known shape parameter. In
[7], L. Ouyang and S. Wu presented the prediction intervals on future ordered-
observation in a sample of size from a Pareto distribution with known shape
parameter. Then a useful method was defined for obtaining a bound on life-test
duration for sample from a population having Pareto distributed lifetimes.
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5 Figures of the Gaussian curvature K(α).
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Fig 1. The α-Gaussian curvature K(α)
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