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CHAPTER IV

STOCHASTICALLY ORDERED EXTREMAL RANDOM VARIABLES

1. Preliminaries.

Given a partial order between random variables and some class of random variables, it 
is possible to construct extremal random variables with respect to this partial order, which 
provide useful information about extreme situations in probabilistic modelling. For example 
the classical Chebyshev-Markov probability inequalities yield the extremal random variables 
with respect to the usual stochastic order for the class of random variables with a given range 
and moments known up to a fixed number. 

Extremal random variables with respect to the increasing convex order, also called 
stop-loss order, are of similar general interest. Other probability inequalities induce other 
kinds of extremal random variables. By taking into account various geometric restrictions, it 
is possible to introduce further variation into the subject.

For several purposes, which the applications of Chapter VI will make clear, it is 
important to compare the obtained various extremal random variables with respect to the main 
stochastic orders. In Section 2, several elementary comparisons of this kind are stated. 
Mathematically more complex proofs of simple ordering comparisons are also presented in 
Sections 3 to 5. Finally, Section 6 shows the possibility to construct finite atomic stop-loss 
confidence bounds at the example of symmetric random variables. To start with, it is 
necessary to introduce a minimal number of notions, definitions, notations and results, which 
will be used throughout the present and next chapters.

Capital letters  X, Y, ... denote random variables with distribution functions 
F x F xX Y( ), ( ) , ... and finite means X Y, , ... . The survival functions are denoted by  
F x F xX X( ) ( )1 , ... . The stop-loss transform of a random variable  X  is defined by

(1.1)
x XX dttFxXEx )()(:)( ,  x  in the support of  X.

The random variable X  is said to precede  Y  in stochastic order or stochastic
dominance of first order, a relation written as  X Yst , if  F x F xX Y( ) ( )   for all  x  in the 
common support of  X  and  Y. The random variables  X  and  Y  satisfy the stop-loss order,
or equivalently the increasing convex order, written as  X Ysl   (or X Yicx ), if  

X Yx x( ) ( )   for all  x. A sufficient condition for a stop-loss order relation is the 
dangerousness order relation, written as X YD , defined by the once-crossing condition

(1.2) F x F xX Y( ) ( )  for all  x<c,
F x F xX Y( ) ( )  for all  x c,

where  c  is some real number, and the requirement  X Y . By equal means  X Y , the 
ordering relations  sl   and  D  are precised by writing  sl,   and  D, . The partial stop-loss 

order by equal means is also called convex order and denoted by  cx . The probabilistic 
attractiveness of the partial order relations  st   and  sl   is corroborated by several invariance 
properties (e.g. Kaas et al.(1994), chap. II.2 and III.2, or Shaked and Shanthikumar(1994)). 
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For example, both of  st   and  sl   are closed under convolution and compounding, and  sl

is additionally closed under mixing and conditional compound Poisson summing.
The class of all random variables with given range  a b, , a b , and known 

momnets  1 2, , ..., n   is denoted by  D a bn n( , ; , ,..., )1 2   or simply  Dn   in case the 

context is clear. For each fixed  n=2,3,4,..., we denote by  )(),( )()( xFxF n
u

n   the Chebyshev-

Markov extremal distributions, which are solutions of the extremal moment problems

(1.3) )(max)(,)(min)( )()( xFxFxFxF X
DX

n
uX

DX

n

nn

,

and which have been studied in detail in Section III.4 for the most important special cases 
n=2,3,4. They satisfy the classical probability inequalities :

(1.4) )()()( )()( xFxFxF n
uX

n , uniformly for all x a b, , for all X Dn .

Random variables with distributions  )(),( )()( xFxF n
u

n   are denoted by  )()( , n
u

n XX , and are 

extremal with respect to the usual stochastic order, that is one has  )()( n
stst

n
u XXX   for all  

X Dn . For each fixed  n=2,3,4, the minimal and maximal stop-loss transforms over the 

space  Dn , which are defined and denoted by  )(min:)(,)(min:)( )*()(
* xxxx Y

DY

n
X

DX

n

nn

,

have been studied in detail in Section III.5. Sometimes, especially from Section 3 on, the 
upper index n, which distinguishes between the different spaces of random variables, will be 
omitted without possibility of great confusion. Since there is a one-to-one correspondence 
between a distribution and its stop-loss transform, this is (1.1) and the fact  F x xX X( ) ' ( ) ,
one defines minimal and maximal stop-loss ordered random variables  X Xn n

*
( ) *( ),   by setting 

for their distributions

(1.5) )(1)(),(1)( )*()*()(
*

)(
* xxFxxF n

dx
dnn

dx
dn .

These are extremal in the sense that X X Xn
sl sl

n
*
( ) *( )   for all X Dn .

The once-crossing condition or dangerousness order (1.2) is not a transitive relation. 
Though not a proper partial order, it is an important and main tool used to establish stop-loss 
order between two random variables. In fact, the transitive (stop-loss-)closure of the order D

, denoted by  D*, which is defined as the smallest partial order containing all pairs  (X,Y)  
with  X YD   as a subset, identifies with the stop-loss order. To be precise,  X  precedes  Y  
in the transitive (stop-loss-)closure of dangerousness, written as  X YD* , if there is a 
sequence of random variables  Z Z Z1 2 3, , , ..., such that  X Z Z Zi D i1 1, , and  Z Yi   in 
stop-loss convergence (equivalent to convergence in distribution plus convergence of the 
mean). The equivalence of  D*  and  sl   is described in detail by Müller(1996). In case there 
are finitely many sign changes between the distributions, the stated result simplifies as 
follows.

Theorem 1.1.  (Dangerousness characterization of stop-loss order)  If  X Ysl   and 
F x F xX Y( ), ( )   cross finitely many times, then there exists a finite sequence of random 
variables Z Z Zn1 2, , ..., such that X Z Y Zn1 , and Z Zi D i 1 for all  i=1,...,n 1.

Proof.  This is Kaas et al.(1994), Theorem III.1.3, and our later Remark 1.1.
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The stop-loss order relation (by unequal means) can be separated into a stochastic 
order relation followed by a stop-loss order relation by equal means, a result sometimes 
useful.

Theorem 1.2.  (Separation theorem for stop-loss order)  If  X Ysl , then there exists a 
random variable  Z  such that X Z Yst sl, .

Proof.  This is shown in Kaas et al.(1994), Theorem IV.2.1, Shaked and Shanthikumar(1994), 
Theorem 3.A.3, Müller(1996), Theorem 3.7.

Besides the dangerousness characterization of stop-loss order, there exists a further 
characterization, which is sometimes applicable in practical work, and which consists of a 
generalized version of the once-crossing condition (1.2) originally introduced by Karlin and 
Novikoff(1963) (see Hürlimann(1997k) for some new applications).

Theorem 1.3.  (Karlin-Novikoff-Stoyan-Taylor crossing conditions for stop-loss order) Let  
X, Y  be random variables with means  X Y, , distributions F x F xX Y( ), ( )   and stop-loss 
transforms  X Yx x( ), ( ). Suppose the distributions cross  n 1  times in the crossing points  
t t t n1 2 ... . Then one has X Ysl   if, and only if, one of the following is fulfilled :

Case 1 :

The first sign change of the difference  F x F xY X( ) ( )   occurs from    to  +, there is an even 
number of crossing points  n=2m, and one has the inequalities

(1.6) X j Y jt t j m( ) ( ), ,...,2 1 2 1 1

Case 2 :

The first sign change of the difference F x F xY X( ) ( )   occurs from  +  to  , there is an odd 
number of crossing points  n=2m+1, and one has the inequalities

(1.7) X Y X j Y jt t j m, ( ) ( ), ,...,2 2 1

Proof.  Two cases must be distinguished.

Case 1 :  the first sign change occurs from   to  +

If  X Ysl , then the last sign change occurs from  +  to  (otherwise  X Yx x( ) ( )   for 
some  x t n ), hence  n=2m  is even. Consider random variables  Z Y Z Xm0 1, , and
Z j mj , ,..., ,1 with distribution functions

(1.8) )(xFj

F x x t

F x x t
X j

Y j

( ), ,

( ), .
2 1

2 1

For j=1,...,m, the Karlin-Novikoff once-crossing condition between  Z j 1  and  Z j   is fulfilled 

with crossing point t j2 . A partial integration shows the following mean formulas :
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(1.9) j j X X j Y jE Z t t j m: ( ) ( ), ,...,2 1 2 1 1 .

Now, by Karlin-Novikoff, one has Z Zj D j1 , j=1,...,m, if, and only if, the inequalities

j j1   are fulfilled, that is

(1.10) X j Y j X j Y jt t t t j m( ) ( ) ( ) ( ), ,..., ,2 1 2 1 2 1 2 1 1 1

and
X m Y mt t( ) ( ) ,2 1 2 1 0

which is equivalent to (1.6). Since obviously Z Yst1 , one obtains the ordered sequence

(1.11) X Z Z Z Z Ym D m D D st1 1 0... ,

which is valid under (1.6) and implies the  result.

Case 2 :  the first sign change occurs from  + to

If  X Ysl , then the last sign change occurs from  +  to  , hence  n=2m+1  is odd. Similarly 
to Case 1, consider random variables  Z Y Z Xm0 1, , and  Z j mj , ,..., ,1 with

distribution functions

(1.12) )(xFj

F x x t

F x x t
X j

Y j

( ), ,

( ), .
2

2

For j=0,1,...,m, the once-crossing condition between Z j 1  and Z j   is fulfilled with crossing 

point t j2 1. Using the mean formulas

(1.13) j j X X j Y jE Z t t j m: ( ) ( ), ,...,2 2 1 ,

the conditions for Z Zj D j1 , that is j j1 , j=0,1,...,m, are therefore

X Y X Yt t( ) ( ),2 2

(1.14) X j Y j X j Y jt t t t j m( ) ( ) ( ) ( ), ,..., ,2 2 2 2 2 2 1 1

and
X m Y mt t( ) ( ) ,2 2 0

which is equivalent to (1.7). One obtains the ordered sequence

(1.15) X Z Z Z Z Ym D m D D D1 1 0... ,

which is valid under (1.7) and implies the result. 
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Remark 1.1. The sequences (1.11) and (1.15) provide an alternative more detailed 
constructive proof of our preceding Theorem 1.1.

In general, the distributions of extremal random variables have a quite complex 
analytical structure. Therefore they require a computer algebra system for their numerical 
evaluations. If no implementation is available, this may be an obstacle for their use in 
practical work. However, relatively simple ordered discrete approximations can be 
constructed. By the well-known technique of mass concentration and mass dispersion, which 
allows to bound a given random variable by (finite atomic) less and more dangerous random 
variables such that in concrete applications the approximation error may be controlled.

Lemma 1.1.  (mass concentration over an interval)  Let  X  be a random variable with 
distribution  F(x)  and stop-loss transform  ( )x , and let  I ,   be a closed interval 
contained in the support of  X. Then there exists a random variable  X Xc D,   with 

distribution F xc ( ), obtained by concentrating the probability mass of  X  in  I  on an atom  x c

of  Xc , such that the mean of  X  over  I  is preserved. Its distribution function is determined 
as follows (see Figure 1.1) :

(1.16) )(xFc

F x x I

F x x

F x x
c

c

( ), ,

( ), ,

( ), ,

(1.17) x
F F

F Fc

( ) ( ) ( ) ( )

( ) ( )
.

Figure 1.1 :  mass concentration over an interval

F(x)
Fc(x)

x c       x

Proof.  The mean of  X  over  I  is preserved provided the atom  xc   satisfies the condition 

)()()( xxdFFFxc . A partial integration and a rearrangement yields (1.17). The 

ordering relation X Xc D,   follows from the once-crossing condition (1.2).  
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Lemma 1.2.  (mass dispersion over an interval)  Let  X  be a random variable with 
distribution  F(x)  and stop-loss transform  ( )x , and let  I ,   be a closed interval 
contained in the support of  X. Then there exists a random variable  X Xd D,   with 

distribution  F xd ( ), obtained by dispersing the probability mass of  X  in  I  on the pair of 
atoms  ,   with probabilities  pp , , such that the probability mass and the mean of  X  

over  I  are preserved. Its distribution function is determined as follows (see Figure 1.2) :

(1.18) )(xFd

F x x

F p F p x

F x x

( ), ,

( ) ( ) , ,

( ), ,

(1.19)

p
x F F

p
x F F

c

c

( ) ( ( ) ( ))
,

( ) ( ( ) ( ))
,

(1.20) x
F F

F Fc

( ) ( ) ( ) ( )

( ) ( )
.

Figure 1.2 :  mass dispersion over an interval

F(x)

Fd(x)

Proof.  The probability mass and the mean of  X  over  I  are preserved provided the following 
system of equations is fulfilled :

(1.21) p p F F( ) ( ),

(1.22) p p x F Fc ( ( ) ( )),

where  xc   is determined by (1.17). Its solution is straightforward. The ordering relation 
X Xd D,   follows again from the once-crossing condition (1.2).
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2. Elementary comparisons of ordered extremal random variables.

An ultimate theoretical goal, which does not seem to be attainable in the near future, is 
a complete list of (elementary) stochastic ordering comparisons for the systems of Chebyshev-
Markov and stop-loss ordered extremal random variables. The present Section is devoted to 
some elementary results in this area. Besides some of the material developed in the previous 
chapters, their proofs require only straightforward mathematics.

2.1. The Chebyshev-Markov extremal random variables.

As starting point, let us state the very intuitive and obvious fact that the Chebyshev-
Markov stochastically ordered minimal and maximal random variables increase respectively 
decrease in stochastic order with an increasing number of known moments. Equivalently the 
range of variation of distributions with given range and known moments to a given order 
becomes smaller as one knows more about their moment structure. Applied to actuarial and 
financial theory, this means that the uncertainty about risks, when comparatively measured 
with respect to the stochastic order relation, is lessened in case more about their moments 
becomes known.

Theorem 2.1.  (Stochastic order between Chebyshev-Markov extremal random variables)
For all X Dn   and each n 3  one has

(2.1) )1()()()1( n
st

n
stst

n
ust

n
u XXXXX .

Proof.  This is trivial because  D Dn n 1, and thus maxima are greater if the sets, over which 
maxima are taken, are enlarged.  

What happens by knowledge of only the mean  ? Let us complete the picture in case 
the range of the random variable consists of the whole real line. Markov's classical inequality 
gives an upper bound for the survival function, namely

(2.2)
x

xFX ,1min)( , for all x ( , ) , for all X D D1 1: (( , ); ).

The maximum is attained by a Markov stochastically ordered maximal random variable )1(X ,

a random variable satisfying the property  XX st
)1(   for all  X D1, and which is defined 

by the distribution function

(2.3) )()1( xF
0

1

, ,

, .

x

x
x

Since )1(XE   this random variable does not belong to D1.
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Proposition 2.1.  (Chebyshev-Markov ordered maximum of order two versus Markov ordered 
maximum)  Let  )1()2( ,XX   be the above random variables defined on  ( , ) . Then one has 

the dangerousness order relation )1()2( XX D .

Proof.  Let  , 2   be the mean and variance occuring in the definition of  )2(X . Recall that  
)2(X   has distribution

(2.4) )()2( xF

0
2

2 2

, ,

( )

( )
, .

x

x

x
x

Given that 0  one shows without difficulty the once-crossing condition

(2.5) )()( )1()2( xFxF , for all x
2

,

)()( )1()2( xFxF , for all x
2

.

Since )1()2( XEXE   one concludes that X XDl l
( ) ( )2 1 .

2.2. The stop-loss ordered extremal random variables.

A next main elementary comparison states that the stop-loss ordered extremal random 
variables to any given order are in stop-loss order between the Chebyshev-Markov minimal 
and maximal random variables. Concerning applications, the use of the stop-loss ordered 
extremal distributions introduce a range of variation that is smaller than for the Chebyshev-
Markov stochastically ordered extremal distributions. Since the stop-loss order reflects the 
common preferences of decision makers with a concave non-decreasing utility function, they 
are attractive in Actuarial Science, Finance and Economics.

Theorem 2.2.  (Stop-loss order between the Chebyshev-Markov and the stop-loss ordered 
extremal random variables). For all X Dn   and any n 2   one has

(2.6) )()*()(
*

)( n
sl

n
slsl

n
sl

n
u XXXXX .

Proof.  By Theorem 2.1 one knows that  )()( n
stst

n
u XXX , for any  X Dn . But the 

stochastic order implies the stop-loss order. Therefore one has the inequalities

(2.7) )()()( )()( xxx n
X

n
u , uniformly for all  x.

Since  X  is arbitrary one obtains a fortiori

(2.8) )()()(max)()()(min)( )(*
*

)( xxxxxxx n
X

DX
XX

DX

n
u

nn

,

uniformly for all  x, which is equivalent to the affirmation.
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It seems that in general the sharper stochastic order comparisons

(2.9) )()*()(
*

)( , n
st

nn
st

n
u XXXX

hold. As our application in Section VI.4 demonstrates, these sharper comparisons may indeed 
be required in real-life problems. For  n=2,3,4  and any range  a b, , ,a   and  ( , ) , a 
rather laborious proof of (2.9) is contained in the forthcoming Sections 3 to 5. In case  n=2, a 
simple proof of a partial comparison result follows in Theorem 2.4.

2.3. The Hardy-Littlewood stochastic majorant.

Sometimes, as in Section VI.6, it is necessary to replace the stop-loss ordered extremal 
random variable  X n*( )   by a less tight majorant. An appropriate candidate is the least 
stochastic majorant  X H n* ( )   of the family of all random variables, which precede  X n*( )   in 
stop-loss order. This so-called Hardy-Littlewood majorant is obtained from the following 
construction.

Theorem 2.3. (Hardy-Littlewood stochastic majorant)  Given a random variable  Z, let 
ZXXS slZ :   be the set of all random variables stop-loss smaller than  Z. Then the least 

upper bound  ZH   with respect to stochastic ordering for the family  SZ, that is such that 

X Zst
H   for all  X SZ, is described by the random variable  Z Z m Z Z

Z

F Z
H

Z
Z

Z

( )
( )

( )
, where  m z E Z z Z zZ ( )   is the mean residual life or mean excess function of  Z. If  

F u1 ( )   is the quantile function of  Z, then the quantile function of ZH   is given by

)()( 1 uF H

.1),1(

,1,)(
1

1

1

1 1

uF

udvvF
u u

Proof.  The first assertion is shown as in Meilijson and Nàdas(1979). For  ZZEx sup, ,
let  H x x m xZ( ) ( )  be the Hardy-Littlewood maximal function, and set  

xyHyxHx )(:inf)(1
0 . Since  ( ) ( )x x x0   is a non-negative increasing convex 

function, one has using Markov's inequality

F x F x
E X

x

E Z

x

x

x x
F xX X

Z
ZH( ) ( ( ))

( )

( )

( )

( )

( )
( )( )

0

0

,

hence  X Zst
H . Sharpness of the ordering is shown as follows. With  U  a uniform random 

variable on  0 1, , set  uUIUFEX Z )(1 , where  u  is such that  H(u)=x  and  I(A)  is 

the indicator function of the event  A. By Jensen's inequality, one has for each non-negative 

non-decreasing convex function    that  )()()( 1 ZEuUIUFEEXE Z ,

hence  X Zsl . Further one has F x X x U u H U x F xX ZH( ) Pr ( ) Pr ( ) Pr ( ( ) ) ( ) ,

hence  ZH   is the least stochatic majorant. The quantile function is already in Dubins and 
Gilat(1978), formula (1) (see also Kertz and Rösler(1990), p.181).

In the special case  n=2, a very simple proof of a partial comparison result of the type 
(2.9) follows. A proof of the missing comparison X Xu st

*( )2   is postponed to Section 3.
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Theorem 2.4.  (Stochastic comparisons of ordered extremal random variables)  Let  X Xul ,
be the Chebyshev-Markov extremal random variables for  D2, let  X X*

*,   be the stop-loss 
ordered extremal random variables for  D2, and let  ( )*X H  be the Hardy-Littlewood 
stochastic majorant of X*. Then one has the stochastic ordering relations 

(2.10) XXXXXX st
H

stststu )(, **
* .

Proof.  It suffices to consider standard random variables taking values in an interval  a b,
such that  1 0ab , which is the condition required for the existence of random variables 
with mean zero and variance one. The Chebyshev-Markov extremal standard survival 
functions are from Table III.4.1 described in tabular form as follows:

condition F xl ( ) F xu ( )

a x b 1
x

x

2

21

b x a
1

1 bx

b a x a( )( )

1 ax

b a b x( )( )

a x b
1

1 2x 0

The stop-loss ordered extremal standard survival functions are obtained from the extremal 
stop-loss transforms given in Tables II.5.1 and II.5.2. They are described in tabular form 
below. Based on Table 2.2 and Theorem 2.3, the Hardy-Littlewood majorant of  X*  has 
survival function

(2.11) ))(( * xF H

1

1

1
0

2

, ,

( )
, ,

, ,

, .

x a

a

x a
a x a

x
a x b

x b

It will be very useful to consider the simpler modified Hardy-Littlewood majorant X**  with 
survival function

(2.12) )(** xF

1

1

1
0

2

, ,

, ,

, .

x a

x
a x b

x b
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Table 2.1 :  Stop-loss ordered minimal standard survival function on a b,

condition F x* ( ) * ( )x

a x b 1 -x

b x a
( )

( )

a

b a

1 ax

b a

a x b 0 0

Table 2.2 :  Stop-loss ordered maximal standard survival function on a b,

condition F x* ( ) * ( )x

a x a a1
2 ( )

a

a

2

21
( )a

ax

a

1

1 2

1
2

1
2( ) ( )a a x b b

1

2
1

1 2
( )

x

x

1

2
1 2( )x x

1
2 ( )b b x b

1

1 2b

b x

b1 2

First, we prove the simpler fact  XXX ststu * . A quick look at the above tables shows 

that the required inequalities  )()()( * xFxFxF ststu   are non-trivial only over the middle 

range  b x a . An immediate calculation shows the inequalities are true provided  
1 0ab ,  which is a required condition as stated above. The second fact  

XXX st
H

st )( **   is shown as follows. Since  X Xsl
* *   one has  X Xst

H* *( )   by the 

defining property of the Hardy-Littlewood majorant. Further, the relation  XX st
**   is 

obvious in view of the obtained expressions for their survival functions. Since  ( )* **X XH
st

the proof is complete.

2.4. Another Chebyshev ordered maximal random variable.

Clearly it is possible to make comparisons of ordered extremal distributions for other 
kinds of stochastic ordering relations. We illustrate at the stochastic order induced by the 
classical (two-sided) Chebyshev inequality

(2.13) 2

2

,1min)Pr(
x

xX ,

valid for all  ,0x   and all  X D D2 2
2(( , ); , ) . For two random variables 

X Y D, 2, we say that  X  precedes  Y  in Chebyshev order, written X YT , if the inequality

(2.14) Pr ( ) Pr ( )X x Y x
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holds uniformly for all  ,0x . It follows from Remark II.4.1 that the Chebyshev upper 

bound is attained by a triatomic random variable in  D2  with support  xx ,,   and 

probabilities 2

2

2

2

2

2

2
,1,

2 xxx
  in case  x2 2 , and by a diatomic random variable in  D2

with support  ,   and probabilities  2
1

2
1 ,   in case  x2 2 . It is less well-known 

that this maximum is attained by a Chebyshev ordered maximal random variable  TX , a 
random variable satisfying the property X XT

T   for all X D2 , whose distribution is

(2.15) )(xF T

1

2

1

2

1
1

2

2

2

( ) , ,

, ,

( ) , .

x
x

x

x
x

Indeed a calculation shows that

(2.16)
2

2

,1min)()(1)Pr(
x

xFxFxX TTT ,

which shows that the Chebyshev upper bound (2.13) is attained at  TX . A probability density 
is

(2.17) )(xf T

2

3

2

3

0

( )
, ,

, ,

( )
, .

x
x

x

x
x

Through calculation one shows that E X Var XT T, , hence X DT
2.

Remark 2.1.  It is interesting to note that (2.17) can be obtained from a first order differential 
equation. Consider the probability functional

(2.18) ,0,),Pr()( 2 xDXxXxH X .

As stated above the maximum  2

2
* ,1min)(max)(

2 x
xHxH X

DX
  is attained at finite 

atomic symmetric random variables. Restrict the optimization over symmetric random 
variables  X  on  ( , )   with distribution  F xX ( )   and density  f x F xX X( ) ' ( ) . The 
relation H x F x F xX X X( ) ( ) ( )1 implies the property
f x f x H xX X X( ) ( ) ' ( ) . In case  X  is symmetric around the mean, this implies the 
differential equation

(2.19) f x H xX X( ) ' ( )1
2 .
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This must also be satisfied at the extremum by a symmetric random variable  X*  with 
probability density f x* ( )   such that

(2.20) f x H x x* *( ) ' ( ), .1
2 0

Through differentiation one verifies immediately that X XT* .

Concerning ordering comparisons, we obtain that  TX   is in dangerousness order 
between )2*(X   and )2(X .

Proposition 2.2.  The ordered extremal random variables  )2*()2()2( ,, XXX u   and  TX , all 

defined on ( , ) , satisfy the following stochastic ordering relations :

(2.21) )2()2( XXX st
T

stu ,

(2.22) T
D XX ,

)2*( .

Proof.  Without loss of generality it suffices to consider the standardized situation  
0 1, . The extremal distributions are given as follows :

(2.23) )()2( xF

0 0

1
0

2

2

,

,

x

x

x
x

,    )()2( xFu

1

1
0

1 0

2x
x

x

,

,

(2.24) )(xF T

1

2
1

1

2
1 1

1
1

2
1

2

2

x
x

x

x
x

,

,

,

,    F x
x

x

*( ) ( ) ( )2

2

1

2
1

1
.

For (2.21) one shows that  )()()( )2()2( xFxFxF u
T   uniformly for all  x. To show (2.22) 

one verifies the once-crossing condition

(2.25) F x F x x F x F x xT T*( ) *( )( ) ( ), , ( ) ( ),2 20 0.

2.5. Ordered extremal random variables under geometric restrictions.

Finally, let us illustrate the influence of geometric restrictions on the comparison of 
ordered extremal random variables. Since a geometric condition, for example symmetry, 
unimodality, etc., imposes a restriction upon the shape of a distribution function, it is natural 
to expect that an ordered maximal (minimal) random variable will decrease (increase) in that 
order when the reference set satisfies the geometric constraint. We illustrate this point at the 
stop-loss ordered maximal standard random variables with infinite range ( , ) .
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From Table II.6.2 one derives via  F x xS S
* *( ) ' ( )   the stop-loss ordered maximal 

symmetric distribution

(2.26) )(* xFS

1

8

1

2
1

2

1

2

1

2

1
1

8

1

2

2

2

x
x

x

x
x

, ,

, ,

, ,

Without the symmetric condition one has from (2.24)

(2.27) F x
x

x

* ( ) ( ).
1

2
1

1 2

Let X XS
* *,   be corresponding random variables with distribution functions  F x F xS

* *( ), ( ). A 
calculation shows that the difference  F x F xS

* *( ) ( )  has  n=3  proper sign changes, the first 

one from  +  to  , occuring at the crossing points  t1

1

4
7 17 , t 2 0, t t3 1. One 

observes that both means are zero (symmetric random variables) and that the stop-loss 
transforms are equal at  t 2 0, namely  * *( ) ( )0 0 1

2S . Applying the extended Karlin-
Novikoff crossing condition (1.7) in Theorem 1.3, one concludes that X XS sl

*
,

* .

3. The stop-loss ordered maximal random variables by known moments to order four.

Recall from Section III.5 the following structure for the maximal stop-loss transform 
of standard random variables by given range  a b, , a b , and known moments to 

order four. There exists a finite partition  
m

i
ii ddba

1
1,,   with  d a d bm0 , , such that 

in each subinterval one finds a monotone increasing function  d x d di i i( ) ,1 , the 

parameter  x  varying in some interval  x xi i1 , , which one interprets as a deductible 

function. Then the maximal stop-loss transform on  d di i1 ,   is attained at a finite atomic 
extremal random variable  X xi ( )  with support  )(),...,( 10 xxxx iri   and probabilities  

)(),...,( 10 xpxp iri , x x xi i1 , , and is given implicitely by the formula

(3.1) .,...,1,,,))()(()())(( 1

1

0

* mixxxxdxxxpxd ii

r

j
iijiji

Applying the chain rule of differential calculus, one obtains

(3.2) F d x
d x

d xi
i

i

*
*

'
( ( ))

' ( ( ))

( )
1 , x x x i mi i1 1, , ,... , .

A thorough investigation of the analytical properties of the relation (3.1) shows then the 
validity of the following formula :

(3.3) .,...,1,,,1)(1))(( 1)()(

1

0

* mixxxxpxdF iixdxx

r

j
iji iij
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The present Section contains a proof of the last relation in case the moments up to order four 
are given. It is based on a detailed analysis of the deductible functions  d xi ( )   and the 
corresponding finite atomic extremal random variables at which * ( ( ))d xi   is attained. 

Furthermore, a simple proof of the following stochastic dominance property is 
included:

(3.4) XXX ststu
* ,

where uXX ,   are the Chebyshev-Markov extremal random variables by known moments up 

to the order four. Finally, by known mean and variance, one constructs less and more 
dangerous finite atomic approximations, which will be applied in Section VI.3.

3.1. The stop-loss ordered maximal random variables by known mean and variance.

The stop-loss ordered maximal distributions have already been described in tabular 
form in the proof of Theorem 2.4. For completeness the more structured and compact 
mathematical forms (3.1) and (3.3) are included here. It is also striking to observe that the 
deductible functions can be written as weighted averages of extremal atoms.

Theorem 3.1.  The maximal stop-loss transform and the stop-loss ordered maximal 
distribution of an arbitrary standard random variable on  a b,   are determined in Table 3.1.

Table 3.1: maximal stop-loss transform and stop-loss ordered maximal distribution on a b,

case range of
parameter

range of
deductible

* ( ( ))d xi F d xi
* ( ( )) extremal

support

(1) x a
a d x a a1

1
2( ) ( ) p a d xa

( ) ( ( ))2
1 1

1

1
2

2
p

aa
( )

aa,

(2) a x b

1
2

2
1
2

( )

( ) ( )

a a

d x b b p x d xx
( ) ( ( ))2

2

1
1

1
2

2
p

xx
( )

xx,

(3) x b 1
2 3( ) ( )b b d x b p b d xb

( ) ( ( ))2
3

1
1

2
2

2
p

b

bb
( )

bb ,

The monotone increasing deductible functions are "weighted averages of extremal atoms" 
given by the formulas :

(3.5) d x
a x a a a a

a x a a1 ( )
( ) ( )

( ) ( )
, d x x x2

1

2
( ) ( ) , d x

b b b x b b

b b x b3 ( )
( ) ( )

( ) ( )
.

Proof.  The formulas for the deductible functions  d xi ( ) and the maximal stop-loss transform 
* ( ( ))d xi   have been described in Theorem III.5.1. To prove (3.3) one uses (3.2). In the 

cases (1) and (3) the relation is trivial because the atoms of the extremal support do not 
depend upon the parameter  x. For case (2) set  d x d x p px x( ) ( ), ( )

2
2 . Then by (3.2) one 

sees that (3.3) holds if and only if the following identity is satisfied :
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(3.6)
d

dx
p x d x p

d

dx
xx x( ( )) 0.

One concludes with elementary calculations, which show that

(3.7)
d

dx
x

x

x
,

(3.8)
2)(

2

xx

x

xx

x

dx

d
p

dx

d
x .

Remarks 3.1.

(i)  Since the deductible functions are monotone increasing, they may be inversed, that is the 
parameter  x  may be expressed as function of the deductible  d=d(x). In case (2) one finds

(3.9) x d d1 2 ,

which implies the explicit dependence

(3.10) F d
d

d
a a d b b* ( ) ( ), ( ) ( )

1

2
1

1 2

1
2

1
2 ,

as obtained previously.

(ii)  For practical purposes it is useful to state the stop-loss ordered maximal distributions for 
the limiting cases of Table 3.1 letting b   and a . For the interval ,a   one gets

(3.11) )(* xF

1

1
1

2
1

1

2
1
2

2

1
2

a
a x a a

x

x
x a a

, ( ),

( ), ( ),

and for the interval ( , )   one has

(3.12) F x
x

x
x* ( ) ( ), ( , )

1

2
1

1 2
.

For later use, let us apply the technique of mass concentration and mass dispersion of 
Section 1 to derive ordered finite discrete approximations to the stop-loss ordered maximal 
random variables. First of all one observes that the stop-loss ordered minimal distribution over
a b,   is already discrete, and thus it not necessary to find a discrete approximation to it. In 

fact X*  is a diatomic random variable with support ab ,   and probabilities
ab

a

ab

b )(
, ,

as can be  seen from Table 2.1. For the stop-loss ordered maximal distribution over  a b, , we 
obtain the following result.
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Proposition 3.1.  Let  X*  be the stop-loss ordered maximal standard random variable on  
a b, . Then there exists a triatomic random variable  X Xc D

*
,

*   with support  

b
ab

ba
a ,

1
,   and probabilities  2222 1

1
,

1

1

1

1
1,

1

1

bbaa
, and a  4-atomic 

random variable  X Xd D
*

,
*   with support  bbbaaa ),(),(, 2

1
2
1   and probabilities  

2222 1

1
,

))(1(

)1(
,

))(1(

))(1(
,

1

1

babb

bab

aba

aab

a
.

Proof.  We set 1
2 ( )a a , 1

2 ( )b b , and apply the Lemmas 1.1 and 1.2. We use Table 

2.2 and note that F x* ( )   is continuous over the whole open range ba, .

Step 1 :  construction of the less dangerous discrete approximation

One concentrates the probability mass of the interval  ,   on an atom  xc   of  Xc
*  with 

probability  
22

**

1
1

1
1

1)()(
ba

FF , where  x c   is chosen such that the mean 

over ,   is preserved (use Lemma 1.1):

(3.13) x
F F

F Fc

* * * *

* *

( ) ( ) ( ) ( )

( ) ( )
.

Using that  * ( ) ( )1
2 a ,  * ( ) ( )1

2 b , an elementary calculation shows that  

x
a b

abc 1
. Since  F x* ( )   has jumps in  a  and  b, it follows that  Xc

*  is the displayed 

triatomic random variable.

Step 2 :  construction of the more dangerous discrete approximation

Mass dispersion over the interval  ,   on the pair of atoms  ,   with probabilities  

pp ,   yields by Lemma 2.2 :

(3.14) p
x F F ab a

a b a
c( )( ( ) ( )) ( )( )

( )( )

* * 1

1 2 ,

(3.15) p F F p
ab b

b b a
* *( ) ( )

( )

( )( )

1

1 2
.

Since  F x* ( )   has jumps in  a  and  b, one concludes that  Xd
*   is the displayed  4-atomic 

random variable.

3.2. The stop-loss ordered maximal random variables by known skewness.

The structured form (3.1) of the maximal stop-loss transform of random variables by 
given range  a b,   and known mean, variance and skewness    has been described in 
Theorem III.5.2.
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Theorem 3.2.  The stop-loss ordered maximal distribution of an arbitrary standard random 
variale on a b,   by known skewness   is determined in Table 3.2.

Table 3.2 :  stop-loss ordered maximal distribution on  a b,   by known skewness

case range of 
parameter

F d xi
* ( ( )) extremal support

(1) x a p
b b

b a a a ba
( )

( )( ( ) )
3

2

2

1

2 1 bbaa ),,(,

(2) a x c p
b b

b x x x bx
( )

( )( ( ) )
3

2

2

1

2 1 bbxx ),,(,

(3) x b
1

1

1
2

2
p

cc
( )

cc,

(4) x a
1

1

1
2

2
p

cc
( )

cc,

(5) c x b 1 1
1

2 1
3

2

2
p

a a

x a x x ax
( )

( )( ( ) ) xxaa ),,(,

(6) x b 1 1
1

2 1
3

2

2
p

a a

b a b b ab
( )

( )( ( ) ) bbaa ),,(,

The monotone increasing deductible functions are "weighted averages" and given by the 
formulas following Table III.5.2.

Proof.  Since the expressions for the  maximal stop-loss transform are known, it remains to 
show (3.3) using (3.2) and (3.1). The cases (1), (3), (4), (6) are trivial because the extremal 
support does not depend upon the parameter  x.

Case (2) :

Setting  d x d x( ) ( )2   one has the relation  * ( )( ( )) ( ( ))d x x p x d xx
3 . Then (3.3) 

holds if and only if the identity

(3.16)
d

dx
p x d x px x

( ) ( )( ( ))3 3 0

holds, or equivalently

(3.17)
xxd

p
dx

d
x )(

1
ln )3( .

Using the relation

(3.18)
bx

bxb
bx

dx

d

1

),(1
),( ,

one shows with elementary calculations that

(3.19) .
),(

21
),(lnln),(1lnln )3(

xbxxb
xbxxbbxb

dx

d
p

dx

d
x
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On the other side one has

(3.20) d x x
b x x b b

b x x b b
( )

( )( ( , ) )

( ) ( ( , ) )2
,

from which (3.17) follows through comparison.

Case (5) :

With  d x d x( ) ( )5   and  * ( )( ( )) ( ( ))d x p x d xx
3   one sees that (3.3) is equivalent with 

the identity

(3.21)
xxd

p
dx

d
x )(

1
ln )3( .

As above one shows that

(3.22)
,

),(
21

),(lnln),(1lnln )3(

xaxax

xaxaxxaa
dx

d
p

dx

d
x

(3.23) d x x
x a x a x

x a x a x
( )

( )( ( , ))

( ) ( ( , ))2
,

from which (3.21) follows through comparison.

Again it is useful to state the above result for the limiting cases  b   or/and  
a . One observes that for the limiting range  ( , )   one recovers (3.12). In this 
situation there is no improvement by additional knowledge of the skewness. For the interval  

,a   the obtained distribution is of a reasonable mathematical tractability. 

Table 3.2'' :  stop-loss ordered maximal distribution on ,a   by known skewness 

case range of parameter F d xi
* ( ( )) extremal support

(1) x a
1

1

1
2

2
p

aa
( )

aa,

(2) a x c
1

1

1
2

2
p

xx
( )

xx,

(3) x a
1

1

1
2

2
p

cc
( )

cc,

(4) x c 1 1
1

2 1
3

2

2
p

a a

x a x x ax
( )

( )( ( ) ) xxaa ),,(,

The deductible functions take the weighted average forms following Table III.5.2''.
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3.3. The stop-loss ordered maximal random variables by known skewness and kurtosis.

The structured form (3.1) of the maximal stop-loss transform of distributions by given 
range  a b,   and known mean, variance, skewness and kurtosis, has been described in 
Theorem III.5.3.

Theorem 3.3.  The stop-loss ordered maximal distribution of an arbitrary standard random 
variable on a b, by known skewness   and kurtosis 2 3  is given as follows :

Table 3.3 :  stop-loss ordered maximal distribution on a b, by known skewness and 

        kurtosis, ( )2 1

case range of parameter F d xi
* ( ( )) extremal support

(1) x a
p

q a aa
( )

( ) ( )
3

2 21 ** ),,(, aaaa

(2) a x b* p
q x xx

( )

( ) ( )
3

2 21 ** ),,(, xxxx

(3) x b
p

q b b
b*

( )

* *( ) ( )

3

2 2
1 bbbb ),,(, **

(4) x a
p

q b b
b*

( )

* *( ) ( )

3

2 2
1 bbbb ),,(, **

(5) b x a a* *( , )
p p

b

b a a

ab b a x

b a a b x x

a x
( ) ( )

( )( )

( )( ) ( ) ( )

( )( )( )( )

4 4 1

1

bxa ,,,
( ; , ),

( , )

x a b

a b

(6) x b
1 1

1

3

2 2
p

q a a
a*

( )

* *( ) ( )
** ),,(, aaaa

(7) x a
1 1

1

3

2 2
p

q a a
a*

( )

* *( ) ( )
** ),,(, aaaa

(8) a x b* 1 1
1

3

2 2
p

q x x
x*

( )

* *( ) ( )
** ),,(, xxxx

(9) x b
1 1

1
3

2 2
p

q b bb
( )

( ) ( ) bbbb ),,(, **

The monotone increasing deductible functions are defined by the "weighted averages" 
following Table III.5.3.

Proof.  It remains to show (3.3). Clearly the cases (1), (3), (4), (6), (7), (9) are trivial. We 
show first the simpler cases (2) and (8), then (5).

Case (2) :

With  d x d x( ) ( )2   one has the relation  * ( )( ( )) ( ) ( ( ) )d x d x p d x xx
3 , from which 

one deduces that (3.3) holds if and only if the following identity holds :
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(3.24)
xxd

p
dx

d
x )(

1
ln )3( .

According to Theorem I.5.3, the value  z x*  can be viewed as a real algebraic function  

z=z(x)  obtained as unique solution in the interval a b* ,   of the quadratic equation

(3.25) q x q z xz( ) ( ) ( )1 0, with
q t t t( ) ,1 12 2 .

Taking derivatives in (3.25) and rearranging, the derivative of the algebraic function  z=z(x)  
can be written as

(3.26)

,
)),())(,(1(

)),())(,(1(

)()1(

)1()(

)(

)(

)1)((')(

)1)((')(

)(

)(

)(')(

)()('
)(''

zxzzxx

xzxzxz

zxxzz

xzxzx

xq

zq

xzzqzxq

xzxqxzq

xq

zq

xzqxq

zzqxq
xzz

where, for the last equality, use has been made of the relations

(3.27)
( ( , ))( ) ( ), ( ( , ))( ) ( ) ,

( ( ))( ) ( , ).

1 1 1 1

1

z x z xz q z x x z xz q x

x z xz x z

It follows that

(3.28)
),(

),(
1

1

),(1
),(

zxz

xzx

xz

zxz
zx

dx

d
.

Some laborious but elementary calculations show that

(3.29) .
),(

11
2ln),(ln),(1lnln )3(

xzxxz
xzxzxzxz

dx

d
p

dx

d
x

On the other side it is immediate that

(3.30)
)()),((

))(),((

2

1
)(

xzxzx

xzxzx
xxd ,

from which (3.24) follows through comparison.

Case (8) :

With  d x d x z z x x( ) ( ), ( ) *
8 , one deduces from  * ( )( ( )) ( ( ))d x p z d xz

3   that 
(3.3) holds exactly when

(3.31)
zxd

p
dx

d

xz z )(

1
ln

)('

1 )3(

is fulfilled. Similarly to the above case (2), one shows that
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(3.32)
,

),(

11
2

ln),(ln),(1ln
'

1
ln

'

1 )3(

zxzxz

xzzxzzxx
dx

d

z
p

dx

d

z z

(3.33)
)()),((

)))(,((

2

1
)(

xzzxz

xzzxz
zxd ,

which implies (3.31) through comparison.

Case (5) :

With d x d x x a b( ) ( ), ( ; , )5 , one has for the maximal stop-loss transform

(3.34) * ( ) ( )( ( )) ( ) ( ( ) ) ( ( ) )d x d x p d x a p d x xa x
4 4 .

Using (3.2) one sees that (3.3) holds exactly when the following identity is fulfilled :

(3.35) )())(()(ln1 )4()4()4()4(
xaxx pp

dx

d
axdaxp

dx

d
p .

To calculate the left hand side of this expression, observe that

(3.36) p
a b ab

x a b x x

ab a b

x a b x xx
( ) ( )

( )( )( )

( )( ( , ) )

( )( )( )
4 1

.

An elementary calculation shows that

(3.37)
,

112

lnlnln),(lnln )4(

axxbx

xxbaxba
dx

d
p

dx

d
x

where one uses the fact that

(3.38)
xba

ba

dx

d

),(

),(
.

It follows that

(3.39)
22

)4()4(

)()(

))()(2)(),()(1(
)(ln1

xxb

xxbbaab
axp

dx

d
p xx .

Using the weighted average representation of  d(x)  one shows without difficulty that

(3.40) d x a
b a b x x a

b x x a a x b x
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

2 2

2

2 2 .

Combining (3.39) and (3.40) one obtains
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(3.41)

,
)()(

1

))((

2

)()(

1

))((

2

)),()(1(
)(

)(

2222

)4()4(

xaxaxxbxxb

baab
axd

axpp xdx
d

x

which by (3.35) must be equal to
d

dx
p pa x( )( ) ( )4 4 . To show this rewrite pa

( )4   as follows :

(3.42)

p
x b xb

b a x a a

a b ab b a x

b a x a a

ab a b

b a x a a

ab

b a a

b

b a

a
( ) ( )

( )( )( )

( ) ( )( )

( )( )( )

( )( ( , ) )

( )( )( ) ( )( )
.

4 1

1 1

From (3.36) one obtains

(3.43)
))((

1

))((

1

)(

)),()(1()4(

xxbxaxab

baab
px .

(3.44)
ab

b

xa

ba

xxb

ba

ab

ab
pp xa ))((

),(

))((

),(

)(

)1()4()4( ,

from which one gets in particular the expression displayed in Table 3.3. Through application 
of (3.38) and some elementary calculations one shows that

(3.45)
)()(

1

))((

2
)),((

))((

),(
22 xxbxxb

ba
xxb

ba

dx

d
,

(3.46) .
)(

1

)()(

1

))((

2
)),((

))((

),(
22 adx

d

xaxa
ba

xa

ba

dx

d

With (3.44) one obtains that  
d

dx
p pa x( )( ) ( )4 4   coincides with the right-hand side of (3.41).

The limiting cases  b   or/and  a   simplify considerably. Mathematical details of 
the limiting process are parallel to those required to derive Tables III.5.3' and III.5.3''.

Table 3.3' :  stop-loss ordered maximal distribution on ( , ) by known skewness
          and kurtosis

case range of 
parameter

range of
deductible

F d x* ( ( )) extremal support

(1) x c d x( ) 1
2

p
q x xx

( )

( ) ( )
3

2 21 zzxx ),,(,

(2) x c d x( ) 1
2

1 1
1

3
2 2

p
q x xx

( )

( ) ( ) xxzz ),,(,
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The monotone increasing deductible function is defined by the weighted average

)(),(

)(2)(),(

2

1
)(

xzxzx

xxzzxxzx
xd ,

where  z=z(x)  is the unique solution of the quadratic equation q x q z xz( ) ( ) ( )1 0,
with q t t t( ) ,1 12 2 , such that ,cz   if cx , , respectively

cz ,   if ,cx .

Table 3.3'' :  stop-loss ordered maximal distribution on  ,a by known skewness
           and kurtosis

case range of parameter F d xi
* ( ( )) extremal support

(1) x a
p

q a aa
( )

( ) ( )
3

2 21 ** ),,(, aaaa

(2) a x c
p

q x xx
( )

( ) ( )
3

2 21 ** ),,(, xxxx

(3) x a
1

1

1
2

2
p

cc
( )

cc,

(4) c x a a( , )*

axxxaa

ax

p

)1(2)1(2

)1(
1

1

22

3

)4(

),(,, xaxa

(5) x a
1 1

1

3

2 2
p

q a a
a*

( )

* *( ) ( )
** ),,(, aaaa

(6) a x c
1 1

1

3

2 2
p

q x x
x*

( )

* *( ) ( )
** ),,(, xxxx

The monotone increasing deductible functions are defined by the "weighted averages" 
formulas following Table III.5.3''.

Example 3.1 :  skewness and kurtosis of a standard normal distribution

In the special case 0 02, , one gets the very simple distribution function

(3.47) ))((* xdF

2

3
1

1
2

3
1

4

4

x
x

x
x

, ,

, ,

where the deductible function is defined by

(3.48) ,11,,
1

4

3
)(

3

4

x
x

x
xd .
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3.4. Comparisons with the Chebyshev-Markov extremal random variables.

Based on the simple analytical structure (3.1) and (3.3) for the maximal stop-loss 
transform and its associated stop-loss ordered maximal distribution, we present a simple proof 
of the stochastic order relation  XXX ststu

* , which appears to hold by known moments 

up to the fourth order and any given range ),(,,,, aba .

Theorem 3.4.  Let  *,, XXX u   be the Chebyshev-Markov extremal and the stop-loss 

ordered maximal random variables by given range and known moments up to the order four, 
the first two assumed to be standardized. Then the stochastic order relation  XXX ststu

*

holds under each possible combination of the moment constraints.

Proof.  The formulas (3.1) and (3.3) tell us that the maxima  * ( ( ))d xi   and  F d xi
* ( ( )) ,

i=1,...,m, are attained at the same finite atomic extremal random variable, say  X xi ( ). But the 
last random variable is defined on the given range and satisfies the required moment 
constraints. By the classical Chebyshev-Markov probability inequalities, it follows that

(3.49) .,...,1,,)),(())(())(())(( 1
*

)( mixxxxdFxdFxdFxdF iiiuiixXi i

Since  d x d di i i( ) ,1   is arbitrary and  d di i
i

m

1
1

,U   is a finite partition of the given range, 

one concludes that )()()( * xFxFxF u   uniformly for all  x  in the given range.

4. The stop-loss ordered minimal random variables by known moments to order three.

The stop-loss ordered minimal standard distribution for arbitrary standard random 
variables with range  a b,   has been described in Table 2.1, and a comparison with the 
Chebyshev-Markov extremal random variables has been stated and proved in Theorem 2.4.

4.1. Analytical structure of the stop-loss ordered minimal distribution.

In Theorem III.4.2 the Chebyshev-Markov extremal distributions for a standard 
distribution by known skewness and range a b,   have been stated and derived. In the present 
Section we will need their explicit analytical expressions, which are obtained in an elementary 
way using the explicit characterization of triatomic random variables given in Theorem 
III.5.2. First, the analytical structure of the minimal stop-loss transform is derived. Then, by 
differentiation, the stop-loss ordered minimal distribution is obtained.

Theorem 4.1.  The minimal stop-loss transform  )(min)(* xXEx   over the set of all 

standard random variables  X  defined on  a b,   with known skewness    is given and 
attained as in Table 4.1.

Proof.  From Kaas and Goovaerts(1986), Theorem 1, one knows that the minimal stop-loss 
transform is attained for the finite atomic random variables, at which the Chebyshev-Markov 
maximum  F xu ( )  is attained. The extremal triatomic random variables, at which  * ( )x   is 
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attained, have been given in Table III.4.2. The values of  * ( )x   in the cases (1) and (4)  are 
immediate because all atoms are either above or below the deductible. In case (2) the formula 
follows from

* ( , )
( )( ) ( ( , ) )

( , )
x p a x x

ax

a x aa x
3 1

,  and in case (3) from

*
( )( ) ( )

( , )

( , )
x p b x

x x b

b x bb
3 1

.

Table 4.1 :  Minimal stop-loss transform for standard distributions by known
        skewness   and range a b,

case condition * ( )x extremal support
(1) a x c -x bbxx ),,(,

(2) c x a b( , ) ( )

( )

1

2 1

2

2

ax

a a x

),(,, xaxa

(3) ( , )a b x c 1

2 1

2

2

x x

b b x( )

bxbx ,),,(

(4) c x b 0 xxaa ),,(,

Theorem  4.2.  The stop-loss ordered minimal distribution associated to any standard random 
variable on a b,   by known skewness   is determined in Table 4.2.

Table 4.2 :  Stop-loss ordered minimal distribution by skewness   and range a b,

case condition F x* ( )

(1) a x c 0

(2) c x a b( , ) 2

2

2

2 )1(2

1
1

1

1

xaa

aa

a

(3) ( , )a b x c 2

2

2

2 )1(2

1
1

1

1
1

xbb

bb

b

(4) c x b 1

Proof.  Only the cases (2) and (3) are non-trivial.
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Case (2) : x c a b, ( , )

Using Table 4.1 one obtains after elementary calculations

F x
d

dx
x

a x ax

a a x* *( ) ( )
( ) ( )

( ( ) )
1

1

2 1

2 2

2 2 .

One the other side one has the partial fraction expansions

axa

aa
a

aaxa

ax

2)1(

1
1

1

1

2)1( 2

2

22
,

axa

aa
a

aaxa

ax

2)1(

1

1

1

2)1(

1
2

2

22
.

Inserted in the expression for F x* ( )  one gets the desired formula.

Case (3) : x a b c( , ),

An elementary calculation shows that

F x
d

dx
x

b x bx

b b x* *( ) ( )
( ) ( )

( ( ) )

2 2

2 2

1

2 1
.

The same calculations as in case (2) with  a  replaced by  b  shows the desired formula.

4.2. Comparisons with the Chebyshev-Markov extremal random variables.

As stated in the stochastic ordering relation (2.9), it is natural to ask if the stochastic 
order relation XXX ststu *   holds, or equivalently

(4.1) )()()( * xFxFxF u ,  for all x a b, .

A detailed analysis shows the following sharper result.

Theorem 4.3.  By known skewness and range  a b, , the standard Chebyshev-Markov 
extremal distributions and the stop-loss ordered minimal distribution satisfy the following 
inequalities :

Case (1) : )()()(0 * xFxFxF u ,  for all cax ,

Case (2) : )()(
1

1
)( *2 xFxF

a
xF u ,  for all x c a b, ( , )

Case (3) : )(
1

)()( 2

2

* xF
b

b
xFxF u ,  for all x a b c( , ),

Case (4) : 1)()()( * xFxFxF u ,  for all bcx ,
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Proof.  Clearly only cases (2) and (3) require a proof. The idea is to exploit the explicit 

dependence upon the skewness min max, ,a a b b (see Theorem I.4.1).

Case (2) : x c a b, ( , )

Step 1  : )(
1

1
)( *2 xF

a
xF

The second inequality follows immediately from the expression in Table 4.2. To show the 
first inequality, observe that

p p
aa a x

( )
min ( , )

( )
min( ) ( )3 3

2
1

1

1
.

Since

p
ax

x a a a xa
( ) ( )

( )

( )( ( ) )
3

2

2

1

2 1
0,

the function pa
( ) ( )3   is decreasing in . It follows that

2min
)3()3(

1

1
)()()(

a
ppxF aa .

Step 2  : F x p F xa x u* ( , )
( )( ) ( )1 3

Using Table III.4.2, Theorem I.5.2 and Table 4.2, one must show the inequality

h
a

a

a
( ): ( ) ( )

1

1 12
2

2

2
,

where one defines

( ):
( )

( ( ) )( ( ) )

1

2 1 2 1

3

2 2

ax

a a x x x a
,

( ):
( )

1

2 1

2

2

a a

a a x
.

But one has  ' ( ) , ' ( ) , ( )0 0 0, hence  h'( ) 0. Since  h( )  is monotone 
decreasing in , the affirmation follows from

h h
a

a

a

a

a
( ) ( ) ( ) ( )min min min

1

1 1
0

12
2

2

2

2

2
.

Case (3) : x a b c( , ),

Step 1 : F x
b

b
F xu* ( ) ( )

2

21
The first inequality follows immediately from the expression in Table 4.2. To show the 
second inequality, observe that

1
1

3 3
2

2p p
b

bb b x
( )

max ( , )
( )

max( ) ( ) .
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Since

p
bx

b x b b xb
( ) ( )

( )

( )( ( ) )
3

2

2

1

2 1
0,

the function pb
( ) ( )3   is increasing in . It follows that

b

b
p p F xb b u

2

2
3 3

1
1 1( )

max
( )( ) ( ) ( ) .

Step 2  : )()( *
)3(

),( xFpxF bx

Using Table III.4.2, Theorem I.5.2 and Table 4.2, one must show the inequality

h
b

b

b
( ): ( ) ( )

1

1 12
2

2

2
,

where one defines

( ):
( )

( ( ) )( ( ) )

1

2 1 2 1

3

2 2

bx

b b x x x b
,

( ):
( )

1

2 1

2

2

b b

b b x
.

But one has  ' ( ) , ' ( ) , ( )0 0 0, hence  h'( ) 0. Since  h( )  is monotone 
increasing in , the affirmation follows from

h h
b

b

b

b

b
( ) ( ) ( ) ( )max max max

1

1 1
0

12
2

2

2

2

2
.

4.3. Small atomic ordered approximations to the stop-loss ordered minimum.

First, a less dangerous finite atomic random variable  X Xc
D* , *   is constructed from 

Table 4.2 by concentrating the probability masses in the subintervals  c a b, ( , )   and 

( , ),a b c   on two atoms  x y0 0, . The resulting random variable  Xc
*  is in general based on a 

5-atomic support.

Proposition 4.1.  Let  X*  be the stop-loss ordered minimal random variable defined on  
a b,   by known skewness  . Then there exists a  5-atomic random variable  X Xc

D* , *

with support cybaxc ,),,(,, 00   and probabilities

)(),),(()(),),(()),((),()),((),( ******** cFbaFcFbaFbaFcFbaFcF ,
where the displayed quantities are given by the following formulas :

(4.2) )4(,
)1(2

2
)(,

)1(2

2
)( 2

2
1

2*2* c
cbb

c
cF

caa

c
cF ,

(4.3)
2

2

*2

2

* )(

1
)),((,

)(

1
)),((

ab

a
baF

ab

b
baF ,
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(4.4)
)()),((

)),(()()),((),()(

**

****
0 cFbaF

bacbaFbacFc
x

(4.5)
)),(()(

)()),(()()),((),(

**

****
0 baFcF

cbacFcbaFba
y

Proof.  Formulas (4.4) and (4.5) follow by applying Lemma 2.1 to the intervals  c a b, ( , )
and  ( , ),a b c . The formulas (4.2) are checked by observing that  c c,   are zeros of the 

quadratic equation  z z2 1 0. The formulas (4.3) are obtained most simply from the 
equivalent analytical representations

(4.6) ),(,,
),(

),(1
1

1

1
)(

2

2* bacx
axa

xaa

a
xF ,

(4.7) cbax
bxb

bxb

b
xF ),,(,

),(

),(1
1

1

1
)(

2

2* .

Indeed putting  x a b( , )  into (4.6) and using that  ( , ( , ))a a b b  yields immediately 
the value of  F a b* ( ( , ) ). Simlarly putting  x a b( , )  into (4.7) and using that  

( ( , ), )a b b a  shows the second formula in (4.3). Finally the support of  Xc
*  is in general  

5-atomic because F x* ( )  may have discontinuities at x c a b c, ( , ), .

Remark 4.1.  The distribution  F x* ( )  is continuous at  x a b( , )   only if  b a,

min max a a b b . This degenerate situation must be analyzed separately.

Next, a more dangerous finite atomic random variable  X Xd
D* , *   is constructed 

from Table 4.2 by dispersing the probability masses in the subintervals  c a b, ( , )   and  

( , ),a b c   on the two pairs of atoms  ),(, bac   and  cba ),,( . The resulting random 

variable Xd
*   is triatomic with support cbac ),,(, .

Proposition 4.2.  Let  X*  be the stop-loss ordered minimal random variable defined on  
a b,   by known skewness  . Then there exists a triatomic random variable  X Xd

D* , *

with support cbac ),,(,   and probabilities

),(

)()),((
,

),(

)()),((

),(

)),(()(
,

),(

)),(()(
1 ********

bac

cba

bac

cba

cba

bac

cba

bac

Proof.  Mass dispersion over the subinterval  c a b, ( , )   on the pair of atoms  ),(, bac

with probabilities ppc ,   yields through application of Lemma 2.2 the formulas

p F c
c a b

a b cc *
* *( )
( ) ( ( , ))

( , )
, p

c a b

a b c
F a b* *

*

( ) ( ( , ))

( , )
( ( , ) ) .

A similar mass dispersion over ( , ),a b c   yields probabilities
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p F a b
a b c

c a b*
* *( ( , ) )
( ( , )) ( )

( , )
, p

a b c

c a b
F cc

* *
*

( ( , )) ( )

( , )
( ) .

Through addition one finds that the random variable  Xd
*   with support  cbac ),,(,   has 

probabilities equal to the desired ones.

4.4. The special case of a one-sided infinite range.

All of the preceding results, valid for an arbitrary finite interval  a b, , can be 
formulated for the important limiting case  b . Of main help for this is the limiting 
relation lim ( , )

b
a b a . One finds that the corresponding stop-loss ordered minimal random 

variable X*  has distribution given in Table 4.2''.

Table 4.2'' :  Stop-loss ordered minimal distribution by skewness   and range ,a

case condition F x* ( )
(1) a x c 0

(2) c x a 2

2

2

2 )1(2

1
1

1

1

xaa

aa

a

(3) x a 1

In this situation the construction of the finite atomic stop-loss ordered confidence bounds   
X X D Xc

D D
d

* , * , *   simplifies considerably. In particular there exist diatomic less and 

more dangerous bounds.

Proposition 4.3.  Let  X*  be the stop-loss ordered minimal random variable on  ,a   with 

known skewness  ,aa . Then there exists a diatomic random variable  X Xc
D* , *

with support  
caac

c
c

cF

cF
cc

2

2

*

*

2

1
,

)(

)(
)(,   and probabilities  )(),( ** cFcF , with 

F c
c

a a c* ( )
( )

2

2 1 2
, and a diatomic random variable  X Xd

D* , *   with support  ac,

and probabilities
ca

c

ca

a
, .

Proof.  Concentrating the probability mass over  c a,   on the atom  x 0, one finds, taking into 

account that  F a* ( ) 0, that

)(

)(

*

*

0 cF

dxxF
cx

a

c .
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Since  0)(***

a

c
dxxFcXEXE , one gets the desired value of  x0. The less 

dangerous bound is diatomic because  F a* ( ) 0. Calculation of the more dangerous diatomic 
bound through mass dispersion presents no difficulty and is left to the reader. Observe that it 
is also possible to take the limit as b   in the first part of the proof of Proposition 4.2.

Remark 4.2.  Clearly the stochastic order properties of Theorem 4.3 carry over to the limiting 
situation ,a . In particular one has the inequalities

acxxFxF
a

xF u ,),()(
1

1
)( *2

.

This suggest to consider the diatomic random variable  X
~   with support  ac,   and 

probabilities
2

2

2 1
,

1

1

a

a

a
  as discrete approximation of X*. Comparing means, one finds 

that XEXE
~

0* . A comparison of the stop-loss premiums of Xd
*   and X

~
  shows that

)(
1

)()(
2

2

* xa
a

a

ca

xa
cxd

uniformly for all  x c a, . Therefore one has  XX sl
d ~
* , which means that the diatomic 

approximation Xd
*   is stop-loss tighter than X

~
.

Example 4.1.  Of special importance is the special case  ,
1

,
1 2

k

k

k
a ,

where  , , k   are the mean, variance and coefficient of variation of a random variable with 
known skewness , which in the non-standard scale is defined on the positive real line  ,0 .
The corresponding stop-loss ordered minimal distribution is given by

)(* xF

,,1

,,,
)1(2

1
1

1

,,
1

,0

2

22

2

2

2

kx

kcx
xkkk

kk

k

k

c
k

x

Its less and more dangerous diatomic bounds are found from Proposition 4.3.
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5. The stop-loss ordered minimal random variables by known skewness and kurtosis.

Similarly to Section 4, the explicit analytical structure of the stop-loss ordered 
minimal distribution is required in order to compare it with the Chebyshev-Markov extremal 
distributions. Then small atomic ordered discrete approximations are displayed.

5.1. Analytical structure of the stop-loss ordered minimal distribution.

Recall that the minimal stop-loss transform values are attained at the finite atomic 
random variables, which solve the Chebyshev-Markov problem. Using Table III.4.3 , one 
obtains Table 5.1.

According to Theorem I.5.3, the value  z x*  can be viewed as a real algebraic 
function  z=z(x)  obtained as the unique solution of the quadratic equation

(5.1) q x q z xz( ) ( ) ( )1 0, with q t t t( ) , ( )1 12 2 ,

which satisfies the condition  z a b* ,   if  x a b a a b b, ( , ), ( , )* * * , respectively 

z a b, *   if  x a b* , . The analytical structure of the stop-loss ordered minimal 

distribution obtained from the defining property F x x* *
'( ) ( )1 , is quite complex.

Table 5.1 :  Minimal stop-loss transform for standardized distributions on a b,   by
         known skewness and kurtosis

case condition minimum * ( )x extremal support

(1) a x b* -x zzxx ),,(,

(2) b x a a* *( , ) x p x aa
( ) ( )4 bbaxxa ),,;(,,

(3) ( , ) ( , )* *a a x b b p z xz
( ) ( )3 zxzx ,),,(

(4) ( , )* *b b x a p b xb
( ) ( )4 bxbaxa ,),,;(,

(5) a x b* 0 xxzz ),,(,

Theorem 5.1.  The stop-loss ordered minimal distribution for standard distributions on  a b,
by known skewness and kurtosis is determined in Table 5.2.
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Table 5.2 :  stop-loss ordered minimal distribution on a b,   by known skewness and
        kurtosis

case condition F x* ( )

(1) a x b* 0

(2) b x a a* *( , )
1 1

2

b

b a a

ab

b a a( )( )

( )( )

( )( )

(3) ( , ) ( , )* *a a x b b 1
1 2 12

2 3

( , )

( ( , ))

( ( , ))( ( , ))

( ( , ))

x z

z x z

x x z z x z

z x z

(4) ( , )* *b b x a 2))((

))(1(

))((

1
1

bab

ab

bab

a

(5) a x b* 1

For concrete calculations recall that ( , )
( )

x z
x z

xz1
, with  z=z(x)  defined by (5.1) and

(5.2) ( ; , )
( , ) ( , )

( , )
,x a b

a b x a b

x a b
  with ( , )

( )
a b

a b ab

ab1
.

In Table 5.2 and in the following one uses the abbreviations ( , ), ( ; , )a b x a b .

Proof.  We will need the derivatives

x
bax

dx

d
x ),;( ,

(5.3)
ax

xaa
xa

dx

d
xa x 1

),(1
),(),( ,

bx

bxb
bx

dx

d
bx x 1

),(1
),(),( ,

as well as the identities

(5.4) ( )( ( , )) ( )( )1 1ax b a x ab x , ( )( ( , ) ) ( )( )1 1bx x b a ab x .

Clearly the cases (1) and (5) are trivial. We first show the simpler cases (2) and (4), then (3).

Case (2) :

From Table 5.1 and the explicit expression for pa
( )4   one has

(5.5) * ( )
( )( ( , ))

( )( )
x x

bx x b

b a a

1
.

Elementary calculations with the above formulas (5.3) and (5.4) show the desired expression 
for F x x* *

'( ) ( )1 .
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Case (4) :

This follows similarly to case (2) using the explicit expression

(5.6) * ( )
( )( ( , ) )

( )( )
x

ax a x

b a b

1
.

Case (3) :

An analytical expression for the minimal stop-loss transform is

(5.7) * ( )
( , )

( , ) ( )
x

x x z

z x z

x x

z z x

1 1

2 1

2

2 .

Through elementary calculations and rearrangements one obtains for the survival function

(5.8)

F x x
xz x z z xz x

z z x

x z z x x z

z x z

* *
'( ) ( )

( ) ( ) ' ( )( )

( )

( , ) ' ( ( , ))

( ( , ))

1 2 1 1

2 1

1 2 1

2 2 2

2 2

2

2

Taking derivatives with respect to  x  in (5.1) and making use of the latter identity, one obtains 
successively

(5.9)

,
)),())(,(1(
)),())(,(1(

))(()1(
)1()(

)(
)(

)()()()('

)()()()('

)(

)(

)()('

)()('
'

zxzzxx
xzxzxz

zxxzz
xzxzx

xq
zq

zxqzqxqzq

xzqzqxqxq

xq

zq

xxqzq

zzqxq
z

where, for the last equality, use has been made of the relations

(5.10)

( ( , ))( ) ( ),

( ( , ))( ) ( ),

( ( ))( ) ( , ).

1 1

1 1

1

z x z xz q z

x x z xz q x

x z xz x z

Inserting (5.9) into (5.8) one gets the desired expression for F x* ( ).

Since in practical applications the limiting ranges  ,a   and  ( , )   are of great 
importance, let us write down the resulting distributions in these situations.

Table 5.2' :  stop-loss ordered minimal distribution on ( , )   by known skewness
          and kurtosis

case condition F x* ( )

(1) x c 0

(2) c x c 1
1 2 12

2 3

( , )

( ( , ))

( ( , ))( ( , ))

( ( , ))

x z

z x z

x x z z x z

z x z

(3) x c 1
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Table 5.2'' :  stop-loss ordered minimal distribution on ,a   by known skewness
           and kurtosis

case condition F x* ( )

(1) a x c 0

(2) c x a a( , )*
1 2

2

( , )

( ( , ) )

a x

a x a

(3) ( , )*a a x c 1
1 2 12

2 3

( , )

( ( , ))

( ( , ))( ( , ))

( ( , ))

x z

z x z

x x z z x z

z x z

(4) c x a * 1

(5) x a* 1

Proof of Table 5.2''.  Only the limiting cases (2) and (4) must be checked. One notes that the 
supports of the finite atomic extremal random variables in Table 5.1 are in these limiting cases 
equal to ),,(,, xaxa   respectively  ,),,(, xxaa   (in the sense of Table 4.3''). Then 
case (4) is trivial because * ( )x 0. In case (2) one has

(5.11) *
( )( ) ( )

( , )

( , )
x x p x a x

x a x

a x aa
3 1

,

from which F x* ( )  follows by differentiation and some elementary calculations.

5.2. Comparisons with the Chebyshev-Markov extremal random variables.

A proof of the stochastic order relation  XXX ststu * , or equivalently 

)()()( * xFxFxF u , uniformly over the considered range, where the bounds are the 

standard Chebyshev-Markov extremal distributions, is provided in the order of increasing 
complexity for the ranges  ( , ) ,  ,a   and  a b, . The expressions for the standard 
Chebyshev-Markov extremal distributions are those of Tables III.4.3, III.4.3', and III.4.3''.

Theorem 5.2.  By known skewness, kurtosis and given range  ( , ) , the stochastic order 
relation )()()( * xFxFxF u   holds uniformly for all x ( , ) .

Proof.  Clearly only the case (2) of Table 5.4 is non-trivial. Setting  ( , )x z   one must 
show the inequalities, valid for x c c, ,

(5.12)

p
xz

x z

F x
z

x z

z

p
x

z x zz

( )

*

( )

( )( )

( )
( )

( )( )

( )

( )( )
.

3

2

2 3

3

1

1
1 2 1

1 1
1

The first inequality is shown to be equivalent with the inequality
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(5.13)
( )( )

( )( )

( )( )

( )

1 2 2 1
0

2 3

z x z

x z

x z

z
,

or rearranged

(5.14) 0)(2)()()(
))((

)1( 2
2 xzzx

zx

z
.

The expression in curly bracket can be rewritten as

(5.15) ( ) ( ) ( )z x x z2 ,

and is non-negative because the atoms of the support of the extremal distribution, which 
minimizes the stop-loss transform are ordered as  x z. Since this support defines a 
feasible triatomic random variable, the condition  px

( )3 0  implies in particular that  
1 0z . These facts show that (5.14) is fulfilled. The second inequality can be rewritten as

(5.16)
( )( )

( )( )

( )( )

( )

1 2 1
0

2 3

z x

z x z

x z

z
,

or rearranged

(5.17) 0
)(

)(2

))((
)1( 32 z

x

zxz

x
z .

One concludes by observing that x z  and 1 0z .

Theorem 5.3.  By known skewness, kurtosis and given range  ,a , the stochastic order 

relation )()()( * xFxFxF u   holds uniformly for all ,ax .

Proof.  Only the cases (2) and (3) of Table 5.3 are non-trivial, where case (3) holds by the 
same proof as in Theorem 5.2. Setting  ( , )a x   one must show the inequalities, valid for  

x c a a, ( , )* ,

(5.18) p
x

x a a
F x

a
p

ax

a xa
( )

*
( )

( )( )
( )

( ) ( )( )
.3

2

2
31 1

1 1
1

The first inequality is equivalent with

(5.19) ( )( )1 0a x .

But  ,, xa   is the ordered support of the triatomic extremal distribution, which minimizes 
the stop-loss transform. In particular one has  ( )1 0a   and  x, hence (5.19) holds. 
The second inequality can be rearranged to

(5.20) 0)()()1( axa ,

and is thus also fulfilled.



                                               Werner Hürlimann                                                         196

Theorem 5.4.  By known skewness, kurtosis and given range  a b, , the stochastic order 
relation )()()( * xFxFxF u   holds uniformly for all x a b, .

Proof.  Only the cases (2), (3) and (4) of Table 5.2 are non-trivial, where case (3) holds by the 
same proof as in Proposition 7.1.

Case (2) :

Setting ( , ), ( ; , )a b x a b   one must show for x b a a* *, ( , )   the inequalities

(5.21)

p
bx x b

b a x a a

F x
b

b a a

ab

b a a

p p
b

b a a

ab b x a

b a a b x x

a

a x

( )

*

( ) ( )

( )( ( , ))

( )( )( )

( )
( )( )

( )( )

( )( )

( )( )

( )( ) ( ) ( )

( )( )( )( )
.

4

2

4 4

1

1 1

1 1

Using the second identity in (5.4), the first inequality is equivalent with

(5.22) 1
1 1

0b
bx x b

x a

bx x b a

a x

( )( ( , )) ( )( )( ( , ) )

( )( )
,

or rearranged

(5.23)
( )( ) ( )( ( , ) )( )( )

( )( )( )

1 1
0

ab x

x a

bx x b a a x

x a a x
.

One concludes by using that  1 0ab ,  a x b,  x a a a b( , ) ( , )* ,
a x b( , ) , 1 0bx . The second inequality is seen to be equivalent with

(5.24) 0
1

))((

)()(
))(1(

axxb

axb
ab .

Under the assumption of case (2) one has

(5.25) p
ab

x a b x xx
( ) ( )( )

( )( )( )
4 1

.

This probability is positive, hence in particular . It follows that (5.24) holds.

Case (4) :

The inequalities for the survival functions, which are symmetric to case (2) and must be valid 

for x b b a( , ),* * , read
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(5.26)

p
ax a x

b a b x b

F x
a

b a b

ab

b a b

p p
a

b a b

ab x a b

b a b x a x

b

x b

( )

*

( ) ( )

( )( ( , ) )

( )( )( )

( )
( )( )

( )( )

( )( )

( )( )

( )( ) ( ) ( )

( )( )( )( )
.

4

2

4 4

1

1 1

1 1

Using the first identity in (5.4) one shows that the first inequality is equivalent with

(5.27)
( )( ) ( )( ( , ))( )( )

( )( )( )

1 1
0

ab x

b x

ax b a x b x

b x b x
,

and is satisfied because  1 0ab ,  a x b,  x b b a b( , ) ( , )* , b a x( , ) ,
1 0ax . The second inequality can be rearranged to

(5.28) 0
1

))((

)()(
))(1(

bxax

bax
ab .

Since px
( )4   is positive one must have   in case (4). One concludes that (5.28) holds.

5.3. Small atomic ordered approximations over the range ),( .

To simplify models and calculations, one is interested in less and more dangerous 
finite atomic approximations of  X*  with equal mean, which satisfy the dangerousness 
relation (stop-loss confidence bounds ) :

(5.29) X X Xc
D D

d
* , * , * .

It is not difficult to show that  F x* ( )  is a continuous function. In particular one has the 
relations F c F c* *( ) , ( )1 0. A concentration of the probability mass of  X*  over  c c,   on 
a single atom yields a trivial lower bound, and a dispersion of the mass of  c c,   on the two 
atoms c c,   yields similarly a trivial upper bound. The simplest non-trivial way to concentrate 
and disperse probability masses is over the two subintervals c,0   and 0, c .

Proposition 5.1.  Let  X*  be the stop-loss ordered minimal random variable on  ( , )   by 
known skewness    and kurtosis  2 3. Then there exists a diatomic random variable 

X Xc
D* , *  with support  

)0(

)0(
,

)0(

)0(
,

*

*

*

*
00 FF

yx   and probabilities  )0(),0( ** FF , and 

a triatomic random variable  X Xd
D* , *  with support  cc ,0,   and probabilities 

)0()(),0()(1),0( *** cccc , where one has

(5.30)
2/32

2

*2/12* )34(

22
1

2

1
)0(,

)34(

1
)0( F .
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Proof.  The result is shown in three steps.

Step 1 :  construction of the less dangerous lower bound

Concentrating the probability mass of  c,0   on a single point, one gets the atom 

x
F0

0

0
*

*

( )

( )
  of  Xc

*  with probability  F* ( )0 . Similarly mass concentration of  0, c   yields 

an atom y
F0

0

0
*

*

( )

( )
  with probability F* ( )0 .

Step 2 :  construction of the more dangerous upper bound

Dispersing the probability mass of  c,0   on the pair of atoms  0,c   with probabilities  

0, ppc , one obtains  p c p F cc * * *( ), ( ) ( )0 0 00 . Similarly, through mass dispersion 

of  0, c   on the atoms  c,0   with probabilities  cpp ,0 , one finds 

p c p F cc ( ) ( ), ( ) ( ) ( )* * *0 0 00 . Combining all these atoms one gets Xd
* .

Step 3 :  determination of * ( )0   and F* ( )0

For  x=0  one obtains from equation (5.1) that  z z( ) *0 0   is solution of the quadratic 

equation  z z2 1 0( ) . Since  2 1  one finds  z 0 4 31
2

2* ( ) .
From formula (5.7) one gets immediately the desired value of  * ( )0 . Setting  x=0  in the 
relation (5.1) one has q z( )*0 . Inserted in the first expression of (5.9) one obtains

(5.31) z x
z

z
z' ( )

( )
, *0

2
0 .

From the first expression in (5.8) one gets

(5.32) F

z
z

z

z
z*

*( )

( )
( )

( )

( )
,0

1
2

2

2
0

2

2
.

Rearranging by using that  2 4 3 2z and q z( )*0 , one obtains the desired 

expression for F* ( )0 .

In applications one is interested in the quality of these simple di- and triatomic bounds. 
For example the minimal stop-loss transform can be bounded as follows, where the 
elementary check using Proposition 5.1 is left to the reader.
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Table 5.3: dangerous confidence bounds for the minimal stop-loss transform of
     standard random variables by known skewness, kurtosis and range ( , )

case condition
* ( )l x * ( )u x

(1) x c -x -x
(2) c x x0 -x x cx( ) ( )*1 0
(3) x x0 0

* *( ) ( )0 0xF x cx( ) ( )*1 0

(4) 0 0x y
* *( ) ( )0 0xF ( ) ( )*1 0cx

(5) y x c0 0 ( ) ( )*1 0cx
(6) x c 0 0

Since the true value of  * ( )x   lies between the two bounds, a straightforward piecewise 
linear estimator is the average :

(5.33) )())()((
2

1
)(ˆ **** xxxx u

In concrete situations the approximation error can be estimated.

Example 5.1 :  skewness and kurtosis of a standard normal distribution

With 0 3, , one obtains immediately the values

(5.34) * *( ) , ( ) , , , ,0
3

6
0

1

2
1 1

3

3

3

30 0F c c x y .

From (5.33) and Table 5.5 one gets for example

(5.35) 061.0
12

13

6

3
)

3

3
1(

2

1
)(ˆ 0* y .

On the other side the exact value of the minimal stop-loss transform is for  x 1 1, :

(5.36) * ( )
( )

, ( )x
x

z z x
z z x

x x x

x

1

2 1

3 3

1

2

2

4 2

2
.

For  x y0  one has  z z y( ) ( )0
1
2 3 19 , hence  * ( ) .y0

4

19 3 9 19
0 055. In 

this case the approximation error is less than  0.006, which is quite satisfactory.
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6. Small atomic stop-loss confidence bounds for symmetric random variables.

For an arbitrary real symmetric random variable we construct a diatomic stop-loss 
lower bound, and a  "generalized" or modified triatomic stop-loss upper bound. These bounds 
are used to obtain an optimal piecewise linear approximation to the stop-loss transform of an 
arbitrary symmetric random variable. A numerical illustration for the stop-loss ordered 
maximal distribution by known mean and variance is also given.

Given is a real random variable  X  taking values in  ( , )   and symmetric around a 
symmetry center, which can be assumed to be zero by a location transformation. The problem, 
we are interested in, consists to find finite atomic random variables uXX ,   with the smallest 

possible number of atoms such that the stop-loss transforms of uXXX ,,   are ordered as

(6.1) )()()( xxx u , uniformly for all x ( , ) , for all small 0,

where  
x

dxxFx )()(   denotes the stop-loss transform of a random variable with survival 

function F x( ) .
The applications in mind concern primarily the stop-loss ordered maximal random 

variables considered in Section 3, but of course the method has a wider scope of application. 
Note that the construction of stop-loss ordered confidence bounds for the stop-loss ordered 
minimal random variables is much more straightforward and has been considered in detail in 
Sections 4 and 5.

In Subsection 6.1, respectively Subsection 6.2, we construct the lower stop-loss bound, 
respectively the upper stop-loss bound. In Subsection 6.3 these are used to determine an 
optimal piecewise linear approximation to the stop-loss transform of an arbitrary symmetric 
distribution. A numerical illustration for the stop-loss ordered maximal distribution associated 
to an arbitrary standard distribution on ( , )   is given in Subsection 6.4.

6.1. A diatomic stop-loss ordered lower bound for symmetric random variables.

Let  X  be a real random variable defined on  ( , )   symmetric around zero with 

mean zero, survival function  F x( ) , and stop-loss transform
x

dxxFx )()( .

Concentrating the probability mass over the interval  0,   on an atom x 0  with probability
F( )0 1

2 , one finds through partial integration

(6.2) )0(2
)0(

)(

)0(

)(
0

0

0 F

dxxF

F

xxdF
x .

Similarly concentration of the mass over  ,0   yields an atom  y0 2 0( )   with probability  

F( )0 1
2 . One obtains a diatomic random variable  X   with support )0(2),0(2   and 

probabilities 2
1

2
1 , , with mean zero and piecewise linear stop-loss transform

(6.3) )(x

x x

x x

x

, ( )

( ) , ( ) ( )

, ( )

2 0

0 2 0 2 0

0 2 0

1
2
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The fact that  )()( xx   for all  x, or equivalently  XX sl , , follows from the Karlin-

Novikoff-Stoyan-Taylor crossing conditions for stop-loss order stated in Theorem 1.3.

Proposition 6.1.  Let  X  be a random variable on  ( , ) , which is symmetric around zero. 
Then the diatomic random variable  X   with support  )0(2),0(2   and probabilities 

2
1

2
1 ,   is stop-loss smaller than  X  with equal mean, that is  XX sl , .

Proof.  It suffices to apply case 2 of Theorem 1.3 with  Y= X . One observes that  F(x)  and  

G(x)  cross  n=3  times as in the figure :

F(x) G(x)

t1 2 0( ) t 2 0 t 3 2 0( )

Since X Y 0  and Y ( ) ( )0 0   the assertion follows immediately.

6.2. A modified triatomic stop-loss upper bound.

The random variables  X  is assumed to have the same properties as above. In a first
step one replaces  X  by a double-cut tail random variable  Xb   defined on  b b,   for some  
b>0  with double-cut tail distribution F xb ( )  given by

(6.4) )(xFb

0

1

, ,

( ), ,

, .

x b

F x b x b

x b

To compare stop-loss transforms, one requires the following elementary result.

Lemma 6.1.  The stop-loss transform of Xb   equals

(6.5) )(xb

x x b

x b b x b

x b

, ,

( ) ( ), ,

, ,0

and satisfies the following inequality

(6.6) ( ) ( ) ( )x x bb , uniformly for all  x.

Proof.  Since  X  is symmetric around zero, its stop-loss transform satisfies the identity

(6.7) ( ) ( )x x x , for all  x.
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One obtains successively for

x b : xbbxbdxxFdxx
b

b

b

xb )()()()( ,

b x b : )()()()( bxdxxFx
b

xb ,

x b : b x( ) 0.

It remains to show (6.6) for  x b  and  x b. Since  ( )x   is a decreasing function of  x, 

this is immediate for  x b. Since  
d

dx
x x F x( ( )) ( ) 0  the function  x x( )   is 

monotone increasing. For x b  one obtains using (6.7) :

x x b b b( ) ( ) ( ) .

But this inequality says that for x b  one has ( ) ( ) ( ) ( )x x b x bb .

In a second step we construct a triatomic random variable  Xb
u   on  b b, , which is more 

dangerous than  Xb   with equal mean, and is in particular such that  X Xb sl b
u

, . Dispersing 

the probability mass of  Xb   in the subinterval  b,0   on the pair of atoms  0,b   with 

probabilities 0, pp b   one obtains from Lemma 2.2 :

(6.8)
b

b
pbF

b

b
p b

)()0(
),(

)()0(
2
1

0 .

A similar dispersion in 0, b   on the pair of atoms b,0   with probabilities bpp ,0   yields

(6.9) )(
)()0(

,
)()0(

2
1

0 bF
b

b
p

b

b
p b .

Combining both mass dispersions one obtains a triatomic random variable  X Xb
u

sl b,   with 

support  bb ,0,   and probabilities  
b

b
b

b
b

b )()0(
),

)()0(
(21,

)()0(
. From 

(6.6) one obtains furthermore the stop-loss inequality, valid uniformly for all x ( , ) :

(6.10) ( ) ( ) ( )x x bb
u .

Since  ( )b 0  as  b , choose  b  such that  ( )b . Then  X Xu b
u:   is a stop-loss 

upper bound for  X, which satisfies (6.1).

Proposition 6.2.  Let  X  be a random variable on  ( , ) , which is symmetric around zero. 
Then there exists a triatomic random variable Xb

u   with support bb ,0,   and probabilities

b

b

b

b

b

b )()0(
),

)()0(
(21,

)()0(
, which satisfies the stop-loss inequality

(6.11) ( ) ( ) ( )x x bb
u , for all x ( , ) ,

where the upper bound is determined by the piecewise linear stop-loss transform



                        Extremal Moment Methods and Stochastic Orders                        203

(6.12) )(xu
b

x x b

b
b

b
x x b x

b
b

b
x x b

x b

, ,

( ) ( ) (
( ) ( )

) ,

( ) ( ) (
( ) ( )

) ,

, .

0
0

0

0
0

0

0

Proof.  It remains to show (6.12), which presents no difficulty and is left to the reader.

6.3. Optimal piecewise linear approximations to stop-loss transforms.

Again  X  denotes a real random variable on  ( , ) , which is  symmetric around 
zero. It has been shown in Subsections 6.1 and 6.2 that the true value of the stop-loss 
transform ( )x   lies between the two piecewise linear bounds  )(x   and  b

u x b( ) ( ). As 

a straightforward approximation, one can consider the average

(6.13) ))()()((
2

1
:);(ˆ bxxbx u

b

and try to find an optimal value b *   for  b, which minimizes the stop-loss distance

(6.14) )();(ˆmax:)(
),(

xbxbd
x

.

To determine  d(b)  one has to consider  )();(ˆ:);( xbxbxd . We formulate conditions 

under which the stated optimization problem can be solved.
Choose  b 2 0( )   and use (6.3) and (6.12) to get the following table for the signed 

distance between );(ˆ bx   and ( )x :

Table 6.1 :  signed distance between the stop-loss transform and its approximation

case condition )();(ˆ xbx

(1) x b
1

2
( ) ( )b x

(2) b x 2 0( ) )(22
)()0(

)0(
2

1
xxx

b

b

(3) 2 0 0( ) x )(2
2

3)()0(
)0(2

2

1
xxx

b

b

(4) 0 2 0x ( ) )(2
2

1)()0(
)0(2

2

1
xxx

b

b

(5) 2 0( ) x b )(2
)()0(

)0(
2

1
xx

b

b

(6) x b
1

2
( ) ( )b x
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In case (1) one has  x b,  0 ( ) ( )x b , and thus one gets  d x b b( ; ) ( )1
2 , where 

equality is attained for  x= b. Similarly in case (6) one obtains also  d x b b( ; ) ( )1
2   with 

equality when  x=b. In each other case (i) we determine  x b ii i, ( ), , , ,2 0 2 3 4 5, such 

that d x b bi i( ; ) ( )1
2   and equality is attained at  x xi . Setting )0(2min

5,4,3,2

*
i

i
bb , this 

implies the uniform best upper bound (solution of our optimization problem)

(6.15) d x b b( ; ) ( )* *1
2 , for all x ( , ) .

In the following one sets  ))();(ˆ(2:);( xbxbxh . Assume a probability density  

f(x)=F'(x)  exists, and note that  ' ( ) ( )x F x . Table 4.1 shows that  h x b f x' ' ( ; ) ( )2 0
in all cases (2) to (5). It follows that  h(x;b)  is maximal at the value  x=x(b), which is solution 
of the first order condition  h'(x(b);b)=0  provided  x(b)  belongs to the range of the considered 
case. In each seperate case the maximizing value  x(b)  is implicitely given as follows :

Case (2) :
b

b
bxF

)()0(
2))((2

Case (3) :
b

b
bxF

)()0(

2

3
))((2

Case (4) :
b

b
bxF

)()0(
2
1

))((2

Case (5) :
b

b
bxF

)()0(
))((2

The corresponding values of  h(x;b)  are then as follows :

Case (2) : ))(())(()(2)0());(( bxbxFbxbbxh

Case (3) : ))(())(()(2)0(2));(( bxbxFbxbbxh

Case (4) : ))(())(()(2)0(2));(( bxbxFbxbbxh

Case (5) : ))(())(()(2)0());(( bxbxFbxbbxh

Independently of the considered case one obtains

(6.16)
b

h x b b x b x b f x b( ( ); ) ( ) ' ( ) ( ( ))2 .

One the other side one has

22

)(
:

)()()0()0()(

b

bg

b

bFbb

b

b

b
.

Since  g'(b)=bf(b)>0  and  b>0, it follows that  g(b)>g(0)=0. Taking derivatives with respect to  
b  in the defining equations for  x(b), one gets the relations

Cases (2) and (3) : f x b x b
g b

b
( ( )) ' ( )

( )
2

Cases (4) and (5) : f x b x b
g b

b
( ( )) ' ( )

( )
2
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Taking into account the conditions in Table 6.1, which the values  x(b)  must satisfy, one sees 
that in any case  )(sgn)('sgn bxbx . From (6.16) it follows that  h(x(b);b)  is monotone 

increasing in  b. Since  (b)  is monotone decreasing in  b, the optimal value  bi   of  b  is in 
each case necessarily solution of the implicit equation  h x b b bi i i( ( ); ) ( ) , i=2,3,4,5. 
Gathering all details together, a solution to the above optimization problem, under the 
assumption it exists, is determined by the following algorithmic result.

Proposition 6.3.  Let  X  be a random variable on  ( , ) , which is symmetric around zero. 
Then an optimal piecewise linear approximation to the stop-loss transform with a minimal 
stop-loss distance

(6.17) )();(ˆmaxmin)(min)(
),()0(2)0(2

* xbxbdbd
xbb

exists provided the following system of equations and conditions in  x bi i,   can be satisfied :

Table 6.2 :  conditions for optimal piecewise linear approximations to stop-loss 
        transforms of symmetric distributions

case range of x bi i, 2F xi( ) )()(2 iii xxFx

(2) b x2 2 2 0( )
2

2 )()0(
2

b

b
( ) ( )0 2b

(3) b x3 32 0 0( )
3

3)()0(

2

3

b

b
2 0 3( ) ( )b

(4) 0 2 04 4x b( )
4

4 )()0(

2

1

b

b
2 0 4( ) ( )b

(5) 2 0 5 5( ) x b
5

5 )()0(

b

b
( ) ( )0 5b

If Table 6.2 has a solution and  i
i

bb
5,4,3,2

* min , then the minimal stop-loss distance equals 

d b b( ) ( )* *1
2 .

6.4. A numerical example.

We illustrate at a simple concrete situation how optimal piecewise linear 
approximations to stop-loss transforms of symmetric random variables can be obtained.

To an arbitrary standard random variable  Z  on  ( , ) , one can associate a random 
variable  X Zsl,   such that the stop-loss transform  ( )x   of  X  coincides with the 

maximum of  Z x( )   over all  Z  uniformly for all  x ( , ) . From Sections 2 and 3, one 
knows that the stop-loss ordered maximal distribution is defined by

(6.18) ( ) ( ), ( ) ( )x x x F x
x

x

1

2
1

1

2
1

1

2

2
.
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To solve the system of conditions in Table 6.2, one sets  ( )b , hence  b
1 4

4

2

. A 

calculation shows that

(6.19)
21

1
)()(2

x
xxFx .

Proceed now case by case.

Case (2) : b x 1

The second equation to satisfy reads
1

1

1

22x
,  and is satisfied by 

x
3 4 1

1 2

( )
. Inserting into the first equation and using that b

1 4

4

2

, one finds 

the condition ( ) ( )1 2 3 4 1 2, which is equivalent to the biquadratic equation 

16 24 16 1 04 2 . Neglecting the fourth power term, one gets as a sufficiently 
accurate quadratic approximate solution the value

(6.20) 2

22 4

12
0 05753. .

A numerical checks shows that b x2 24 288 2 0268 1. . .

Case (3) : 1 0x

Solving the equation  
1

1
1

2x
, one gets  x

( )2

1
. The first equation leads 

then to the condition  2 1 2 2 1 2( ) ( ) , which is equivalent to 

16 16 24 12 1 04 3 2 . The quadratic approximate solution is

(6.21) 3

15 3

12
0 07275. .

As a numerical check one has b x3 33 3637 1 0 4038 0. . .

Case (4) : 0 1x

Through calculation one verifies the symmetries 4 3 4 3 4 3, ,x x b b .

Case (5) : 1 x b

Through calculation one verifies the symmetries 5 2 5 2 5 2, ,x x b b .

Our approximation method shows that the maximal stop-loss transform  (x)  can be 
approximated by the piecewise linear function  );(ˆ 3bx   up to the optimal uniform stop-loss 

error bound  d b b( ) ( ) .3
1
2 3

1
2 3 0 036375, which may be enough accurate for some 

practical purposes.
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7. Notes.

The theory of stochastic orders is a growing branch of Applid Probability and 
Statistics with an important impact on applications including many fields as Reliability, 
Operations Research, Biology, Actuarial Science, Finance and Economics. Extensive 
literature has been classified by Mosler and Scarsini(1993), and useful books include Mosler 
and Scarsini(1991), Shaked and Shanthikumar(1994) and Kaas et al.(1994).

General facts about extremal random variables with respect to a partial order are found 
in Stoyan(1977), chapter 1. By given range, mean and variance, the extremal random 
variables for the increasing convex order have been constructed first by Stoyan(1973), and 
have been rediscovered by the author(1995/96a) under the terminology "stop-loss ordered 
extremal distributions". In actuarial science, the identification of the transitive closure of 
dangerousness with the stop-loss order, as well as the separation theorem, goes back to van 
Heerwaarden and Kaas(1990) and Kaas and van Heerwaarden(1992) (see also van 
Heerwaarden(1991)). The practical usefulness of the Karlin-Novikoff-Stoyan-Taylor crossing 
conditions for stop-loss order has been demonstrated by Taylor(1983), which attributes the 
result to Stoyan(1977). However, a proof seemed to be missing. A systematic approach to 
higher degree stop-loss transforms and stochastic orders, together with some new 
applications, is proposed in Hürlimann(1997e).

In actuarial science, the construction of ordered discrete approximations through mass 
concentration and mass dispersion has been widely applied. Exposés of this technique are in 
particular found in Gerber(1979), Examples 3.1 and 3.2, p. 98-99, Heilmann(1987), p.108-
109, and Kaas et al.(1994), Example III.1.2, p. 24. These transformed distributions are 
particular cases of fusions of probability measures studied by Elton and Hill(1992) (see also 
Szekli(1995)).

The Hardy-Littlewood stochastic majorant is closely related to the Hardy-
Littlewood(1930) maximal function and has been considered by several authors (e.g. 
Blackwell and Dubins(1963), Dubins and Gilat(1978), Meilijson and Nàdas(1979), Kertz and 
Rösler(1990/92), Rüschendorf(1991)).
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CHAPTER V

BOUNDS FOR BIVARIATE EXPECTED VALUES

1. Introduction.

General methods to derive (best) bounds for univariate expected values (bivariate 
expected values) of univariate transforms  f(X)  (bivariate transforms  f(X,Y)) when the 
random variable  X  (bivariate pair of random variables  (X,Y)) belong(s) to some specific set 
are numerous in the literature on Applied Probability and Statistics. However, a detailed and 
exhaustive catalogue of analytically solvable problems together with their solutions does not 
seem to be available, even for the simpler case when only means and variances are known.

Extremal values of univariate expected values  E f X( ) , where  f(x)  is some real 
function and the random variable  X  belongs to some specific set, have been studied 
extensively. In general the univariate case is better understood than the corresponding 
extremal problem for multivariate expected values  E f X Xn( ,..., )1 , where  f  is some 
multivariate real function and the random vector X=( ,..., )X Xn1   varies over some set.

In general, by known mean-covariance structure, one often bounds the expected value 
of a multivariate transfom  f(X):=f( ,..., )X Xn1   by constructing a multivariate quadratic 

polynomial  q(x):=q x x a a x a x xn i i
i

n

ij i j
i j

n

( , ..., )
,

1 0
1 1

  such that  q(x) f(x)  to obtain a 

maximum, respectively  q(x) f(x)  to obtain a minimum. If a multivariate finite atomic 
random vector  X  (usually a multivariate di- or triatomic random vector) can be found such 
that  Pr(q(X)=f(X))=1, that is all mass points of the multivariate quadratic transform  q(X)  are 
simultaneously mass points of  f(X), then  E q(X) =E f(X) , which depends only on the mean-
covariance structure, is necessarily the maximum, respectively the minimum. In the univariate 
case, a systematic study of this approach has been offered in Chapter II. In Sections 2 and 3, 
we consider the bivariate quadratic polynomial majorant/minorant method for the two most 
illustrative examples, namely the bivariate Chebyshev-Markov inequality and stop-loss 
bounds for bivariate random sums.

In the bivariate case, an alternative method to derive bounds for expected values is by 
means of the Hoeffding-Fréchet extremal distributions for the set of all bivariate distributions 
with fixed marginals. It is considered in Section 4. This general method allows to determine, 
under some regularity assumptions, bounds for expected values of the type  E f X Y( , ) ,
where  f(x,y)  is either a quasi-monotone (sometimes called superadditive) or a quasi-antitone 
right-continuous function. Its origin lies in an inequality for rearrangements by Lorentz(1953) 
(see Theorem 2.8 in Whitt(1976)) and has been further studied by Tchen(1980), Cambanis, 
Simons and Stout(1976), and Cambanis and Simons(1982). 

We study in detail the illustrative example of the quasi-antitone function  
f x y x y( , ) ( ) , which in passing solves by linear transformation the bivariate stop-loss 
transform case  f x y x y D D R( , ) ( ) , . A combined Hoeffding-Fréchet upper bound 
for  E X Y( )   is determined in Theorem 4.1. In Section 5 it is shown that this upper 
bound  can be obtained alternatively by minimizing a simple linear function of the univariate 
stop-loss transforms of  X  and  Y. Through an unexpected link with the theory of stop-loss 
ordered extremal random variables considered in Chapter IV, the detailed calculation of the 
upper bound by given arbitrary ranges, means and variances of the marginals is made 
possible.
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2. A bivariate Chebyshev-Markov inequality.

The simplest bivariate extension  ),(),( , YXIYXf yYxX   of the original 

Chebyshev problem for  )()( XIXf xX   seems not to have been exhaustively analyzed.

In the following denote by  H x y X x Y y( , ) Pr( , )   the bivariate distribution of a 
couple  (X,Y)  of random variables with marginal distributions  F x X x( ) Pr ( ) ,
G y Y y( ) Pr ( ), marginal means  X Y, , marginal variances  X Y

2 2, , and correlation 
coefficient Cov X Y X Y, / . Consider the following sets of bivariate distributions :

BD BD F G1 ( , ) H(x,y)  with fixed marginals  F(x), G(y) 

BD BD X Y X Y2
2 2( , , , ) H(x,y)  with fixed marginal means and

(2.1) variances

BD BD X Y X Y3
2 2( , , , , ) H(x,y)  with fixed marginal means, 

variances and correlation coefficient 

They generate six different extremal problems of Chebyshev type

(2.2) ,3,2,1,),(max,),(min
),(),(

iYXfEYXfE
ii BDYXBDYX

whose solutions in the particular case  ),(),( , YXIYXf yYxX   will be compared in the 

present Section. The extremal problems over  BD1  have been solved by Hoeffding(1940) and 

Fréchet(1951), which have shown that the best bivariate distribution bounds are given by

(2.3) )(),(min),(),(0,1)()(max),( *
* yGxFyxHyxHyGxFyxH .

In practical work, however, often only incomplete information about  X, Y  is available. This 
results in a wider range of variation of the extremal bounds for  H(x,y), at least over  BD2
since  BD1 BD2. A solution to the optimization problem over  BD3  seems in general quite 

complex. Since  BD3 BD2  it generates a solution to the problem over  BD2.

A method of first choice (not necessarily the most adequate one) for solving 
optimization problems of Chebyshev type over  BD3  is the bivariate quadratic polynomial 

majorant/minorant method, which consists to bound the expected value of a bivariate random 
function  f(X,Y)  by  constructing a bivariate quadratic polynomial

(2.4) q x y ax by cxy dx ey f( , ) 2 2

such that  q(x,y) f(x,y)  to obtain a maximum, respectively  q(x,y) f(x,y)  to obtain a 
minimum, which is the special case  n=2  of the method explained above.
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2.1. Structure of diatomic couples.

Random variables are assumed to take values on the whole real line. Recall the 
structure in the univariate case.

Lemma 2.1.  The set  ,)2(
2

)2(
2 DD   of all non-degenerate diatomic random variables 

with mean    and standard deviation    is described by a one-parametric family of supports  
,,, 2121 xxxx and probabilities 21,pp   such that

(2.5) x
x2

2

1

, ,,, 1
12

1
2

12

2
1 x

xx

x
p

xx

x
p

or equivalently

(2.6) x
p

p
x

p

p
p1

2

1
2

1

2
10 1, , .

Proof.  Apply Theorem I.5.1 and Remark (I.5.3).

To clarify the structure of bivariate diatomic random variables, also called diatomic 
couples,  consider the set denoted

(2.7) YXYYXX YXCovDYDXYXBD ,),,(),,(:),( )2(
2

)2(
2

)2(
3 .

The marginal  X  has support  ,,, 2121 xxxx and probabilities  21,pp , and  Y  has support  

,,, 2121 yyyy and probabilities 21,qq . By Lemma 1.1 one has the relations

(2.8) x
p

p
x

p

pX X X X1
2

1
2

1

2

, ,

y
q

q
y

q

qY Y Y Y1
2

1
2

1

2

, .

The bivariate distribution of a couple  (X,Y)  is uniquely determined by the distribution of  X 

and the conditional distribution of XY , and is thus given by a triple 1,, p   such that

(2.9)
P Y y X x P Y y X x p P X x

p

( ), ( ), ( ),

,
1 1 1 2 1 1

10 2 0 1

Then the joint probabilities p P X x Y yij i j( , ), i,j=1,2, are given by

(2.10)
p p p p

p p p p
11 1 12 1

21 2 22 2

1

1

, ( ) ,

, ( ) .
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An equivalent representation in terms of the marginal probabilities and the correlation 
coefficient, that is in terms of the triple ,, 11 qp   is obtained as follows.

The marginal probability of  Y  satisfies the relation

(2.11) 121 qpp ,
and the correlation coefficient the relation

(2.12) 212121 qqpppp .

Solving the linear system (2.11), (2.12) and inserting into (2.10), one gets the following 
canonical representation.

Lemma 2.2.  A diatomic couple  ( , ) ( )X Y BD3
2   is uniquely characterized by its support  

2121 ,, yyxxx . The marginal probabilities are  
12

2
1 xx

x
p X ,

12

2
1 yy

y
q Y , the 

variances  X X Xx x2
1 2( ) ( ) ,  Y Y Yy y2

1 2( ) ( ) ,  and the joint 
probabilities are given by

(2.13)

p p q p p q q

p p q p p q q

p p q p p q q

p p q p p q q

11 1 1 1 2 1 2

12 1 2 1 2 1 2

21 2 1 1 2 1 2

22 2 2 1 2 1 2

,

,

,

.

For calculations with diatomic couples  (X,Y), it suffices to consider a unique 
canonical arrangement of its atoms.

Lemma 2.3.  Without loss of generality the atoms of a couple  ( , ) ( )X Y BD3
2   can be 

rearranged such that x x y y y y x x1 2 1 2 2 1 2 1, , .

Proof.  By Lemma 2.1 one can assume  x x y y1 2 1 2, . If  y y x x2 1 2 1  then 
exchange the role of  X  and  Y. 

2.2. A bivariate version of the Chebyshev-Markov inequality.

It suffices to consider standardized couples  ( , ) ( , , , , )X Y BD BD3 0 0 1 1 . Indeed, 
the property

H x y X x Y y
X x Y yX

X

X

X

Y

Y

Y

Y

( , ) Pr ( , ) Pr ( , )

shows the invariance of the probability distribution function under a standard transformation 
of variables. The (bivariate) Chebyshev-Markov maximal distribution over  BD3, if it exists, 
is denoted by

(2.14) ),(max).(
3),(

yxHyxH
BDYX

u .
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Theorem 2.1  (Bivariate Chebyshev-Markov inequality)  Let  ( , ) ( , , , , )X Y BD BD3 0 0 1 1
be a standard couple with correlation coefficient  . Then the Chebyshev-Markov maximal 
distribution (2.14) satisfies the properties listed in Table 2.1.

In Table 2.1 and the subsequent discussion, one uses the notation  x x1/ , which 
defines an involution mapping, whose square is by definition the identity mapping. Before the 
details of the derivation are presented, the obtained result is somewhat discussed in the 
Remarks 2.1.

Table 2.1 :  bivariate Chebyshev-Markov inequality over ( , )

case conditions H x yu ( , ) bivariate
extremal support

bivariate quadratic
polynomial majorant

(1) x y0 0,
1

1 2x yyxxx ,,

2

xx

xX

(2) x y0 0,
1

1 2y yyxxx ,,

2

yy

yY

(3) x y0 0,

(3a) y x
1

1 2x xxxxx ,,

2

xx

xX

(3b) x y
1

1 2y yyxyy ,,

2

yy

yY

(4) x y0 0, 1 yyxxx ,, 1

Remarks 2.1.

(i) In the cases (1), (2), (4) there is no restriction on the correlation coefficient.

(ii) In case (3), when  0  and  
y

x

x

y
,min , the maximum cannot be attained at a 

diatomic couple because there does not exist a quadratic majorant ),(),( , YXIYXq yYxX

such that  Pr( ( , ) ( , ))q X Y f X Y 1. It is actually not clear what happens in this situation. 
Does there exist a maximum over  BD3 ?

(iii) If  X  and  Y  are independent, hence  =0, there exists a more precise statement in 
case (3). From the univariate Chebyshev-Markov inequality, one knows that

H x y F x G y
x y

( , ) ( ) ( )
( )( )

1

1 12 2
,

and the upper bound is attained at the diatomic couple with support yyxxx ,, .
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(iv) The bivariate Chebyshev-Markov extremal upper bound  H x yu ( , )   is uniformly 
attained for all  (x,y)  if and only if  =1, which is complete dependence. Indeed  

H x x
xu ( , )

1

1 2
  for  x<0  is only attained provided  =1. In other words a maximizing 

extremal distribution to the problem  ),(max
2),(

yxH
BDYX

  exists uniformly for all  (x,y )  by 

setting =1  in Table 2.1.

(v) In general  H x yu ( , )   is not attained by a diatomic Hoeffding-Fréchet extremal upper 
bound  )(),(min),(* yGxFyxH , which exists only if  >0  and  is described by the 
following joint probabilities :

p p p p q p p q if p q11 1 12 21 1 1 22 2 1 10, , , , ,
p q p p q p p p if p q11 1 12 1 1 21 22 2 1 10, , , , .

This affirmation also holds under the restriction  >0. The condition  p12 0, respectively  
p21 0, implies the relation  y x1 1, respectively  x y1 1. An elementary check of these 
relations is done using the canonical representation (2.13) of Lemma 2.2. It follows that only 
one of  x, y  can be atom of such a H x y* ( , ) . The four possible distributions have support :

Case 1 : p q1 1 : xxxxx ,, , yyxyy ,,

Case 2 : p q1 1 : xxxxx ,
1

, , yyxyy ,
1

,

One finds now pairs of  x, y  such that  H x y H x yu
* ( , ) ( , ) . For example if 

,0,0
1

,min yyyx one has always H x y H x yu
* ( , ) ( , )0 .

Proof of Theorem 2.1.  In the following we set  ),(),( , YXIYXf yYxX   and consider the 

half-planes

0),(:),(,1),(:),( 2
2

2
1 YXfRYXHYXfRYXH .

As seen in Lemma 1.3, a diatomic couple  (X,Y)  can be uniquely described by its support  

2121 ,, yyxxx   such that  x x y y y y x x1 2 1 2 2 1 2 1, , . The corresponding joint 
probabilities are given by the relations (2.13) of Lemma 2.2. To derive Table 2.1 we proceed 
case by case and construct in each case a quadratic polynomial majorant  q X Y f X Y( , ) ( , )
with all diatomic couples at zeros of q X Y f X Y( , ) ( , ).

Case (1) : x y0 0,

One constructs a diatomic couple  (X,Y)  and  q(X,Y)  such that  
q x y f x y i ji j i j( , ) ( , ), , , ,1 2   q(X,Y) 1  on H1, and  q(X,Y) 0  on H2 as in Figure 2.1 :
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Figure 2.1 :  quadratic majorant in case (1)

(x1,y2)

(x1,y1) (x2,y1)

(x2,y2)

X

Y

Z=I(X<x,Y<y)

=(x,y)

Z

Since  ( , )x y H2 2 2, an appropriate choice for  q(X,Y), together with its first partial 
derivatives, is given by

q X Y a X x b Y y c X x Y y d X x e Y y f( , ) ( ) ( ) ( )( ) ( ) ( )2
2

2
2

2 2 2 2

q X Y a X x c Y y d

q X Y b Y y c X x e
X

Y

( , ) ( ) ( )

( , ) ( ) ( )

2

2
2 2

2 2

Since  ( , ), ( , )x y x y2 1 2 2   are inner points of  H2 and  q(X,Y) 0  on  H2 , these must be 
tangent at the quadratic surface  Z=q(X,Y). The necessary conditions

q x y q x y q x y q x y q x yX Y X Y( , ) ( , ) ( , ) ( , ) ( , )2 2 2 2 2 2 2 1 2 1 0

imply that  b=c=d=e=f=0, hence the form  q X Y a X x( , ) ( )2
2 . The remaining points 

( , ), ( , )x y x y H1 1 1 2 1  are zeros of  q(X,Y) 1, hence

2

12

2),(
xx

xX
YXq .

Moreover one must have x x x y y y1 2 1 2, . The choice 
yyxxxyyxxx ,,,, 2121   implies that

2

),(
xx

xX
YXq

is a required quadratic majorant of  f(X,Y). The inequality  q(X,Y) 1  follows because 
x X x x on H1. Finally one obtains the extremal value as

H x y E q X Y
x

x x xu ( , ) ( , )
( )

1 1

1

2

2 2 .
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Case (2) : x y0 0,

This follows directly from case (1) by exchanging the variables  x  and  y.

Case (3) : x y0 0,

One constructs a diatomic couple  (X,Y)  and a  q(X,Y)  such that q x y f x yi j i j( , ) ( , ),

except in   ( , )x y1 2 , where one sets  p12 0, and with the properties  q(X,Y) 1  on  H1, and  
q(X,Y) 0  on H2   as in Figure 2.2 :

Figure 2.2 :  quadratic majorant in case (3)

(x1,y1) (x2,y1)

Z=I(X<x,Y<y)

(x2,y2)(x1,y2)

Z Y

X
(x,y)

The couples  ( , ), ( , )x y x y2 1 2 2   are inner points of  H2   and  q(X,Y) 0  on  H2 , hence they 
must be tangent at the quadratic surface  Z=q(X,Y). As in case (1) it follows that 
q X Y a X x( , ) ( )2

2 . Since ( , )x y H1 1 1  must be zero of  q(X,Y) 1, one gets

2

12

2),(
xx

xX
YXq .

The choice x x x x1 2,   implies that x X x x   on H1, hence  q(X,Y) 1  on H1. The 
condition  p12 0  implies the relations (use (2.13)) :  y x x y y x1 1 2 1, . Since  
x y0 01,   one must have  >0. Furthermore the condition  ( , )x y H1 1 1  implies 
y x y1 , hence  y y x x( ) . The subcase (3a) has been shown. Exchanging 
the role of  x  and  y, one gets subcase (3b).

Case (4) : x y0 0,

It is trivial that for the diatomic couple  (X,Y)  with support  yyxxx ,,   one has  H(x,y)=1, 

which is clearly maximal.
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3. Best stop-loss bounds for bivariate random sums.

As a next step, and similarly to the adopted approach in the univariate case, we 
consider the bivariate stop-loss function f x y x y D( , ) ( ) , where  D  is the deductible.

It will be shown in Subsection 3.1 that a bivariate quadratic polynomial majorant is a 
separable function  q(x,y)=q(x)+q(y), where  q(x), q(y)  are quadratic polynomials, and thus 
does not contain the mixed term in  xy. In particular, the maximum does not depend on the 
given (positive) correlation and is only attained by complete dependence. In contrast to this 
the minimal stop-loss bound over all bivariate sums by known means, variances and fixed 
negative correlation exists, at least over a wide range of deductibles, as shown in Subsection 
3.2. Our result shows that the trivial best lower stop-loss bound is attained by diatomic 
couples with any possible negative correlation.

3.1. A best upper bound for bivariate stop-loss sums.

The identity  ( ) (( ) ( ) ( )) ,X Y D X Y DX Y X Y

shows that without loss of generality one can assume that  X Y 0. A bivariate 
quadratic polynomial majorant of f x y x y D( , ) ( ) , as defined by

(3.1) q x y ax by cxy dx ey f( , ) 2 2 ,

depends on  6  unknown coefficients. Consider the identities

D
duuDyuxIyxD

0
,)( , ( ) ( )X Y D X Y D D X Y .

Inserting the first one into the second one and taking expectation, one obtains
D

dxxDxHDYEXEDYXE ),()( .

Therefore, the maximum of E f X Y( , )   over arbitrary couples  (X,Y), by given marginals, is 

attained at the Hoeffding-Fréchet maximal distribution )(),(min),(* yGxFyxH . A count 
of the number of unknowns and corresponding conditions (given below), which must be 
fulfilled in order to get a bivariate quadratic majorant, shows that the immediate candidates to 
consider first are diatomic couples.

In the special situation  ( , ) ( , , , , ),( )X Y BD BD X Y3
2 0 0 0, the Hoeffding-

Fréchet upper bound is described by the following joint probabilities :

(3.2) p p p p q p p q if p q11 1 12 21 1 1 22 2 1 10, , , , ,
(3.3) p q p p q p p p if p q11 1 12 1 1 21 22 2 1 10, , , , .

Restrict first the attention to the form (3.2) with

(3.4) p
x

x x
q

y

y y1
2

2 1
1

2

2 1

, .

Using (2.13), one sees that the marginal probabilities satisfy the following constraint :

(3.5)
q

q

p

p
if p q2

1

2

1
1 1, ,

which expressed in terms of the atoms yields the relation
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(3.6) y xY

X
2 2

1
0 1, .

On the other side the equations of marginal variances imply the further constraints

(3.7) x x y yX Y1 2
2

1 2
2, .

Thus a possible extremal diatomic couple is completely specified by a single unknown atom, 
say  x1 . Using the above facts and summarizing, one can restrict attention to the subset of all  
( , ) ( )X Y BD3

2   of the form

x x x
x

p
x

xX X1 2 1 2

1 1

1
0, , , ,

(3.8) y x y
x

q
xY Y1 2 1 2

1 1

1
, ,

( )
,

p p p p q p p q11 1 12 21 1 1 22 20, , , .

Since  p12 0, the relevant bivariate sum mass points are  x y x y x y1 1 2 1 2 2, , . With 
(3.8) and Lemma 2.3 assume that (otherwise exchange  X  and  Y)

(3.9) ( ) ( )x x y y2 1 2 1 0.

Therefore one can suppose that x y d x y1 1 2 2   (otherwise the calculation is trivial). 
Consider  z=q(x,y)  as a quadratic surface in the  (x,y,z)-space, and  z=

f x y x y D( , ) ( )   as a bivariate piecewise linear function with the two pieces  
z x yl 1 0( , )   defined on the half-plane  DyxyxH :),(1   and  

z x y x y Dl 2 ( , )   on the half-plane  DyxyxH :),(2 , then one must have 

0),(),(:),( 11 yxyxqyxQ   on  H1, and  0),(),(:),( 22 yxyxqyxQ   on  H2 . To 
achieve  Pr(q(X,Y)=f(X,Y)=1)=1  one must satisfy the 3 conditions

(3.10)

Q x y

Q x y x y

Q x y
i

1

2 1 2 1

2 2 2

0

0

0

( , )

( , ) , ( , )

( , )

  in one of H i ,  i=1,2

The inequalities constraints  Q x yi ( , ) 0  imply that  ( , )x yi i   must be tangent at the 
hyperplane 2,1),,( iyxz i , hence the 4 further conditions

(3.11)
x

Q x y

y
Q x y i

i x y

i x y

i i

i i

( , ) ,

( , ) , , .

( , )

( , )

0

0 1 2

Together (3.10) and (3.11) imply 7 conditions for 7 unknowns (6 coefficients plus one mass 
point), a necessary system of equations to determine a bivariate quadratic majorant, which can 
eventually be solved. To simplify calculations, let us replace  q(x,y)  by the equivalent form

(3.12) q x y a x x b y y c x x y y d x x e y y f( , ) ( ) ( ) ( )( ) ( ) ( )1
2

1
2

1 1 1 1 .
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The required partial derivatives are

(3.13)
q x y a x x c y y d

q x y b y y c x x e
x

y

( , ) ( ) ( )

( , ) ( ) ( )

2

2
1 1

1 1

Then the 7 conditions above translate to the system of equations in x y ii i, , ,1 2 :

(C1) q x y f( , )1 1 0

(C2) q x y a x x d x x x y D( , ) ( ) ( ) ( )2 1 2 1
2

2 1 2 1

(C3)
q x y a x x b y y c x x y y

d x x e y y x y D

( , ) ( ) ( ) ( )( )

( ) ( )
2 2 2 1

2
2 1

2
2 1 2 1

2 1 2 1 2 2

(C4) q x y dx ( , )1 1 0

(C5) q x y ey ( , )1 1 0

(C6) q x y a x x c y yx ( , ) ( ) ( )2 2 2 1 2 12 1

(C7) q x y b y y c x xy ( , ) ( ) ( )2 2 2 1 2 12 1

In particular one has  d=e=f=0. The conditions (C6), (C7) can be rewritten as

(C6) a x x c y y( ) ( ( ))2 1
1
2 2 11

(C7) b y y c x x( ) ( ( ))2 1
1
2 2 11

Insert these values into (C3) to see that the following relation must hold :

(3.14) ( ) ( )x y x y D1 1 2 2 2 .

It says that the sum of the two extreme maximizing couple sums equals two times the 
deductible. Observe in passing that the similar constraint holds quite generally in the 
univariate case (proof of Theorem II.2.1 for type (D1)).

Now try to satisfy (C2). If  ( , )x y H2 1 1  one must have  a=0, hence  c y y( )2 1 1

by  (C6), and  
2

12

1212

)(

)()(

2

1

yy

xxyy
b   by (C7). Similarly, if  ( , )x y H2 1 2  one obtains  

a x x x y D( )2 1
2

2 1 , hence  c x x( )2 1 1  by (C6) using (3.14), and  b=0. In the first 
case, one has  q x y y y b y y c x x( , ) ( )( ( ) ( ))1 1 1 , and in the second one 
q x y x x a x x c y y( , ) ( )( ( ) ( ))1 1 1 . In both cases the quadratic form is indefinit, which 
implies that the majorant constraint  q(x,y) 0  on  H1  or  H2   cannot be fulfilled. The only 
way to get a quadratic majorant is to disregard condition (C2), that is to set p21 0, hence  
q p1 1  (no probability on the couple  ( , )x y2 1 ). From (3.8) one obtains immediately  =1,
which is complete dependence. To get a quadratic majorant one can set  c=0  in (C6), (C7). 
Then one obtains
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(3.15)
)(

)(

)(

)(

2

1
),(

12

2
1

12

2
1

yy

yy

xx

xx
yxq .

The discriminant of both Q x y ii ( , ), ,1 2, equals

(3.16)
1

0
2 1 2 1( )( )x x y y

,

and furthermore

(3.17)
2

2
2 1

1
0 1 2

x
Q x y

x x
ii x yi i

( , ) , ,( , ) .

By standard calculus one concludes that  Q x yi ( , )   is positive definite,  hence  as required. 
Solving (3.14) using (3.8), one obtains the explicit maximizing Hoeffding-Fréchet bivariate 
diatomic couple  (X,Y)  summarized in (3.18). It remains to discuss the form (3.3) of the 
Hoeffding-Fréchet extremal diatomic distribution. Replacing in the above proof the couple  

12 , yx   by  21, yx , one obtains similarly that condition (C2) must be disregarded, hence  

p p q12 1 10, , and thus  =1. The same maximizing couple follows. In fact the applied 
bivariate quadratic majorant method shows the following stronger result.

Theorem 3.1.  (Characterization of the bivarite stop-loss inequality) The bivariate quadratic 
majorant stop-loss sum problem over  BD BD X Y X Y3

2 0( ) ( , , , , ), , is solvable if 
and only if  =1. The atoms and probabilities of the maximizing diatomic couple are given by  
(set X Y X Y, )

(3.18)

,0,1),
)(

1(
2

1

)()(,)()(

)()(,)()(

211211222211

22
2

22
1

22
2

22
1

pppp
T

D
p

DDyDDy

DDxDDx

YY

XX

and the maximal bivariate stop-loss transform of a couple  (X,Y)  equals

(3.19) )()(
2

1 22 DD .

Proof.  The formulas (3.18) follow from (3.14) as explained in the text, while (3.19) follows 
from (3.15) by noting that  )(max),( DYXEYXqE . The elementary calculations 

are left to the reader.



                        Extremal Moment Methods and Stochastic Orders                        221

3.2. Best lower bounds for bivariate stop-loss sums.

We proceed as in Subsection 3.1 with the difference that  q(x,y) f(x,y)  and the fact 
that the minimum of  E f X Y( , )   should be attained at the Hoeffding-Fréchet extremal lower 

bound distribution  0,1)()(max),(* yGxFyxH . For diatomic couples with negative 

correlation coefficient <0, two cases are possible (derivation is immediate) :

Case 1 : p q1 1 1

(3.20) p p p p q p p q11 12 1 21 1 1 22 10 1, , ,

Case 2 : p q1 1 1

(3.21) p p q p q p q p p q11 1 1 12 1 21 1 1 22 11 1 1, , ,

Taking into account (2.13), the form of p11  implies the following relations :

(3.22) y xY

X
1 2

1
  in Case 1, y xY

X
2 1

1
  in Case 2.

Clearly (3.7) also holds. We show first that there cannot exist a bivariate quadratic minorant 
with non-zero quadratic coefficients  a, b, c. Therefore, the minimum, if it exists, must be 
attained at a bivariate linear minorant. Since possibly  p11 0  (as in Case 1), the non-trivial 
situation to consider is  x y D x y1 2 2 2. Proceed now as in Subsection 3.1. The 
simplest  q(x,y) takes the form

(3.23)    
fyyexxdyyxxcyybxxa

yxq

)()())(()()(

),(

2121
2

2
2

1

The partial derivatives are

(3.24)
q x y a x x c y y d

q x y b y y c x x e
x

y

( , ) ( ) ( )

( , ) ( ) ( )

2

2
1 2

2 1

The following 8 conditions must hold (up to cases where some probabilities vanish) :

(C1) q x y a y y e y y f( , ) ( ) ( )1 1 2 1
2

1 2 0

(C2) q x y f( , )1 2 0

(C3)
q x y a x x b y y c x x y y

d x x e y y x y T

( , ) ( ) ( ) ( )( )

( ) ( ) ( )
2 1 2 1

2
2 1

2
2 1 1 2

2 1 1 2 2 1

(C4) q x y a x x d x x x y T( , ) ( ) ( )2 2 2 1
2

2 1 2 2

(C5) q x y dx ( , )1 2 0
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(C6) q x y ey ( , )1 2 0

(C7) q x y a x xx ( , ) ( )2 2 2 12 1

(C8) q x y x xy ( , ) ( )2 2 2 1 1

In particular one has  d=e=f=0. By standard calculus, in order that  Q x yi ( , ) 0  on  H i ,
i=1,2, the quadratic form  Q x yi ( , )   must be negative definite. Therefore its discriminant, 
which is  4 2ab c   for both  i=1,2, must be positive, and  a<0. But by (C7) one has  a>0, 
which shows that no such  q(x,y)  can actually be found. Therefore the minimum must be 
attained for a bivariate linear form. Similarly to the univariate case, the candidates for a linear 
minorant are ( , )x y x y D  if  D 0  and 0),( yx   if  D>0.

Case (I) :  D 0, ( , )x y x y D

Let us construct a diatomic couple with probabilities (2.20) such that

(3.25) either x y D x y x y1 2 2 1 2 2 ,
     or x y D x y x y2 1 1 2 2 2 .

Then one has  Pr( ( , ) ( ) )X Y X Y D 1,  ( , ) ( )x y x y D0   on  H1, and 
( , ) ( )x y x y D x y D on H2 . Together this implies that

DYXEDYXE ),()(min , as desired. Let us solve (3.25) using (3.23). Three 
subcases are distinguished :

(A) XY

1
  (hence X Y 0)

Since y xY

X
2 1  by (3.23), the equation x y D1 2 has the solution

(3.26)

.,

,,

21

21

Dy
D

y

D
xTx

YX

YYXY

YXX

YX

X

One checks that D x y x y2 1 2 2  and that p q1 1 1  (condition for p11 0)

(B) XY

1

Exchange  X  and  Y  such that  YX

1
. Since  2 1  one gets 

XXXY

1
)(

1
)( 2 , and one concludes as in Subcase (A).

(C) X Y 0
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Using (3.23) one gets the relations  y x y x1 2 2 2 1

1
, . Setting  Tx

12

2

2   one 

obtains x y D x y x y2 1 1 2 2 20 , which yields a couple with the property (3.25).

Case (II) :  D>0, 0),( yx

One must construct a diatomic couple with probabilities (3.20) such that  x y D2 2 . Then 
all mass couples belong to  H1, which implies that Pr( ( , ) ( ) )X Y X Y D 1. It 

follows that  0)(min DYXE . Using that y xY

X
2 1, the equation  x y D2 2

has the solution

(3.27) YXDDx )(4
2

1 2
2

provided D X Y2 ( ) . Removing the assumption  X Y 0  (translation of  X  and  
Y), one obtains the following bivariate extension of the corresponding univariate result.

Theorem 3.2.  The minimal bivariate stop-loss transform of a bivariate couple  (X,Y)  with 
marginal means X Y, , variances  X Y,   and negative correlation  <0  equals  
( )X Y D   provided D X Y  or  D X Y2 ( ) . It is attained by a diatomic 
couple with atoms as constructed above in Case (I) and Case (II).

4. A combined Hoeffding-Fréchet upper bound for expected positive differences.

To simplify the subsequent analysis and presentation, it is necessary to introduce a 
considerable amount of notations, conventions, and assumptions.

Let  X, Y  be random variables with distributions  F(x), G(x), and let  A BX X, ,

A BY Y,   be the smallest closed intervals containing the supports of  X, Y, which are defined 

by  0)(:inf xFxAX ,  1)(:sup xFxBX ,  A BX X , and similar 
expressions for  A BY Y, . By convention one sets  F(x)=0  if  x A X,  F(x)=1  if  x BX, and
G(x)  is similarly extended to the whole real line. The notations  YX AAA ,min ,

YX AAA ,max , YX BBB ,min , YX BBB ,max   will be used throughout. With the 

made conventions, the interval  A B, , which can be viewed as a smallest common 

"extended" support of  X  and  Y, turns out to be relevant for the present problem. The 
following regularity assumption, which is required in the proof of our results and is often 
fulfilled in concrete examples, is made :

(RA) F x G x( ) ( )   is strictly increasing in  x  on the open interval BA,

The joint probability function of the pair  (X,Y)  is denoted by  H(x,y). Survival functions are 
denoted by  F x G x H x y( ), ( ), ( , ). One assumes that the means  X Y,   exist and are finite. 
The stop-loss transform of  X  is defined and denoted by  X x E X x( ) ( ) . Using partial 
integration, one shows that
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(4.1) )(xX

.,0

,,)(

,,

X

XX

B

x

XX

Bxif

BxAifduuF

Axifx
X

Finally, the indicator function of a set is denoted by I .

It will be explained how bounds for the expected positive difference  E X Y( )
can be obtained. First of all, the symmetry relation

(4.2) E X Y E Y XX Y( ) ( )

shows that in general a bound must be constructed by combining bounds for the left and right 
hand side in (4.2). For example, let  M(X,Y)  be an upper bound for  E X Y( ) , and let 

M(Y,X)  be an upper bound for E Y X( ) . Then a combined upper bound is

(4.3) ),(),,(max XYMYXMM YX .

Without loss of generality, one can assume that  A BY X  and  A BX Y. Otherwise 
the random variable  ( )X Y   or  ( )Y X   is identically zero, and the calculation is trivial. 
From the identity

(4.4)
X

Y

X

Y

B

A

B

A
duuYuXIuYIduuYuXIYX ,,)( ,

one derives, taking expectations, the formula

(4.5)
X

Y

X

Y

B

A

B

A
duuGduuuHYXE )(),()( ,

and by symmetry, one has

(4.6)
Y

X

Y

X

B

A

B

A
duuFduuuHXYE )(),()( .

Consider the extremal distributions

(4.7) )(),(min),(),()1)()((),( *
* yGxFyxHyxHyGxFyxH ,

which provide the extremal bounds for a bivariate distribution over the space  BD(F,G)  of all 
bivariate random pairs  (X,Y)  with given marginals  F(x)  and  G(x), and which have been 
introduced by Hoeffding(1940) and Fréchet(1951). It follows that the survival function  
H x x( , )  satisfies the bounds

(4.8) 1),()(min),(),()(),(max),( *
* xGxFxxHxxHxGxFxxH ,

from which bounds for the expected positive difference can be constructed combining (4.2), 
(4.5) and (4.6). In fact, it is possible to determine bounds for expected values of the form  
E f X Y( ) , where  f(x)  is any convex non-negative function, as observed by Tchen(1980), 
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Corollary 2.3. As a general result, the same method allows to determine, under some 
regularity assumptions, bounds for expected values of the type  E f X Y( , ) , where  f(x,y)  is 
either a quasi-monotone (sometimes called superadditive) or a quasi-antitone right-continuous 
function (note that  f x y x y( , ) ( )   is quasi-antitone). For this, consult the papers 
mentioned in Section 1, especially Cambanis et al.(1976).

Denote by  M X Y M Y XHF HF( , ), ( , )   the upper bounds for  E X Y( )   obtained by 

inserting the Hoeffding-Fréchet extremal bound  H x x* ( , )   into (4.5), (4.6). A detailed 
calculation of the combined upper bound  ),(),,(max XYMYXMM HFYXHFHF

yields the following result.

Theorem 4.1.  Let  ( , ) ( , )X Y BD F G   be a bivariate random variable with marginal 
supports A BX X, , A BY Y, , and finite marginal means  X Y, . Suppose the regularity 
assumption (RA) holds. Then the combined Hoeffding-Fréchet upper bound is determined as 
follows :

Case (I) : F x G x( ) ( ) 1 for all BAx ,

M AHF X

Case (II) :  There exists a unique BAx ,0   such that F x G x( ) ( ) 1  for x x0   and

F x G x( ) ( ) 1  for x x0

HFM

.,),()(

,,),()(

,,),()(

0

0000

0

BBxifBBB

BAxifxxx

AAxfiAAA

YXY

YXY

YXY

Case (III) : F x G x( ) ( ) 1  for all BAx ,

M BHF Y

Proof.  This follows from a case by case calculation. The lower index in the M sHF '   is 
omitted.

Case (I) :

Inserting H x x* ( , )   into (4.5) one has

(4.9) )()()()(),( YX

B

A

B

A
AdxxGdxxGxFYXM

X

Y

X

Y

,

and similarly  M Y X AY X( , ) ( )  by (4.6). Now make use of (4.1) and the monotone 
decreasing property of the stop-loss transform. If  A AX Y  then one has 

X Y Y X X X X YA A A( ) ( ) ( ), and if A AX Y one has

X Y Y X X Y Y Y X YA A A( ) ( ) ( ). Together this shows that
M A AX X( ) .
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Case (II) :

To evaluate  M(X,Y)  from (4.5) three subcases are distinguished.

(IIa) A x BY X0

By assumption one has

(4.10)
.)()(

)()()(),(

0

0

0

00

x

AXY

B

A

B

x

x

A

Y

X

Y

X

Y

dxxGxAx

dxxGduxGxFdxYXM

Furthermore, if x BY0   one has )()(.)( 0

0

xAdxxG YYY

x

AY

, hence 

M X Y x x xY X Y( , ) ( ) ( )0 0 0 . If x BY0   one gets 
M X Y x x x x xY X Y X Y( , ) ( ) ( ) ( )0 0 0 0 0 , the last equality because 

Y x( )0 0.

(IIb) A x AX Y0

As in case (I) one obtains M X Y A A A AX Y Y Y X Y Y Y( , ) ( ) ( ) ( ) .

(IIc) B x BX Y0

One obtains successively

).()()(

))()(()(),(

XYXXYXXYYX

XYYYYX

B

A

B

A

BBBBB

BAABdxxGdxYXM
X

Y

X

Y

By symmetry  M(Y,X)  is obtained similarly. The three subcases are :

(IIa') A x BX Y0 : M Y X x x xX X Y( , ) ( ) ( )0 0 0

(IIb') A x AY X0 : M Y X A A AX X X X Y X( , ) ( ) ( )
(IIc') B x BY X0 : M Y X B B BY X X Y Y Y( , ) ( ) ( ).

Furthermore, if  BAx ,0   then either  XY BAx ,0   and/or  YX BAx ,0   holds. 

Combining the above six subcases using that the univariate function  x x xX Y( ) ( )   is 
decreasing for x x0   and increasing for x x0 , one sees that  M  takes the following values

(II1)  If XY BAx ,0   and YX BAx ,0   then M x x xX X Y0 0 0( ) ( ) .

(II2)  If XY BAx ,0   and XY AAx ,0   then M A A AX Y X X Y X( ) ( ).

(II3)  If XY BAx ,0   and XY BBx ,0   then M B B BY Y X Y Y Y( ) ( ).

(II4)  If YX BAx ,0   and YX AAx ,0   then M A A AY Y X Y Y Y( ) ( )

(II5)  If YX BAx ,0   and YX BBx ,0   then M B B BX Y X X Y X( ) ( ).

Rewritten in a more compact form, this is the desired result.
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Case (III) :

If B BY X  one obtains

).()()(),( XYYXYYYX

B

A

B

A
BBAABdxxGdxYXM

X

Y

X

Y

If B BY X  one obtains the same expression from

).())()(()(),( XYYXXYYYYX

B

A

B

A
BBBAABdxxGdxYXM

X

Y

X

Y

By symmetry one obtains similarly  M Y X B BY X X Y( , ) ( ). Now, use that the 
function x xY ( ) is monotone increasing. If B BX Y then
M X Y B B B M Y XY Y Y Y Y Y X Y( , ) ( ) ( , ) , hence  M BY Y.

Similarly, if B BX Y  then M BX Y . Together this shows that M B Y   as desired. 
The proof is complete.

5. A minimax property of the upper bound.

There is an alternative way to derive an upper bound for expected positive differences, 
which a priori does not depend on the Hoeffding-Fréchet extremal distribution. It is based on 
the following simple positive difference inequality.

Lemma 5.1.  For all real numbers   one has

(5.1) YXYYXYX .

Proof.  It suffices to consider the case  X Y. It is immediate to check that the inequality 
holds in all of the three possible subcases X Y , X Y, X Y.

One observes that the application of Lemma 5.1 to the symmetry relation 
XYYXYX   does not lead to a new inequality. Therefore an alternative 

upper bound for the expected positive difference is obtained from the minimization problem

(5.2) )()(min YXYYXE .

It is remarkable that both upper bounds are identical.

Theorem 5.1.  (Minimax property of the combined Hoeffding-Fréchet upper bound)  Let  
( , ) ( , )X Y BD F G   be a bivariate random variable with marginal supports A BX X, ,

A BY Y, , and finite marginal means  X Y, . Suppose the regularity assumption (RA) holds. 
Then the following property holds :

(5.3)
.)()(min

max,maxmax
),(),(),(),(

YXY

GFBDYX
YX

GFBDYX
XYEYXE

Proof.  Set  ( ) ( ) ( )Y X Y . For  A  one has  ( ) ( )X A ,

and for  B  one has  ( ) ( )Y B . Therefore it suffices to consider the 



                                               Werner Hürlimann                                                         228

minimum over the interval  A B, . The result depends upon the sign change of  

' ( ) ( ) ( )1 F G .

Case (I) : F x G x( ) ( ) 1  for all BAx ,

Since ( )  is increasing on BA, , the minimum of ( )  is attained at A .

Case (II) :  There exists a unique BAx ,0   such that F x G x( ) ( ) 1  for x x0   and

F x G x( ) ( ) 1  for x x0

We distinguish between three subcases.

(IIa) AAx ,0

Since  ( )  is increasing on  BA, , the minimum of  ( )  is attained over  A A, . One 

has for A A, :

)( X X

X Y Y Y

if A A

if A A

( ), ,

( ), .

In each case ( )  is decreasing on A A, , and the minimum is attained at A .

(IIb) BBx ,0

Since  ( )  is decreasing on  BA, , the minimum of  ( )  is attained over  B B, . One 

has for B B, :

)( Y Y X

Y X Y

if B B

if B B

( ), ,

( ), .

In each case ( )  is increasing on B B, , and the minimum of ( )  is attained at B.

(IIc) BAx ,0

By (IIa) the minimum over  A A,   is  ( )A , and by (IIb) it is  ( )B   over  B B, . Since  

( ) is decreasing on 0, xA   and increasing on Bx ,0 , the minimum is attained at x0.

Case (III) : F x G x( ) ( ) 1  for all BAx ,

Since ( )  is decreasing on BA, , the minimum of ( )  is attained at B.

In all cases, the minimum coincides with the corresponding maximum in Theorem 4.1.
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In the following two often encountered special cases, the determination of the upper 
bound simplifies considerably.

Example 5.1 :  X, Y  defined on ,   satisfying (RA)

One obtains that )()(max 000
),(),(

xxxYXE YXY
GFBDYX

,  where x 0  is the 

unique solution of the equation F x G x( ) ( ) 1.

Example 5.2 :  X, Y  defined on ,0   satisfying (RA)

One obtains that

YXE
GFBDYX ),(),(

max X

Y X Y

if F x G x for x

x x x otherwise

, ( ) ( )

( ) ( ), ,

1 0

0 0 0

where ,00x   is the unique solution of the equation F x G x( ) ( ) 1.

6. The upper bound by given ranges, means and variances of the marginals.

The best bound for the expected positive value of a random variable  X, namely 
22

2

1
XE , by given double-sided infinite range  , , mean    and 

standard deviation  , has been obtained by Bowers(1969). Its extension to an arbitrary range 
A B A B, , , has been first obtained by De Vylder and Goovaerts(1982) (see also 

Goovaerts et al.(1984), Jansen et al.(1986)). The best bound for the expected positive 

difference  YXYXYXE ,,
2

1
)( 22 , by given marginal 

ranges , , means X Y,   and standard deviations  X Y,   of  X, Y, is a consequence 
of Theorem 2 in Hürlimann(1993c). Its non-trivial extension to arbitrary marginal ranges is 
our main Theorem 6.1, which is a distribution-free version of the combined Hoeffding-
Fréchet upper bound for expected positive differences presented in Theorems 4.1 and 5.1. The 
considerable simplification of the general result (solution to an extremal moment problem of 
so-called Hausdorff type) for the ranges  ,0   (Stieltjes type) and  ,   (Hamburger 
type) is formulated in Table 6.2 and Theorem 6.2. In the latter situation, sharpness of the 
upper bound is described in details.

Let  D D A BX X X X X( , ; , ) ,  D D A BY Y Y Y Y( , ; , )  be the sets of all 

random variables  X, Y  with ranges A B A BX X Y Y, , , , finite means X Y, , and standard 

deviations X Y, . The coefficients of variation are denoted by  k kX
X

X
Y

Y

Y

, . The set 

of all bivariate pairs  (X,Y)  such that  X D Y DX Y,   is denoted by  
BD BD A B x A BX X Y Y X X Y Y( , , ; , , , ) . The maximal stop-loss transforms over  

D DX Y,   are denoted by  )(max)(*
X

DX
X

X

, )(max)(*
Y

DY
Y

Y

,    an arbitrary real 

number. Let  X Y* *,   be the stop-loss ordered maximal random variables such that  

X X Y Y* *( ) ( ), ( ) ( )* *   for all  . Their survival functions are obtained from the 
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derivatives of the maximal stop-loss transforms as F x
d

dx
x G x

d

dx
xX Y

* * * *( ) ( ), ( ) ( ) .

Setting ( ; , ) ( ) ( )X Y Y X Y , it follows that

(6.1) ( ; , ) ( ; , )* *X Y X Y   uniformly for all , all X D Y DX Y, .

This uniform property implies that

(6.2) min ( ; , ) min ( ; , )* *X Y X Y   uniformly for all X D Y DX Y, .

By the minimax Theorem 5.1, the following distribution-free upper bound has been found :

(6.3)

.)()(min

max,maxmax:

)(max

**

),(),(),(),(

*

),(

****

YXY

GFBDYX
YX

GFBDYX

BDYX

XYEYXEM

YXE

Once the right-hand side has been determined, it remains, in order to obtain possibly a best
upper bound, to analyze under which conditions the equality is attained. By construction, one 
knows that it is attained for the Hoeffding-Fréchet extremal survival function 

1),()(min),( ***
* yGxFyxH   associated to  ( , ) ( , )* * * *X Y BD F G . However, since the 

standard deviations of  X Y* *,   are greater than  X Y, , this does not guarantee the upper 
bound is attained for some  ( , )X Y BD. One knows that in some cases the upper bound is 
actually attained by a bivariate diatomic random variable, as in Theorem 6.2.

To state the main result, some simplifying notations will be convenient. Since the 
derivation is done in terms of standard random variables, one sets

a
A

b
B

a
A

b
B

X
X X

X
X

X X

X
Y

Y Y

Y
Y

Y Y

Y

, , , .

The negative inverse of a non-zero number  x  is denoted by  x x 1, which defines an 
involution mapping whose square is, by definition, the identity. A further notation is

X Y
X Y

X Y
, .

Theorem 6.1.  (Distribution-free Hoeffding-Fréchet combined upper bound for expected 
positive differences)
Let  ( , ) ( , , ; , , , )X Y BD BD A B x A BX X Y Y X X Y Y   be a bivariate pair of random 
variables with the given marginal ranges, means, and standard deviations. Then the 
distribution-free upper bound  M*  in (6.3) for the expected positive difference 
E X Y X Y BD( ) , ( , ) , is determined by Table 6.1.
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Table 6.1 :  Distribution-free upper bound for expected positive differences by given
        ranges, means and variances of the marginals

case conditions parameter 0
i upper bound

(I) a a b bX Y X Y1 1, X A
(III) a a b bX Y X Y1 1, B Y

(II) a a b bX Y X Y1 1,
(IIc) BAi

o ,

(1) a a b b

a a
X X Y Y

X Y X X

0
1
2, ( )

0
1

1
2Y Y X Xa a( )

X Y X X Y

X X

a

a a

( )

(2) a a b b

a a
Y Y X X

X Y Y Y

0
1
2, ( )

0
2

1
2X X Y Ya a( )

X Y Y X Y

Y Y

a

a a

( )

(3) 1
2

1
2

1
2

1
2

( ) ( )

( ) ( )

,

,

a a b b

a a b b

X X X Y X X

Y Y X Y Y Y

0
3 X Y Y X

X Y )(

)()( 22
2
1

YX

YXYX

(4) a a b b

b b
X X Y Y

X Y Y Y

0
1
2, ( )

0
4

1
2X X Y Yb b( )

X Y Y X Y

Y Y

b

b b

( )

(5) a a b b

b b
Y Y X X

X Y X X

0
1
2, ( )

0
5

1
2Y Y X Xb b( )

X Y X X Y

X X

b

b b

( )

(IIa) AAi
o , A A AY X Y

* *( ) ( )

(IIb)
o
i B B, i B B BY X Y

* *( ) ( )

Proof.  To obtain  M*  one simplifies calculation by reduction to the case of stop-loss ordered 

standard maxima  Z X
X

Z Y
YX

X

Y

Y

( ) , ( )*
*

*
*

  with distributions  F(x), G(x), and 

ranges a b a bX X Y Y, , , . Then one has the relation

(6.4)
Y

Y
YZ

Y

Y
Y

X

X
XZXYX

)()(

**
**),;( .

As seen in Section 5, the value of M*  depends upon the sign change of

11)()( **

Y

Y

X

X GFGF .

For mathematical convenience set X
X

X
Y

Y

Y

, , where both quantities are 

related by  Y X X X Y Y . From Table IV.2.2 one obtains that  F x( ) consists of
five pieces described as follows :
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F x x a

F x
a

a
a x a a

X

X

X
X X X

0

1

2

2
1
2

1

1

( ) , ,

( ) , ( ),

(6.5) F x( ) F x
x

x
a a x b bX X X X2

2

2
1
2

1
21

( )
( )

( )
, ( ) ( ),

F x
b

b b x b

F x x b
X

X X X

X

3 2
1
2

4

1

1

0

( ) , ( ) ,

( ) , .

In this formula the function  ( )x x x1 02   is the inverse of  the function 
( ) ( ),x x x x x1

2
1. The distribution  G x( ) is defined similarly. We distinguish

between several cases as in the proof of Theorem 5.1.

Case (I) : F G* *( ) ( ) 1  for all ( , )A B

This occurs when  F GX Y1 1 1( ) ( ) , that is  a aX Y 1, and implies automatically 
b bX Y 1. The upper bound is M AX

* .

Case (III) : F G* *( ) ( ) 1  for all ( , )A B

This occurs when  F GX Y3 3 1( ) ( ) , that is  b bX Y 1, and implies automatically 

a aX Y 1. The upper bound is M B Y
* .

Case (II) :  there exists a unique 0 ( , )A B   such that F G* *( ) ( ) 1  for 0  and
F G* *( ) ( ) 1  for 0

This can only occur provided  a aX Y 1  and  b bX Y 1. The equation  F GX Y( ) ( ) 1
consists of five pieces F Gi X j Y( ) ( ) 1,  i,j=1,2,3, leading to five subcases.

(1) F G aX Y Y X1 2 1( ) ( ) ( )

One has Y Y X X Xa a a( )( ) ( ) ( )1
2 . Furthermore the constraints

1
2

1
2( ) ( )a a b bY Y Y Y Y ,

a a aX X
Y X

X

Y

X
Y X X

1
2 ( )

are equivalent to the conditions  

a a a a a a b b

a a
X X Y Y X X Y Y

X Y X X

0
1
2

,

( ),,

from which the first inequality is always fulfilled because  a aX Y 1. The value of  M*

depends on  0 X X X Y Y Y  as in Theorem 4.1, leading to three further 
subcases :
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(1a) )()(:, ***
0 AAAMAA YXY

(1b) )()(:, ***
0 BBBMBB YXY

(1c) BA,0    :

Applying the reduction step above and Table II.5.1 for the maximal stop-loss transform, one 
obtains after some straightforward algebra :

M X Y a
a

aX X
X X

X
Y Y Y

* * *( , , ) ( ) ( )0 2
21

1

1

2
1

X Y X X Y

X X

a

a a

( )
.

(2) F G aX Y X Y2 1 1( ) ( ) ( )

By symmetry to the subcase (1) one gets  X Y Ya a1
2 ( ) , and the constraints are 

equivalent to the conditions

),(,0 2
1

, YYYXXXYYYYXX aabbaaaaaa

from which the first inequality is always fulfilled because  a aX Y 1. The subcases (2a), (2b) 
are the same as (1a), (1b). For (2c) one has, by the symmetry relation  
( ) ( )X Y X Y Y X ,  and using subcase (1c), that

M
a

a a

a

a aX Y
X Y Y X Y

Y Y

X Y Y X Y

Y Y

* ( ) ( )
.

(3) F GX Y X Y2 2 1 1( ) ( ) ( ) ( )

Using that  x
x)(

1
  one has  X Y 0, hence  X X Y, . The conditions under 

which (3) holds are

1
2

1
2

1
2

1
2

( ) ( ),

( ) ( ).

,

,

a a b b

a a b b

X X X Y X X

Y Y X Y Y Y

The subcases (3a), (3b) are the same as (1a), (1b). For (3c) a calculation yields

.)()()(
2

1

)1(
2

1
)1(

2

1

22

22*

YXYXYX

YYYXXXM

(4) F G bX Y Y Y2 3 1( ) ( ) ( )

One has X X Y Y Yb b b( )( ) ( ) ( )1
2 . Furthermore the constraints
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1
2

1
2( ) ( )a a b bX X X X X ,

1
2 ( )b b bY Y Y Y

are equivalent to the conditions

a a b b b b b b

b b
X X Y Y X X Y Y

X Y Y Y

0
1
2

,

( ),,

from which the second inequality is always fulfilled because  b bX Y 1. The subcases (4a), 
(4b) are the same as (1a), (1b). For (4c) one obtains after some calculation

M
b

bX X X Y Y
Y Y

Y

* ( ) ( )
1

2
1

1
2

2

X Y Y X Y

Y Y

b

b b

( )
.

(5) F G bX Y Y X3 2 1( ) ( ) ( )

By symmetry to the subcase (4) one gets  Y X Xb b1
2 ( ) , and the constraints are 

equivalent to the conditions 

),(,0 2
1

, XXYXYYXXXXYY bbbbbbbbaa

from which the second inequality is always fulfilled because  b bX Y 1. The subcases (5a), 
(5b) are the same as (1a), (1b). For (5c) one obtains by symmetry from case (4) :

M
b

b b

b

b bX Y
X Y X X Y

X X

X Y X X Y

X X

* ( ) ( )
.

In Table 6.1, if  A AX Y  and  B BX Y, then the cases (b) and (c) do not occur. 
Further simplifications take place for the important special cases  A AX Y 0,
B BX Y and  A AX Y , B BX Y . The results are reported in Table 6.2 and 
Theorem 6.2.

Theorem 6.2.  Let  ),,,;,,(),( YYXXxBDBDYX   be a bivariate pair 
of random variables with the given marginal ranges, means, and standard deviations. Then the 
maximum expected positive difference is determined in three alternative ways as follows :

YXYXYXYXY

GFBDYXBDYX
YXEYXE

22**

),(),(),(

2

1
)()(min

maxmax
**

Moreover, the first maximum is attained for a bivariate diatomic random variable with support 
zzxzzyyxxx YYYYXXXX ,,,, 2121   and joint probabilities 

determined by the  2x2-contingency table
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y1 y2

x1 0
1

1 2z

x2

z

z

2

21 0

where  z X Y

X Y

1 2 , . The second maximum is attained by the Hoeffding-

Fréchet lower bound bivariate distribution with joint survival function

1),()(min),( ***
* yGxFyxH ,

where the stop-loss ordered maximal marginals are given by

.
)(

1
2

1
)(,

)(
1

2

1
)(

22

*

22

*

YY

Y

XX

X

x

x
xG

x

x
xF

Finally, the third minimum-maximum is attained at 0
X Y Y X

X Y

.

Table 6.2 :  Distribution-free upper bound for expected positive differences by given 
        ranges ,0 , means and variances of the marginals

case conditions Hoeffding-Fréchet upper bound
(I) k kX Y 1 X

(II) k kX Y 1
(1)

Y X

X Y

X

X

k

k

1

2

12

( )
Y

X

YX
X k

kk
21

1

(2)
X Y

X Y

Y

Y

k

k

1

2

12

( )
X

Y

YX
X k

kk
21

1

(3)
Y X

X Y

X

X

k

k

1

2

12

( )

X Y

X Y

Y

Y

k

k

1

2

12

( )

)()()(
2

1 22
YXYXYYXX kk

Proof of Theorem 6.2.  The last two representations follow from the minimax Theorem 5.1 
and Table 6.1 by observing that in case of infinite ranges  , only the subcase (3) of 
case (II) can occur. The fact that the first equality holds for the displayed bivariate diatomic 
random variable can be checked without difficulty. Alternatively, one may invoke that the 
first maximum is equivalent with the bivariate version of the inequality of Bowers(1969) 
obtained by replacing  Y  by D Y, D  an arbitrary constant, for which the result is in 
Hürlimann(1993c), Theorem 2.
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7. Notes.

A derivation of the Hoeffding-Fréchet extremal distributions can be found in many 
statistical textbooks, for example Mardia(1970), p. 31. A generalization of the Fréchet 
bounds, together with the verification of the sharpness of these bounds, is found in 
Rüschendorf(1981). Of some interest are also the bounds by Smith(1983) for the situation of 
stochastically ordered marginals.

Bivariate and multivariate versions of Chebyshev type inequalities are numerous in the 
statistical literature. Good sources of material are in Karlin and Studden(1966) and valuable 
references are in Godwin(1955). For further results consult the papers by Pearson(1919), 
Leser(1942), Lal(1955), Olkin and Pratt(1958), Whittle(1958a/b), Marshall and 
Olkin(1960a/b), Mudholkar and Rao(1967) and Arharov(1971).

Section 3 is also part of the paper Hürlimann(1998a) while Section 4 to 6 closely 
follows Hürlimann(1997j). Theorems 3.1 and 6.2 provide further proofs of the bivariate 
version of the inequality of Bowers(1969) given in Hürlimann(1993c). Unfortunately, the 
problem of finding a best upper stop-loss bound by fixed positive correlation coefficient 
remains unsolved (possibly a solution does not exist at all), a question raised by Gerber at the 
XXII-th ASTIN Colloquium in Montreux, 1990 (comment after Theorem 2 in 
Hürlimann(1993c)).

Theorem 5.1 is a so-called "separation" property. For a general separation theorem one 
may consult Rüschendorf(1981). Separation is also exploited to derive bounds for the 
expected maximum of linear combinations of random variables, as shown by Meilijson and 
Nàdas(1979) and Meilijson(1991).
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CHAPTER VI

APPLICATIONS IN ACTUARIAL SCIENCE

1. The impact of skewness and kurtosis on actuarial calculations.

In view of the quite advanced mathematics and the numerous calculations required to 
clarify the analytical structure of the Chebyshev-Markov extremal distributions, it is of 
primordial importance to demonstrate the necessity of considering higher moments at some 
significant applications. We illustrate this fact at the stable pricing method, which consists to 
set prices for a risky line of business by fixing in advance a small probability of loss. 

1.1. Stable prices and solvability.

Let  X  be the claim size of a line of insurance business over some fixed period, 
usually called risk in Actuarial Science, which is described by a random variable with known 
moments up to the  n-th order, n=2,3,4,..., that is  X Dn . By assumption, at least the mean  
and standard deviation   are known. Let P H X   be the price of the risk, where  H is a 
real probability functional from  Dn   to  R . The possible loss over the fixed period is 
described by the random variable  L X P . It is often reasonable to set prices according to 
the stability criterion Pr( ) ( )L F PX0 , where   is a small prescribed positive number. 
It says that the probability of insolvability in a long position of this line of business is less than
. In a situation of incomplete information like X Dn, stability is achieved provided

(1.1) )(max PFX
DX n

,

which can be called distribution-free stability criterion. The solution  P  to (1.1) will be called 
stable price. If  )()( xF n   denotes the standard Chebyshev-Markov minimal distribution, then 

(1.1) says that the stable price is set according to a so-called standard deviation principle
P H Xn n( ) ( ) , where the loading factor ( )n   is the -percentile obtained from

(1.2) )( )()( nnF .

The dependence upon the portfolio size is very simple. For a portfolio of  N  independent and 
identically distributed risks  Xi   with aggregate portfolio risk  X Xi , the loading factor 

can be reduced by a factor of  
1

N . Indeed, let  Pi i
n
,

( )   be the stable price of an 

individual risk  Xi   with mean    and standard deviation  , where  ,
( )

i
n   is an individual

loading factor. Then the portfolio risk  X Xi   has mean  N   and standard deviation  
N . Let  P N Nn( )   be the portfolio stable price, where the portfolio loading 

factor ( )n   is determined by (1.2). Since  P Pi  one must have  )(1)(
,

nn
i N , which 

determines the individual loading factor in terms of the portfolio loading factor. In view of the 
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general inequalities  )()( )()1( xFxF nn ,  n=2,3,4,..., stated in Theorem IV.2.1, the loading 

factor  ( )n   is a decreasing function of  n, that is the stable price decreases when more and 

more information is available about the risk. Since  )()( xF n   has been completely described 

for  n=2,3,4 in Section III.4, the corresponding stable prices can be determined, at least 
numerically, using a computer algebra system.

To illustrate analytically the impact of skewness and kurtosis on solvability, we will 
consider the risk associated to daily returns in financial markets, which often turns out to be 
adequately represented by a symmetric random variable (cf. Taylor(1992), Section 2.8). For 
simplicity, we assume a double-sided infinite range  , , and suppose the skewness  

0  and the kurtosis 2 3  are known. Relevant are the following formulas :

(1.3) ,0,
1

1
)( 2

)2( x
x

xF

(1.4) .1,
)1()1()1(

1
)(

222
)4( x

xx
xF

The loading factors are obtained by solving quadratic equations. One obtains the solutions

(1.5) ( )2 1
,

(1.6) 3
41

43
2

2
)( 2)4( .

In the last formula one must assume  0 1
1

1 14, , ( )( ) . A similar formula for 

0 14( ) ( )   can also be written down. For  3, which corresponds to a standard normal 
distribution, one has further

(1.7) 4
)4( 41

12
2

2
)3( .

However, in financial markets one observes often 6. For this one has

(1.8) 3
41

249
2

2
)6()4( .

For the sake of comparison, if 0 01.   one has

( ) .2 99 9 95,

(1.9) ( ) ( ) .4 43
2

2
788 3 75,

( ) ( ) .4 6
2

2
1985 3 4 56,

and if 0 05.   one has
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( ) .2 19 4 36 ,

(1.10) ( ) ( ) .4 43
2

2
148 2 47,

( ) ( ) .4 6
2

2
385 3 2 88.

Taking into account only the mean and variance, stable prices are too crude to be applicable. 
Furthermore, the kurtosis of a standard normal distribution underestimates stable prices in 
financial markets. This well-known empirical fact finds herewith a simple theoretical 
explanation. Though many theoretical pricing principles have been developed in recent years, 
the standard deviation principle remains, besides the expected value principle  
H X E X( )1 , of main practical importance. In view of this fact, the evaluation of 
stable prices based on the knowledge of the skewness and kurtosis of risks is a valuable and 
adequate method to determine the unknown loading factor of the standard deviation principle.

1.2. Stable stop-loss prices.

The stable price method, developed in Section 1.1, can be applied to transformed risks 
of a line of business. To illustrate, let us calculate the stable stop-loss prices of a stop-loss risk  
X d X d( ) ( )   with deductible  d  for a random variable  X Dn  with known moments up 
to the  n-th order, n=2,3,4. Denote by  ( ) ( )n d   the stable stop-loss price. The possible loss 

over a fixed period is described by the random variable   L X d dn( ) ( ). Then the 
distribution-free stability criterion

(1.11) ))((max )( ddF n
X

DX n

implies a stable stop-loss price of amount

(1.12) ( ) ( )( ) ( )n nd d .

Suppose now that stop-loss prices are set according to the standard deviation principle

(1.13) H X d d d( ) ( ) ( ),

where  ( ) ( )d E X d , ( ) ( )d Var X d   are the expected value and the standard 

deviation of the stop-loss risk. Comparing (1.12) and (1.13) the standard deviation loading 
must be equal to

(1.14) ( ) ( ) ( )( )d d dn .

For a portfolio of  N  independent and identically distributed stop-loss risks, the individual 

loading factor can be reduced by a factor of  
1

N   as explained after formula (1.2). 
Therefore, it is reasonable to set stable stop-loss prices at the level

(1.15) H X d d dN N( ) ( ) ( )l ,

where the loading equals
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(1.16) )()(
1

)( )( dd
N

d n
N .

A concrete numerical illustration follows for the important special case  d , which is 
known to be the optimal deductible of the mean self-financing stop-loss strategy, which will 
be considered in Section 2.

For the sake of comparisons, we set  ( )n 5, where now the probability of 
insolvability  ( )n   depends on the amount of available information via  n  and decreases 
with increasing  n. Furthermore, we suppose that  X N~ ln ( , )   is lognormally distributed 
with parameters  , . Leaving the details of elementary calculation to the reader, one obtains 
the following formulas (N(x) denotes the standard normal distribution) :

(1.17) 1)(2)( 2
1N ,

1)exp( 2

2

2k , the squared coefficient of variation,

(1.18) k k( )3 2 , the skewness,

2
2 2 4 63 16 15 6k k k k( ) , the kurtosis.

For example, if  k=0.2  the loading equals

(1.19)
N

kNk
N

N

92.0
1)(25

1
)( 2

1 .

What is now a "realistic" probability of insolvability corresponding to the choice  ( )n 5  in 
case k 0 2 0 608 3 664. , . , .   are the values obtained from (1.18) ? The further relevant 
quantities for evaluation of the Chebyshev-Markov bounds are by Sections I.5 and III.4 the 

standardized range  ,5,
1

,
k

a ,  a k 0 2. ,  349.14
2

1 2c ,

( ) .2 1 2 294 ,  q a a a( ) .1 27 042 ,  C a q a a( ) ( ) .27 91,
D a q a( ) ( ) .27 746, and

(1.20) 603.1
)(

)()(4)()(

2

1 2
*

aq

aDaqaCaC
a .

Then the Chebyshev-Markov probabilities of insolvability are given by

(1.21) 2.05,0385.0
1

1
)5( 2

)2( ax
x

xF ,

(1.22) 349.15,0224.0
))1(2)((

1
)5(

2

2
)3( cx

axxax

aa
xF ,

(1.23) 603.15,0046.0
)1()1(

)5( *
222

)4( ax
xxx

xF .

On the other side, the probability of loss from a lognormally distributed random variable  X  
with coefficient of variation  k=0.2, that is volatility parameter  =0.198, equals
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(1.24)

.0002.0)6.3(
51ln

51lnln
))51(()5(

2
1

2

N
k

N

k
NkFF XX

Note that the value of the mean parameter    must not be known (to evaluate loss 
probabilities). This fact reminds one of the similar property, characteristic of the evaluation of 
option prices, in the famous model by Black-Scholes(1973). However, there is a model risk.
One will never be certain that the true distribution of the risk is actually a lognormal 
distribution. Our example suggests that stopping calculations by knowledge of the skewness 
and kurtosis yields a sufficiently low probability of insolvability for use in practical work.

2. Distribution-free prices for a mean self-financing portfolio insurance strategy.

Suppose the claims of a line of business are described by a random variable  X  with 
range  0, B , finite mean    and standard deviation    (known values of the skewness and 
kurtosis may also be taken into account). The set of all claims with this property is denoted by  

,;,022 BDD . For a non-negative number  d  consider the "fundamental identity of 
portfolio insurance" (valid with probability one) :

(2.1) d X d X d X( ) ( ) .

It states that the amount  d  plus the random claims outcome  X d X d( ) ( )   of a stop-loss
reinsurance with deductible  d  meets exactly the claims plus the random outcome  ( )d X ,
which is interpreted as surplus of the portfolio insurance strategy defined by (2.1). The 
expected costs of this strategy are described by the premium functional

(2.2) P d d d d( ) ( ) ( ),

where the stop-loss transform  ( ) ( )d E X d   is the expected amount of the stop-loss 

reinsurance contract, and ( ) ( )d E d X   is the expected amount of the surplus.
For an optimal long-term portfolio insurance strategy, the following two properties are 

relevant :

(P1) In the long-run, the portfolio insurance strategy should be mean self-financing in the 
sense defined below.

(P2) The expected costs of the strategy should be minimized.

A time dependent mean self-financing infinite periodic dynamic portfolio insurance strategy is 
obtained as follows. At beginning of the first period, put aside the amounts  d  and  ( )d   into 
two separate accounts, called first and second account, where in real-world applications the 
amount  ( )d   for the second account will in general be adjusted by some security loading, 
for example as in Section 1.2. At the end of the first period, take the amounts  d  and  
( )X d   from the first and second account. The total amount can be used to pay by (2.1) the 
claims of the line of business, and there remains the surplus  ( )d X , which is put as gain 
into the second account. This financial transaction is completed by putting aside the amounts  
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d  and  ( )d   in their corresponding accounts at beginning of the second period. The same 
steps are repeated in each period ad infinitum. This dynamic strategy is called mean self-
financing provided the expected outcome of the second account is at least equal to the 
expected cost  ( )d   required to cover the stop-loss claims, that is  ( ) ( )d d . Since  

( ) ( )d d d   this implies the restriction  d   on the deductible. To satisfy property 
(P2), look at the derivative of the premium functional (2.2), which is  
P d d F d'( ) ' ( ) ( )1 0, where  F(x)  is the distribution of  X. Since  P(d)  is monotone 
increasing and  d , the premium functional is minimal at  d . The corresponding 
minimal premium  P( ) ( )   defines, in actuarial terminology, a pricing principle of
the form

(2.3) H X E X X D( ) , 2.

This particular principle belongs to the class of so-called Dutch pricing principles considered 
first by van Heerwaarden(1991). Let us name (2.3) special Dutch pricing principle (see the 
notes for this quite important special case). As a straightforward application of the theory of 
extremal stop-loss transforms, it is possible to determine the extremal Dutch prices. To 
illustrate, let us determine the extremal special Dutch prices by given range, mean and 
variance, which are defined by the optimization problems

(2.4) XHXHXHXH
DXDX 22

max,min *
* .

Theorem 2.1.  (Extremal special Dutch prices)  For a claims random variable  

,;,02 BDX , with coefficient of variation  k , the extremal special Dutch prices to 

the optimal mean self-financing portfolio insurance strategy satisfying the properties (P1), 
(P2), are determined as follows :

(2.5) 2
* 1 k

B
XH

(2.6) XH *

( ) , ,

( ) , , ( ) ,

( ) , , ( ) , .

1
1

1

1 1 1

1
1

1 1

2

2

1
2

2

k

k
if k

k if k B k

b

b
k if k B k b

B

Proof.  From the Tables II.5.1 and II.5.2, one obtains the extremal stop-loss transform values 

for a standard random variable defined on k b k k, , 1 :

(2.7) * ( )Z b k B
k0

1

(2.8) )0(*
Z

k

k
if k k

if k k b b

b

b
if b b

1
0

0

1
0

2
1
2

1
2

1
2

1
2

2
1
2

, ( ) ,

, ( ) ( ),

, ( ) .
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One concludes by using the relations  * *( ) ( )Z 0 ,  * *( ) ( )Z 0 , and by 
showing that the inequality conditions in (2.8) are equivalent to those in (2.6).

Remark 2.1.  The variance inequality  2 ( )B (see Theorem I.4.1, (4.14)) implies 
that  B k( )1 2 , where equality is attained for a diatomic random variable with support  

)1(,0 2k   and probabilities  
22

2

1

1
,

1 kk

k
. In this extreme situation of maximal 

variance, one has H X H X
k

k*
* ( )1

1

2

2
  for all values of  k.

Similar results can be derived by additional knowledge of the skewness and kurtosis. 
A full analytical treatment is quite cumbersome, but a computer algebra system 
implementation is certainly feasible. As illustration, let us state without proof the next 
simplest result by a known value of the skewness.

Example 2.1 :  Extremal special Dutch prices on ,0   by known mean, variance and 
skewness

For a claims random variable  ,,;,03DX , k k , one has the extremal special 

Dutch prices

(2.9)
k

k
XH

2
1

2

*

(2.10)    XH *

( ) , ,

( ) , , ,

(
( )

) , ( ) , , ( ).

1
1

1

1 1 0

1
1

1 0 4

2

2

1
2

2
1
2

2 1
2

2

k

k
if k

k if k

c

c
k if c k c

If k c( ) ,1
2

2 0, the maximal price depends on the solution of a cubic equation.

3. Analytical bounds for risk theoretical quantities.

A main quantity of interest in Risk Theory is the aggregate claims random variable, 
which is described by a stochastic process of the type

(3.1) S t X XN t( ) ... ( )1 ,

where  t 0  is the time parameter, the claim number process  0,)( ttN , is a fixed 
counting process, and the (non-negative) claim sizes  Xi   are independent identically 
distributed, say  X Xi ~ , and independent from the process )(tN . Important related 
quantities are the (net) stop-loss premium to the deductible  d, represented by the stop-loss 
transform

(3.2) S d E S t d d( ) ( ( ) ) , 0,
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and the probability of ruin, defined by

(3.3) 0),0)(:Pr(inf)( utSctutuS ,

where  u  is the initial reserve and  c  is the constant premium rate received continuously per 
unit of time.

The classical actuarial risk model assumes that  )(tN   is a Poisson process with 

intensity  , that is  S(t)  is a so-called compound Poisson stochastic process, and that  
c ( )1 ,  E X   the mean claim size and  0  the security loading. In this 
situation one has (see any recent book on Risk Theory) :

(3.4) S

n
t

nn
d

t

n
e E X X d( )

( )

!
( ... )10

,

and

(3.5) S Lu F u( ) ( ) ,

where  cttSL
t

)(max
0

  is the maximal aggregate loss. If  L L1 2, , ...  are the amounts by 

which record lows of the surplus process  )(tSctu   are broken, and  M  counts the 
number of record lows, then

(3.6) L Lii

M

1
,

where  M  has a geometric distribution with parameter  ( ) ( )0 1 1, and the distribution 
function of Li   equals

(3.7) F x
x

xL
X

i
( )

( )
,1 0.

One obtains the so-called Beekman convolution formula for the ultimate ruin probability

(3.8)
0 1 )...Pr(

1

1

1
)(

n n

n

S uLLu .

3.1. Inequalities for stop-loss premiums and ruin probabilities.

Under incomplete information, the claim size random variable  X  will not be known 
with certainty. Suppose  X D D Bn n n( , ; ,..., )0 1 , that is the range  0, B   and the first  

n  moments are given. For  n=2,3,4,..., let  X Xn n
*
( ) *( ),   be the stop-loss ordered extremal 

random variables for the sets  Dn   considered in Chapter IV. Denote by  )(,)( )*()(
* tStS nn

the compound Poisson processes of the type (3.1) obtained when replacing  X  by  X Xn n
*
( ) *( ),

respectively. As a consequence of the formulas (3.4), (3.7) and (3.8), and stop-loss ordering, 
one obtains the following inequalities between stop-loss premiums and ruin probabilities :
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(3.9)
S S S S Sn n n nd d d d d

*
( )

*
( ) *( ) *( )( ) ( ) ( ) ( ) ( )1 1 ,

uniformly for all deductibles d 0, all X D nn , , ,...3 4 ,

(3.10)
S S S S Sn n n nu u u u u

*
( )

*
( ) *( ) *( )( ) ( ) ( ) ( ) ( )1 1 ,

uniformly for all initial reserves u 0, all X D nn , , ,...3 4

The inequalities are shown as in Kaas(1991) (see also Kaas et al.(1994), chap. XI) under 
application of Theorem IV.2.2.

3.2. Ordered discrete approximations.

Of main practical importance is  X D D B2 2 0( , ; , ), that is the range  0, B ,

the mean    and the standard deviation    of the claim size are known. Let  X X*
*,   be the 

corresponding stop-loss ordered extremal random variables. It is convenient to express results 
in terms of the following parameters :

2

2k :  relative variance of  X, or squared coefficient of variation,

0

B
:  maximal relative variance over D B1 0( , ; )

   (consequence of variance inequality (I.4.14))

r
0

:  relative variance ratio

From Table IV.2.1 one sees that  X*  is a diatomic random variable with support 

)1(,)1( r   and probabilities  
00

0

1

1
,

1
. For numerical calculations, it is 

appropriate to replace  X*  by the slightly less tight finite atomic upper bound approximation  
X Xd D

*
,

*   obtained from Proposition IV.3.1 applying mass dispersion. One sees that  Xd
*   is 

a  4-atomic random variable with support  )1(,)(1,)1(,0 002
1

2
1

r   and 

probabilities  
000

0

0

0 ,
)1)((

,
)1)(1(

,
1 r

r

r

. In this sitution the uniform 

bounds  S S S
d d d

d*
*( ) ( ) ( )   and  S S S

u u u
d*
*( ) ( ) ( )   can be evaluated in an 

analytical way by means of the following general procedure.
Suppose the claim size random variable  X  is a finite  (m+1)-atomic random variable 

with support  mxxx ,...,,0 10   and probabilities  mppp ,...,, 10 . Then it is well-known that 

the compound Poisson random variable  S(t)  can be expressed as (see the notes)

(3.11) S t x N tj jj

m
( ) ( )

1
,

where the  stN j ')( , which count the number of occurences of claim size  x j , are 

independent Poisson processes with intensities  p j. This representation implies the following 

analytical formulas :
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(3.12)    
0,..., 110

1 !

)(
)()1(exp)(

m

j
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m

j
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n
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j jjS n
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xndptdtd ,

(3.13)    
0,..., 1

...
0

1

1

!
)()1(exp

1
1)(
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nn
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j
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n
jnn
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p
zpzu ,  with

z
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u n xj jj

m
( )

1
.

Since summation occurs only for  n x d uj jj

m

1
, , these infinite series representations are 

always finite. Using a computer algebra system, the desired uniform bounds can be evaluated 
without difficulty. A concrete numerical illustration, including a comparison with less tight 
bounds, is given in Hürlimann(1996a).

3.3. The upper bounds for small deductibles and initial reserves.

Suppose the deductible of a stop-loss reinsurance contract over a unit of time period  
0 1, t   is small in the sense that  d 1

2 1( ) . Then the series representation (3.12) for  

X Xd
*   shrinks to the only term n n n1 2 3 0, and thus one has

(3.14) dpdd
dS

)1(exp)( 0* .

In terms of the mean  S   and the relative variance  S ( )1 1  of a compound 
Poisson random variable  S  with claim size X D2 , this can be rewritten as

(3.15) )1(
2

1
,

1
exp)(* dddd

S
SSd

.

From Kaas(1991), p. 141, one knows that for small deductibles the maximizing claim size 
random variable for X D2   is the diatomic random variable with support )1(,0   and 

probabilities  
1

1
,

1
. It leads to the same compound Poisson stop-loss premium as 

(3.15). A similar results holds for the ultimate ruin probabilities. Therefore the analytical 
upper bounds obtained from the stop-loss ordered maximal random variable coincides in the 
special case of small deductibles and small initial reserves with the optimal, that is best upper 
bounds.

3.4. The upper bounds by given range and known mean.

Suppose X D D B1 1 0( , ; ) , that is only the range and mean of the claim size are 
known. In this situation, the relative variance is unknown and satisfies by (I.4.14) the 
inequality  0 0. One shows that the "worst case" is obtained when  0, for which 
both  X Xd*

*,   of Section 3.2 go over to a diatomic random variable with support  

)1(,0 0B   with probabilities
00

0

1

1
,

1
. One obtains the best upper bounds

(3.16) dn

n

n

SS
SS Bn

nBd

B
dd

0 !

)(
exp)(* , with

B

d
nd

   ( x   the greatest integer less than  x),
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(3.17) un

n

n

S

S

S B

z

n
B

z

u
0 !

exp

1
1)(* , with

B

u
nu , z

u B n

S

( )

( )1
.

The latter formula can be viewed as a positive answer to the following modified Schmitter 
problem (see the notes). Given that the claim size random variable has mean    and maximal 
variance  0

2 ( )B   over the interval  0, B , does a diatomic claim size random 
variable maximize the ultimate ruin probability ?

3.5. Conservative special Dutch price for the classical actuarial risk model.

Under the assumption  X D1  made in Section 3.4, it is interesting to look at the 
implied maximal special Dutch price

(3.18) H S H S S S S
* *

* ( ) ,

which has found motivation in Section 2. From (3.16) one gets

(3.19) .,
)1(

lnexp

!

lnexp
)(*

B
S

B
B

BBB
S

B

BBB
SSS

This is the special stop-loss premium of a compound Poisson( B) random variable with 
individual claims of fixed size equal to the maximal amount  B. It is approximately equal to 

the special stop-loss premium of a Gamma( B
B

S

, )  random variable. Applying Stirling's 

approximation formula for the Gamma function, one obtains

(3.20)
S

S
B

BSSS

B

2
...)

12

1
1(2)( 2

1

* ,

which yields the conservative special Dutch price

(3.21) H S
B

S
S

* ( )1
2

4. Distribution-free excess-of-loss reserves by univariate modelling of the financial loss.

Most risks in Actuarial Science and Finance are built up from three main categories, 
namely life insurance risks, non-life insurance risks and financial risks. In each category of 
risks, it is possible to define mathematical objects, called contracts, which specify the risks 
covered either for an individual contract or for a portfolio of such contracts. Mathematically, 
an individual contract is a triplet  RLAC ,, , which represents a security, and whose three 
components describe Assets, Liabilities and Reserves. These quantities are modeled by 
stochastic processes  0,)(,)(,)( ttRRtLLtAA   the time parameter. In 
particular, at each time  t  the values  A(t), L(t) and R(t)  are random variables. One supposes 
that there exists a sufficiently large portfolio of similar contracts, where no precise statement 
about this is required in the following.
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One observes that at each future time the amount of the liability positions of an 
individual contract may exceed the amount of the asset positions, which results in a positive 
loss. To compensate a positive loss  V t L t A t( ) ( ) ( ) 0  of an individual contract, a risk 
manager is supposed to accumulate at time  t  an amount  R(t)=R(t;A,L), called excess-of-loss
reserve, to be determined, and which depends upon the past evolution of the assets and 
liabilities. It will be assumed that  R(t)  can be funded by the positive gains
G t A t L t( ) ( ) ( ) 0  of similar contracts in the considered portfolio. Clearly, an excess-of-
loss reserve can be accumulated only if the financial gain  G t A t L t( ) ( ) ( )   is positive, 
that is one has the constraint  0 0R t G t t( ) ( ) , , where  G t G t( ) ( )   if  G t( ) 0
and  G t( ) 0  else. The stochastic process  )(tUU , defined by  
U t U t A L R t G t t( ) ( ; , ) ( ( ) ( )) , 0, is called excess-of-loss, and describes the 
possible loss incurred after deduction of the gain from the excess-of-loss reserve. The 
corresponding possible gain is described by a stochastic process  )(tDD , defined by 
D t D t A L G t R t t( ) ( ; , ) ( ( ) ( )) , 0, and is called excess-of-gain, in particular 
contexts it is also named dividend or bonus. The net outcome of the holder of an individual 
contract after deduction of the excess-of-gain from the gain is modeled by the stochastic 
process )(tNONO   defined by NO t G t D t t( ) ( ) ( ), 0.

The formal structure of an individual contract is determined by the following 
relationships between gain G, positive gain  G , excess-of-gain  D, excess-of-loss reserve  R, 
excess-of-loss  U  and net outcome  NO. The omission of indices, here and afterwards, 
supposes that the made statements are valid at each time of the evolution of a contract.

Theorem 4.1.  (Hürlimann(1995d)) An individual contract  RLAC ,,   satisfies the 
following structural relationships :

(R1) 0 R G ,
(R2) U V G ,
(R3) GRURDGNO ,min ,
(R4) D G R G R( ) ,
(R5) R G D G D( ) .

The obvious symmetry of the relations (R1) to (R5) with respect to  R  and  D  shows 
that the transformation, which maps the excess-of-loss reserve  R  to the excess-of-gain  
D G R( ) , has an inverse transformation, which maps the excess-of-gain  D  to the 
excess-of-loss reserve R G D( ) .

An important question in the theory of excess-of-loss reserves is the appropriate 
choice of the formula, which determines the excess-of-loss reserve, or by symmetry the 
excess-of-gain. It is intuitively clear that the financial success on the insurance of finance 
market of such contracts depends upon the choice of the excess-of-loss reserve/excess-of-gain 
formula, a choice which may vary among different lines of business. A decision can only be 
taken provided the universe of feasible excess-of-loss reserve/excess-of-gain strategies is 
specified. To illustrate consider a simple popular strategy based on the net outcome principle
E NO 0, which can and has already been justified in different ways. Then the possible 

universe of excess-of-loss reserves is given by the set  0,0: NOEGRRS . If a 
decision-maker wants the least possible fluctuations of the excess-of-loss reserve, that is a 
minimal variance Var R min., then the unique choice is determined as follows.



                        Extremal Moment Methods and Stochastic Orders                        249

Theorem 4.2.  (Hürlimann(1991b))  The optimal individual contract  ** ,, RLAC , which 

solves the optimization problem  RVarRVar
SR

min* , is given by the stable excess-of-loss 

reserve

(4.1) GBR ,min* ,

where the deterministic process 0,)( ttBB , is solution of the expected value equation

(4.2) E G B E G( ) .

By symmetry, the excess-of-gain associated to the stable excess-of-loss reserve is  
D G R G B* *( ) ( ) . One may exchange the role of  R  and  D, which defines an 
alternative stable excess-of-gain strategy  GBD ,min*   with associated excess-of-loss 

reserve R G B* ( ) .
A general mathematical and statistical problem is the evaluation and discussion of the 

properties of the deterministic process  B  provided the stochastic processes  A  and  L  
modelling the assets and liabilities belong to some specific class of financial models. In the 
present and next Sections, some distribution-free upper bounds by given range(s), mean(s) 
and variance(s) of the financial loss V L A   are determined.

We begin with the univariate modelling of the financial loss. The financial gain of a 
line of business is described by a random variable  G  with finite mean  E G 0  and 

finite variance  2 Var G . The range of  G  is an interval  A B, ,  A B . The 
set of all such financial gains is denoted by  D D A B( , ; , ). Since  0  the coefficient 

of variation  k   exists and is finite. The maximal excess-of-loss reserve by given range, 

mean and variance, is denoted by  R R A B* * ( , , , ) , and by Theorem 4.2 it is solution of
the expected value equation

(4.3) GERGE
DG

)(max * .

Theorem 4.3.  The maximal excess-of-loss reserve associated to a financial gain with range  
A B, , positive mean ( , )A B   and variance 2 ( )( )A B   is given by

(4.4) *R

)
2

1
1(,0,)(

)
2

1
1(,,

4

1

0),(

0,0

2
2

22

2

kBAif
B

B

kBAifk

AifA
A

Aif



                                               Werner Hürlimann                                                         250

Proof.  Let  Z
G

  be the standard financial gain random variable with range  a b, ,

a
A

b
B

, . The maximal stop-loss transform of a standard random variable with 

range a b,   is denoted by * ( )z . Then the defining equation (4.3) reads

(4.5)
*

* R
.

To simplify calculations, it is convenient to use Table III.5.1. To show (4.4) several cases are 
distinguished.

Case (I) : A 0

Since G 0  one has E G E G , hence  R=0  for all  G, a fortiori R* 0.

Case (II) : A 0  (hence A a( ) 0)

In view of Table III.5.1, it is appropriate to set R d x ii
* ( ) , , ,1 2 3.

Subcase (1) :  i=1

Using case (1) in Table III.5.1 one sees that (4.5) is equivalent with the condition

(4.6)
( )( )

( ) ( )
,

a a x

a x a a
x a.

The solution  x a
a a

a

( )
  satisfies the constraint  x a   exactly when  2 0a , that 

is A a . Straightforward algebra shows that

(4.7)
2

1
* )(

)(

)(
)(

A
A

a

a
xdR .

Subcase (2) :  i=2

One sees that (4.5) is equivalent with the condition

(4.8)
1

2
( )x , a x b .

The constraint holds if and only if A B,
1

2

2

. Furthermore one gets

(4.9) R d x* ( )2

21

4
.
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Subcase (3) :  i=3

One obtains that (4.5) is equivalent with the condition

(4.10)
( )( )

( ) ( )
,

b b b

b b x b
x b.

The solution  x b
b b b( )( )

  satisfies  x b  if and only if  
2

1
b , that is 

B
1

2

2

. Through calculation one gets

(4.11)
2

3
* )()()(

B
BbbxdR .

The determination of the maximal loss reserve is complete.

For a finite range A B, , the most conservative excess-of-loss reserve, which depends 
only on the mean, is determined as follows.

Corollary 4.1.  The maximal excess-of-loss reserve associated to a financial gain with finite 
range A B,   and positive mean ( , )A B   is given by

(4.12) *R
.0),(

,0,0

AifA
A

B

Aif

Proof.  One observes that  R *  in (4.4) is a monotone increasing function of the variance, and 
thus it is maximal by maximal variance  2 ( )( )A B . One shows that (4.4) simplifies 
to (4.12).

By Section III.5 the maximal stop-loss transforms of a standard random variable on  
a b,   by additional knowledge of either the skewness or the skewness and the kurtosis can be 

structured similarly to Table III.5.1. One can take advantage of this to determine, similarly as 
in the proof of Theorem 4.3, maximal excess-of-loss reserves by given range and known 
moments up to the fourth order. However, the detailed analytical discussion is in general quite 
complex, and it seems preferable to determine them numerically using a computer algebra 
system.

A single application suffices to demonstrate the usefulness of the above results.

Example 4.1 :  maximal financial risk premium for a guaranteed rate of return

Let  R  be the random accumulated rate of return of an investment portfolio, and suppose a 
fixed accumulated rate of return  rg   should be guaranteed. Then the financial gain  G R rg

represents the excess return, which may take negative values. Let  REr ,
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RVarGVar2 , and suppose that  E G r rg 0. In this situation, the "excess-

of-loss reserve", which is now denoted by  b, is solution of the expectation equation

(4.13) E R r b r rg g( ) .

As suggested in Hürlimann(1991c), the constant  b  can be interpreted as financial risk 
premium needed to cover the risk of a negative excess return. Suppose it is known that the 
expected return variies between the bounds  r r rmin max, which is a reasonable assumption, 
at least if  R  represents a random accumulated rate of interest. With  A r rgmin ,

B r rgmax , the following maximal financial risk premium is obtained from (4.4) :

)(
2

1
,)(

,0

minmin

2

min
min

min

rrrrif
rr

rr

rrif

gg

g

(4.14)      b*

max
max

22

max
max

max

22

)(2

1
,)()(

)(2

1
)(

2

1
,

)(4

1

rrr
rr

rif
rr

rrrr

rr
rrrrif

rr

gg

gg
g

A most conservative upper bound, which turns out to be "volatility" independent, is obtained 
from (4.12) :

(4.15) *b

0,

( )( )

( )
,

min

min max

min
min max

if r r

r r r r

r r
if r r r r

g

g
g

Note that by nearly maximal volatility  2 ( )( )min maxr r r r , the latter upper bound is 
adequate. To illustrate the differences numerically, let  r r rmin max. , . , . ,1 03 1 05 1 07
rg 1 04 0 01. , . . Then one has  b* .0 0025  by (4.14) and  b* .0 01  by (4.15). If  

0 02.   then both bounds are equal.

5. Distribution-free excess-of-loss reserves by bivariate modelling of the financial loss.

It is often more realistic to think of the financial gain as a difference between assets 
and liabilities, and to model it as a difference  G A L   of two random variables  A  and  L. 
We suppose that  A  and  L  are taken from the sets  ),;,( AAMmA AADD ,

),;,( LLMmL LLDD   of all random variables with given ranges, means and variances. A 

dependence structure between  A  and  L  is not assumed to be known. Thus the random pair  
(A,L)  is taken from the set

LALALAMmMm DLDALALLxAABDBD ,:),(),,,;,,(
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of all bivariate random variables by given ranges and known marginal means and variances.
Under these assumptions a maximal excess-of-loss reserve

R R A A x L Lm M m M A L A L
* * ( , , ; , , , )

could be defined as solution of the expected value equation

(5.1) LAERLAE
BDLA

)(max *

),(
.

In the special case of infinite ranges  , , the bivariate version of the inequality 
of Bowers(1969), shown in Hürlimann(1993c), yields the solution

(5.2) R k k A L

A L
A L

* , , ,
1

4
02

which generalizes the corresponding univariate result in Theorem 4.3. Since the maximum in 
(5.1) is attained when  A  and  L  are completely independent, that is the variance of 

G A L   is maximal over  BD, the constant  k A L

A L

  may be viewed as a bivariate

coefficient of variation for differences of random variables with positive mean difference.
By arbitrary ranges, the maximum in (5.1) is better replaced by a combined maximum 

as in (V.6.3). The obtained upper bound for the excess-of-loss reserve will not in general be 
attained over  BD. However, there exist tight distribution-free upper bounds, which are 
attained by Hoeffding-Fréchet extremal distributions constructed from the stop-loss ordered 
maximal distributions by given ranges, means and variances, and which directly generalize 
the bivariate inequality of Bowers. By a linear transformation of variable, it suffices to 
consider the distribution-free upper bounds for expected positive differences determined in 
Theorem V.6.1.

The upper bound in Table V.6.1 is an increasing function of the marginal variances. If 
one replaces them by their upper bounds X X X X XA B2 ( )( ) ,

Y Y Y Y YA B2 ( )( ) , one obtains a very simple upper bound, which depends only on 
the given ranges and the marginal means.

Theorem 5.1.  Let  ( , ) ( , , ; , )X Y BD A B x A BX X Y Y X Y   be a bivariate pair of random 
variables with the given marginal ranges and means. Then the following inequality holds :

(5.3) )( YXE
X X Y

Y X Y

A a a

B a a

, ,

, .

1

1

Proof.  By maximal marginal variances, one has the relationships

b a
B

A
b a

B

AX X
X X

X X
Y Y

Y Y

Y Y

, .

This implies that  a aX Y 1  if and only if  b bX Y 1. Therefore only the cases (I) and (III) in 
Table V.6.1 are possible.
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Based on Table V.6.1 and Theorem 5.1, it is possible to derive bivariate versions of 
Theorem 4.3 and Corollary 4.1. Let us begin with the mathematically more tractable situation.

Corollary 5.1.  Let G A L   be a financial gain with
( , ) ( , , ; , )A L BD A A x L Lm M m M A L . Denote by R *  the distribution-free upper bound 
for the excess-of-loss reserve obtained from Theorem 5.1. Then two situations are possible.
Case 1 :  If  Pr( )A L 1, that is the expected liabilities should always (with probability 

one) be covered by the assets, and  )( AM
mM

mM
mL A

AA

LL
L , then one has 

R LL m
* .

Case 2 :  If  Pr( )L A 1, that is the liabilities should never (with probability one) exceed 

the expected assets, and )( mL
mM

mM
AM L

LL

AA
A , then one has R A M A

* .

Proof. The result follows from Theorem 5.1 by setting  X=A, Y L R*. One notes that

a
A

A
a

L

LX
A m

M A
Y

L m

M L

2 2, .

In case 1, that is a aX Y 1, one must solve the equation

LAmmA RLA *,min .

Under the condition  L R Am m
*   one gets  R LL m

* . Then the required conditon is 
equivalent with A m L, that is Pr( )A L 1. Case 2 is shown similarly.

Based on Table V.6.1, let us now derive a bivariate version of Theorem 4.3. For 
technical reasons, we restrict ourselve to a special case, which is, however, strong enough to 
generate the desired result in case  A, L are defined on the one-sided infinite ranges  ,0 . A 
more general result can be obtained by the same technic, but seems a bit tedious.

Theorem 5.2.  Let  G A L   be a financial gain, with positive mean, such that 

( , ) ( , , ; , , , )A L BD A A x L Lm M m M A L A L , and set  k A L

A L

,  A L,

a
A

A
m A

A

,  b
A

A
M A

A

,  a
L

L
m L

L

,  b
L

L
M L

L

. Denote by  R *  the 

distribution free upper bound for the excess-of-loss reserve obtained from Table V.6.1, and 
suppose that  MMmm LALAR ,* , as well as  a a b bA L A L1 1, . Then  R *  is 

determined by Table 5.1.

Specializing Theorem 5.1 to A Lm m 0, A LM M , one obtains the following result.
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Corollary 5.2.  Let  G A L   be a financial gain, with positive mean, such that 

),,,;,0,0(),( LALAxBDLA , and set  k A L

A L

,  A L, k A
A

A

,

k L
L

L

. If  k kA L 1, then a distribution-free upper bound for the excess-of-loss reserve is 

given by

(5.4) *R

k k k if k k

k if k k k

k k k if k k k

A A A

A L

L L L L
L

A

( ) , ,

, ( ),

( ) ( ( )) , ( ) ( ) ( ).

1
2

1
4

2 1
2

1
2 1

Table 5.1 :  Distribution-free upper bound for the excess-of-loss reserve associated to a
        financial gain by given ranges, means and variances of the marginal assets and 
        liabilities

case conditions excess-of-loss reserve
upper bound

(1) a a b b

k a
A A L L

A

0
1
2

a k aA A( )

(2) a a b b

a k a

L L A A

L L
L

A

0

11
2 ( ) ( )

( ) ( ( ))a k aL L

(3)
ALLA bakba ,min,max 2

1 1
2

2k

(4) a a b b

b k b

A A L L

L
L

A L
L

0

1 1
2( ) ( )

( ) ( ( ))b k bL L

(5) a a b b

k b
L L A A

A

0
1
2

b k bA A( )

Proof of Theorem 5.2.  The result follows from Theorem V.6.1  by setting  X=A, Y L R*

, hence  X A X A Y L Y L X A X A Y L Y LR a a b b a a b b, , , , , , ,* .

Under the given assumptions, one has always  A R L B R Lm M
* *, , and Table 5.1 

follows from a detailed analysis of the subcases (1) to (5) of the case (IIc) in Table V6.1.

Case (1) :

The expected value equation for R *  equals

A L A A L

A A
A L

a R

a a

( )( )*

and has the solution



                                               Werner Hürlimann                                                         256

R a a a k aA A L A A L A A
* ( ) ( ) ( )2 .

The second condition, which must be fulfilled, reads

R
a aA L

A L
A A

* ( )
( )

1

2
.

Inserting R *  this is seen equivalent to 1
2 k aA. The fact that

MmAALL LRLRaaR ***1
0 ,

2

1
  is seen equivalent to the two conditions  

a a a a a bA A L A A L2 0 2 0, . The first one is fulfilled because

a a a a a a aA A L A A L L2 0,

and the second one because

a a b a a b bA A L A A L L2 0.

Case (2) :

From the expected value equation

A L L A L

L L
A L

a R

a a

( )*

,

one gets
R a a a k aL A L L A L L L

* ( )( ) ( ) ( ) ( ( ))2 .

One verifies that the second condition

A L

A L
L L

R
a a

*

( )
1

2
.

is equivalent to 1
2 k a L( ) . One shows that MmLLAA LRLRaa **2

0 ,
2

1

if and only if

L
L

LL
ALLAAL a

ab
aa

212

1

2

1
.

By the condition  1
2 k a L( ) , that is  A L L A La

1

2
( ) , the right hand side 

inequality is fulfilled provided

L
L

LL
ALLALLA a

ab
aa

212

1
)(

2

1
.
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This holds provided  a a bL L L2 . Since  a b a bL L L L  this is clearly fulfilled. A 

restatement of the left hand side inequality implies the condition 1
2 1k a L

L

A

( ) ( ) .

Case (3) :

Solving the expected value equation

LALALALA RR )()()(
2

1 *2*2 ,

one finds

2
2

*

4

1

4

1
kR

LA

LA .

The two conditions about X Y
A L

A L

R
,

* ( )
  are shown to be equivalent with

(C1) )()()( 2
1

2
1

2
1

2
1

2
1

AAAA bbkkaa ,

(C2) )()()( 2
1

2
1

2
1

2
1

2
1

LLLL aakkbb .

But, if  y 0  then  x x y y   holds exactly when either  x y   if  x 0  or  x y  if  

x 0. Therefore these conditions are equivalent with  ALLA bakba ,min,max 2
1 . The 

condition Mm
LA

ALLA LRLR
R **

*
3
0 ,

)(
  is equivalent with

R
a

R
b

A L
L

A L

A L A L
L

* *

,

or, by inserting the value of R *,

1

4

1

4
A L

A L
L

A L

A L

A L

A L
La b .

Since a a aL L L
1
2 ( )   and 1

2 ( )b b bL L L , this is always fulfilled by (C2).

Case (4) :

The expected value equation

A L L A L

L L
A L

b R

b b

( )*

,

implies that
))(()()())(( 2*

LLLALLAL bkbbbR .

One shows that the second condition
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A L

A L
L L

R
b b

*

( )
1

2
.

is equivalent to 1
2 k bL( ). Now, one shows that 

MmLLAA LRLRbb **4
0 ,

2

1
  if and only if

LLALLAL
L

LL
LAL bb

b

ab
b

2

1
)(

2

1

1
)

2

1
(

2 .

By the condition  1
2 k bL( ), that is  

1

2
bL A L A L( ) , the left hand side 

inequality is fulfilled provided

1

2 1 2
b

b a

bL
L L

L

,

or equivalently  b b aL L L2 , which always holds because  a b a bL L L L. A 

restatement of the right hand side inequality implies the condition 1
2 2

k bL
A L

A L

( ) ( ) .

Case (5) :

The expected value equation for R *  equals

A L A A L

A A
A L

b R

b b

( )( )*

and has the solution
R b b b k bA A L A A L A A

* ( ) ( ) ( )2 .

The second condition, which must be fulfilled, reads

R
b bA L

A L
A A

* ( )
( )

1

2
.

Inserting R *  this is seen equivalent to 1
2 k bA . The fact that

MmAALL LRLRbbR ***5
0 ,

2

1
  is seen equivalent to the two conditions  

b b a b b bA A L A A L2 0 2 0, . The first one is fulfilled because

b b a b b a aA A L A A L L2 0,

and the second one because

b b b b b b bA A L A A L L2 0.

The proof of Theorem 5.1 is complete.
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Example 5.1 :  maximal financial risk premium for a guaranteed random rate of return

It is possible to improve on Example 4.1. It is in general more realistic to assume that the 
accumulated rate of return, which should be guaranteed, also variies randomly through time, 

and can be represented by a random variable  Rg   with mean  r E Rg g . Setting  A=R,  

r E R ,  r R rmin max,  L Rg,  r R rg g g,min ,max ,  G A L , the distribution-free 

bivariate modelling results of the present Section can be applied to this dual random 
environment.

6. Distribution-free safe layer-additive distortion pricing.

In global (re)insurance and financial markets, where often only incomplete 
information about risks is available, it is useful and desirable to use distribution-free pricing 
principles with the property that the prices of layers are safe. Since splitting in an arbitrary 
number of (re)insurance layers is world-wide widespread, it is important to construct 
distribution-free pricing principles, which are simultaneously layer-additive and safe for each 
layer.

The Hardy-Littlewood majorant  ( )*X H  of the stop-loss ordered maximal random 
variable  X*  to an arbitrary risk  ,;,022 DDX   with given range  ,0   and 
known finite mean and variance has been defined in Section IV.2. Consider the modified 
simpler stochastic majorant  X Xst

H** *( ) , as defined in the proof of Theorem IV.2.4. Then, 

apply a distribution-free implicit price loading method by setting prices at  H X E X** ** ,

which is the expected value of the two-stage transform  X**  of  X. Here and in the following, 
notations of the type  H   define and denote pricing principles, which are real functionals 
defined on some space of risks. As a main result, our Theorem 6.2 shows that the obtained 
Hardy-Littlewood pricing principle is both layer-additive and safe for each layer. As a 
consequence, the same property is shared by the class of distribution-free distortion pricing

principles obtained setting prices at 
0

****** ))(( dxxFgXHXH gg , where  g(x)  is an 

arbitrary increasing concave distortion function  g(x)  with  g(0)=0, g(1)=1, and  F x** ( )   is 
the survival function of X**.

The proposed methodology is related to modern Choquet pricing theory (e.g. 
Chateauneuf et al.(1996)) and risk-neutral (distribution-free) valuation. In the more specific 
(re)insurance context, it is related to (Proportional Hazard) PH-transform pricing, which has 
been justified on an axiomatic basis in Wang et al.(1997). Moreover, it fulfills the following 
traditional requirements. It uses only the first two moments of the risk. While it differs from 
classical economics utility theory, it does preserve the partial ordering of risks shared by all 
risk-averse decision makers. Furthermore, for Hardy-Littlewood pricing, no decision 
parameter must be evaluated, as is the case with traditional premium calculation principles 
(e.g. Goovaerts et al.(1984)). In general, however, a distortion function must be chosen, which 
will involve some decision rule.

Subsection 6.1 recalls elementary facts about layer-additive distortion pricing derived 
from Choquet pricing, and introduces the notions of layer safeness and distribution-free safe 
layer-additive pricing. Subsection 6.2 presents three applications of main interest. Theorem 
6.1 describes a quite general distribution-free safe stop-loss distortion pricing principle. The 
layer safeness property of Hardy-Littlewood pricing, which implies distribution-free safe layer 
additive distortion pricing as explained above, is proved in Theorem 6.2. Finally, the 
Karlsruhe pricing principle, introduced by Heilmann(1987), turns out to be a valid linear 
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approximation to the more sophisticated Hardy-Littlewood pricing principle provided the 
coefficient of variation of risks is sufficiently high.

6.1. Safe layer-additive distortion pricing.

Let  ( , , )P A   be a probability space such that    is the space of outcomes, A  is the  
-algebra of events, and  P  is a probability measure on  A, . For non-negative risks  X, 

which are random variables defined on    taking values in  ,0 , one knows that the 
(special) Choquet pricing principle

(6.1)
00

))(()( dxxFgdxxXPgXdXH g ,

where the monotone set function  g Po   is a so-called distorted probability measure of  P  
by an increasing concave distortion function  g  with  g g( ) , ( )0 0 1 1, is layer-additive (e.g.
Wang(1996), Section 4.1). In precise mathematical language, this property is described as 
follows. A layer at  LDD,   of a risk  X  is defined as the loss from an (excess-of-loss) 
insurance cover

(6.2) )()()(, LDXDXXI LDD ,

where  D  is called the deductible, and the width  L  is the maximal payment of this insurance 
cover and is called the limit. The expected value of this limited stop-loss reinsurance is 
denoted by X D L( , )  and, as difference of two stop-loss transforms, equals

(6.3)
LD

DXXLDDX dxxFLDDXIELD )()()()(),( , .

In case  XLD sup   one recovers the stop-loss cover. A general pricing principle  H
is called layer-additive if the property

(6.4)
m

k DD XIHXH
kk0 , )(

1

holds for any splitting of  X  into layers at  1, kk DD , k=0,...,m, such that  

0 0 1 1D D D Dm m... . In particular, the  m-th layer corresponds to a stop-loss 
cover. It is in this sense that the distortion pricing principle (6.1) is layer-additive. In this 
situation, note that the price of a layer at LDD,   equals

(6.5)
LD

DLDDg dxxFgXIH ))(()(, .

Under a safe layer-additive pricing principle, we mean a general pricing principle  H   such 
that (6.4) as well as the following layer safeness criterion holds :

(6.6) ),(max),()( *
, LDLDXIH Z

DZ
LDD

n

,
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where  nnn DD ,...,);,0( 1   is the set of all non-negative random variables with given 

first  n  moments, and  X Dn. In general, the distortion pricing principle (6.1) does not 
satisfy the layer safeness property, as will be shown through counterexample in the next 
Subsection. However, a pricing principle of type (6.1) and satisfying (6.6) is explicitely 
constructed for the simplest case  n=2.

6.2. Distribution-free safe layer-additive pricing.

For use in (re)insurance and financial markets, where splitting in an arbitrary number 
of layers is widespread, we derive distribution-free pricing principles, which are both layer-
additive and safe for each layer. We omit the lower index in Hg .

First of all, one observes that it is easy to construct distribution-free layer-additive 
distortion pricing principles. Since a distortion function  g(x)  is increasing, the sharp ordering 
relations (IV.2.10) induce a series of similarly ordered distribution-free pricing principles, 
which are defined and ordered as follows. For all X Dn, n=2,3,4, setting  

H X H Xu
n

u
n( ) ( ): , H X H Xn n

*
( )

*
( ): , H X H Xn n*( ) *( ): , H X H XH n H n* ( ) * ( ): ( ,

H X H Xn n
l l
( ) ( ): , one obtains from these relations the distribution-free pricing inequalities:

(6.7) H X H X H X H X H X H X H Xu
n n n

u
n n H n n( )

*
( ) ( ) ( ) *( ) * ( ) ( ),l l ,

for all X Dn , n=2,3,4.

The crucial point is clearly the verification of the layer safeness property (6.6). In the special 
case of a splitting into two layers ,,,0 DD , such that

)(,)( DXZDXXY   are the splitting components of  X, one obtains 
immediately the following result.

Theorem 6.1.  (Distribution-free safe stop-loss distortion pricing)  Let  X Dn ,  n  arbitrary, 
and set Y X X D Z X D( ) , ( ) , D 0. Moreover, let  g(x)  be an increasing 
concave distortion function such that  g(0)=0, g(1)=1. Then the stop-loss ordered maximal 
random variable  X n*( )   for the set  Dn   with survival function  F xn*( ) ( )   defines a 
distribution-free distortion pricing principle through the formulas

(6.8)

.

,))(()(:

,,))((:

)(*)(*)(*

)(*)(*)(*

0

)(*)(*)(*

ZHXHYH

dxxFgDXHZH

DXdxxFgXHXH

nnn

D

nnn

n
nnn

Furthermore, this pricing principle is stop-loss safe such that

(6.9) )()()())((: )(*)(*)(*)(*
)(* DDdxxFdxxFgZH n

XD

n

D

nn
n .

Proof.  Since  H n*( )   is a distortion pricing principle, the layer-additive property 

H X H Y H Zn n n*( ) *( ) *( )   is clearly satisfied, which shows the third relation. By 
assumption on the distortion function, one has  g x x( )   for all  x ( , )0 1 , which implies 
immediately (6.9).
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In general, the distribution-free distortion pricing principle induced by  X n*( )   will not 
satisfy the layer safeness property (6.6). Over the space  D2, a simple counterexample is  PH-

transform pricing with  g x x( ) ,
1

1. For a layer at  LDD,   with  D L , one has  

),()1()( *2*
,

1

LDLLkXIH LDD   (see the table in the proof of Theorem 6.2). 

However, as we will show, distortion pricing induced by the modified Hardy-Littlewood 
majorant  X**  of  X*  over the set  D2  does fulfill it. Note that the Chebyshev-Markov 
majorant  X l

( )2   can be ruled out. Indeed, since  H X H Xl
( ) **2   uniformly for all  X D2 ,

the Chebyshev-Markov price is not enough competitive.

Theorem 6.2. (Distribution-free safe layer-additive distortion pricing) Let
),;,0(22 DD   be the set of all random variables  X  with finite mean    and standard 

deviation  , and let  X**  be the modified Hardy-Littlewood majorant of  X*  over  D2  with 
survival function

(6.10) )(** xF
,)1(,

)(

,)1(,1

2
22

2

2

kx
x

kx

where k   is the coefficient of variation. Then the layer safeness property holds, that is

(6.11)
),(max),()(

))(()(:)(

2

***

****
,,

**

LDLDdxxF

dxxFgXIHXIH

X
DX

LD

D

LD

DLDDLDD

for all  X D2 , all  L D, 0, all increasing concave distortion functions  g(x)  such that  
g(0)=0, g(1)=1. The uniformly lowest pricing formula obtained for the "risk-neutral" 
distortion function  g(x)=x  induces a so-called Hardy-Littlewood pricing principle.

Proof.  Since  g x x( )   for all  x 0 1, , only the last inequality in (6.11) must be verified.
From Table II.5.3 one obtains the maximum expected layer in the following  tabular form :

case condition maximum * ( , )D L

(1) D L L

(2) D L k( )1 2
LD

L

(3) D L k( )1 2

(3a)
D k

1

2
1 2( )

D

k1 2

(3b)
1

2
1

1

2
2

2

( ) ( )k D D L
D L

)()(
2

1 22 DD

(3c) D D L
D L

1

2

2

( )
2

2 2( )D L
L
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In the following set
LD

D
dxxFLD )(:),( ****   for the expected layer valued with the Hardy-

Littlewood majorant (6.10). The verification of the inequality  ** *( , ) ( , )D L D L   is done 
case by case.

Case (1) : D L

One has ),(1),( *** LDLdxLD
LD

D
.

Case (2) : D L k( )1 2

One has ),(),( *** LDL
LD

LLD .

Case (3) : D L k( )1 2

Case (3a) : D k
1

2
1 2( )

A calculation shows that

0
2

1

1
),(1),(),( 2

2
2**** k

k

D
kLDdxLDLD

LD

D
.

Case (3b) :
1

2
1

1

2
2

2

( ) ( )k D D L
D L

The right hand side condition is equivalent with the inequality  L D2 2( ) . Set  

D
  and distinguish between two subcases.

Subcase (i) : 0

Since D L ( )1 2 , one obtains without difficulty that

)arctan()1arctan(
1

),( 21

2
**

2

z

dz
LD .

Using the trigonometric difference formula  
xy

yx
yx

1
arctan)arctan()arctan( , one 

obtains further  ** ( , ) arctan ( )D L 1 2 . Since  arctan( )x x
1

2
  for  x2 1, this 

implies for 0  that ** *( , ) ( ) ( , )D L D L
1

2
1 2 .
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Subcase (ii) : 0

Since D   one obtains
2

2

2 1

2
2

)1( 22

2)1(
**

1
)1(

)(
),(

k

LD

k

k

D z

dz
Dk

x

dx
dxLD

)1arctan()arctan( 2kk .

Since  arctan( )k k  and  arctan( ) ( )1
1

2
12 2   for  0, one concludes 

as in subcase (i).

Case (3c) : D D L
D L

1

2

2

( )

One has immediately

),(
)()()(

),( *
22

2

22

2

22

2
** LDL

LDLD

dx

x

dx
LD

LD

D

LD

D
.

This completes the proof of Theorem 6.2.

A close look at the Hardy-Littlewood price appears to be instructive. For all 
),;,0(2DX   one has

(6.12)

,)arctan(
2

)1(

)1(
)1(:

2

2
2****

kkk

z

dz
kXEXH

k

which always exceeds the Karlsruhe price ( )1 2k , introduced by Heilmann(1987).
The order of magnitude of (6.12) is obtained using the pricing expansions

(6.13) XH **

( ...) , ,

( ...) , ,

1
2

1

3

1

5

1

7
1

1
1

3

1

5

1

7

1
1

4 6 8

2 2 4 6

k k k k if k

k if
k

which are obtained from series expansions of the function  arctan(x).
Clearly only empirical work about distribution-free pricing can decide upon which 

formula should be most adequate in real-life situations. Let us illustrate with an empirical 
study by Lemaire and Zi(1994), p. 292, which have obtained a coefficient of variation of the 
average order  k=6.4  for the aggregate claims distribution of a non-life business, which has 
been fitted by means of a compound Poisson distribution with a lognormal claim size density. 
In this situation the Hardy-Littlewood price (6.12) differs from  ( ) .1 41 962k   by the 
relatively small amount  ( . )0 99 , that is approximately  2%  relative error. Truncating the 
expansion (6.13) at the quadratic term in , the difference is a negligible ( . )0 008 .

It is remarkable that quite different theoretical explanations can lead to very similar 
answers. To sum up, we have obtained a rational justification of the fact that Karlsruhe pricing 
is a valid linear approximation to distribution-free safe layer-additive pricing via 
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Hardy-Littlewood pricing in the situation of "large" risks, defined here as risks with high 
volatility or coefficient of variation, as suggeted by Heilmann(1987).

To conclude, let us close the circle of our short excursion on applications. If the 
Karlsruhe price is viewed as stable price in the sense of Section 1, than the corresponding 
distribution-free probability of loss, by given mean and variance, will be less than    provided 

k ( )1 1 , in accordance with the notion of large risk in Actuarial Science. For 

comparison, if  X  is lognormally distributed with parameters  , , hence  1 2 2k exp( ) ,
than the probability of loss of the Karlsruhe price equals  F P k NX ( ( ) ) ( )1 2 3

2 , with  

N(x)  the standard normal distribution. This is less than    provided  2
3

1 1N ( ) , in 
accordance with the notion of high volatility in Finance.

7. Notes.

In a distribution dependent context, the stability criterion defines the so-called  -
percentile pricing principle (see e.g. Goovaerts et al.(1984), Heilmann(1987b)). The stable 
pricing principle, interpreted as distribution-free percentile principle, has also been considered 
in Hürlimann(1993b), where attention is paid to the link between reinsurance and solvability 
(see also Hürlimann(1995a)). The actuarial interest in the Chebyshev-Markov extremal 
distributions has been pointed out in Kaas and Goovaerts(1985).

The optimal mean self-financing portfolio insurance strategy has been discussed first 
in Hürlimann(1994b) (see also Hürlimann(1996b/98b)). Further informations about the Dutch 
pricing principle are found in Heerwaarden and Kaas(1992), and Hürlimann(1994c/95a/d/e). 
There are several reasons to call (2.3) special Dutch pricing principle. The name is an allusion 
to a paper by Benktander(1977). The actuarial relevance of this choice is quite significant. 
Besides the given interpretation as minimal price of a mean self-financing strategy, this choice 
satisfies several other remarkable properties and characterizations found in the mentioned 
papers above. Moreover, according to Borch(1967), the loading functional  E X( )   is a 
quite old measure of risk associated to an insurance contract, which has been considered by 
Tetens(1786), who defined risk as expected loss to an insurance company given the insurance 
contract leads to a loss. The fundamental identity of portfolio insurance can be generalized to 
include more complex so-called "perfectly hedged" reinsurance and option strategies (see 
Hürlimann(1994a/c/d,1995b)).

As a mathematical discipline, Risk Theory is a quite recent subject. After the 
pioneering work by Cramér(1930/55) and surveys by Segerdhal(1959) and Borch(1967), the 
first books on this subject are Seal(1969), Beard et al.(1969) and Bühlmann(1970). From the 
second title, there has been three new editions by Beard et al.(1977/84) and Daykin et 
al.(1994). At present there exist an increasing number of books and monographs dealing with 
whole or parts of this today widely enlarged topic. Among others, let us mention in 
chronological order Seal(1978), Gerber(1979), Goovaerts et al.(1984/90), Hogg and 
Klugman(1984), Sundt(1984/91/93), Kremer(1985), Bowers et al.(1986), Heilmann(1987a), 
Straub(1988), Drude(1988), Hipp and Michel(1990), Grandell(1991), Panjer and 
Willmot(1992), Kaas et al.(1994), De Vylder(1996), Embrechts et al.(1997), Mack(1997).

Section 3 is based on Hürlimann(1996a). By given range, mean and variance, the 
obtained lower and upper bounds for stop-loss premiums and ruin probabilities in Section 3 
are tighter than those in Steenackers and Goovaerts(1991), which are based on extremal 
random variables with respect to the dangerousness order relation constructed in Kaas and 
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Goovaerts(1986). In the recent actuarial literature the concolution formula (3.8) is often 
attributed to Beekman(1985) (e.g. Hipp and Michel(1990), p.169). However, this classical 
formula about the ladder heights of random walk is much older and known as Khintchin-
Pollaczek formula in Probability Theory. The linear representation (3.11) for a compound 
Poisson random variable is found in many places, for example in Gerber(1979), chap. 1.7, 
Bowers et al.(1986), Theorem 11.2, Hürlimann(1988), Hipp and Michel(1990), p. 27-30. An 
early generalization is Jànossy et al.(1950) (see also Aczél and Dhombres(1989), Chapter 12), 
and a more recent development has been made by the author(1990a), which led to a novel 
application in Hürlimann(1993d). The formulas (3.12), (3.13) are in Kaas(1991) and Kaas et 
al.(1994), Chapter XI. According to Bühlmann(1996), the handy formula (3.16) solves the 
most famous classical actuarial optimization problem. The corresponding maximizing 
diatomic claim size random variable can be interpreted as the safest risk with fixed mean and 
finite range (see Bühlmann et al.(1977) and Kaas et al.(1994), Example III.1.2). Schmitter's 
original problem has been discussed in Brockett et al.(1991) and Kaas(1991). The modified 
problem has been considered first in Hürlimann(1996a). The most recent contributions are by 
De Vylder et al.(1996a/b/c). Section 3.5 is related to findings of Benktander(1977), as 
explained in Hürlimann(1996a). The method of Section 3 is more widely applicable. A 
possible use in life insurance is exposed in Hürlimann(1997 l ).

Further information and references to the actuarial literature about the topic of 
"excess-of-loss reserves" is found in Hürlimann(1998b), which contains in particular the 
results presented in Sections 4 and 5. Some statistical knowledge about the coefficient of 
variation has been collected in Hürlimann(1997c). In the special case of an infinite range  

,   for the financial gain, the maximal excess-of-loss reserve has been derived earlier 
by the author(1990b) (see also author(1991a), (4.12), author(1992a), (3.11) and 
author(1992b), (3.1)).

Section 6 follows closely Hürlimann(1997d). Theorem 6.1 is in the spirit of the 
insurance market based distribution-free stop-loss pricing principle presented first in 
Hürlimann(1993a), and later refined in Hürlimann(1994a), Theorem 5.1. The Karlsruhe 
pricing principle can been shown plausible on the basis of several other arguments, as 
exposed in Hürlimann(1997f). The given interpretation is compatible with the fact that 
Karlsruhe pricing can be derived from the insurance CAPM (read Capital Asset Pricing 
Model), which can be viewed as a linear approximation to an arbitrage-free insurance pricing 
model (see Hürlimann(1997g)).

Distribution-free methods and results in Actuarial Science and Finance are numerous. 
A very important subject, not touched upon here, is Credibility Theory, going back to 
Whitney(1918), whose modern era has been justified by Bühlmann(1967) (see De 
Vylder(1996), Part III, and references). Interesting results by working actuaries include 
Schmitter(1987) and Mack(1993). Another illustration for the use of bounds and optimization 
results in Risk Theory is Waldmann(1988).
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"Mathematics is never lost, it is always used. And it will always be used, the 
same mathematics; once it's discovered and understood, it will be used forever. 
It's a tremendous resource in that respect, and it's not one that we should neglect 
to develop."

Andrew Wiles
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distribution-free, 259 Schmitter problem, 266
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