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The transversality condition for infinite

dimensional control systems.

Diomedes Barcenas=, Hugo Leiva and Ambrosio Tineo Moya

ARTÍCULOS

Abstract. In this paper we provide a definition of transversality
for the following infinite dimensional control system{

ẋ(t) = Ax(t) +Bu(t) t > 0

x(0) = x0 ∈ X; u(t) ∈ U ⊂ U, x(t∗) ∈ G(t∗),

for t? > 0 minimum; where the state x(t) ∈ X, X and U are
Banach spaces, A is the infinitesimal generator of a strongly contin-
uous group {S(t)}t∈R in X, B ∈ L(U,X), the target set G ⊂ X
and the control values set U are convex and weakly compact. For
this system we give a necessary condition for a control satisfying the
transversality condition to be optimal. Finally, as an application we
consider the optimal control problem governed by the wave equation

ytt −∆y = u(t, x), x ∈ Ω, t ∈ R
y = 0, on R× ∂Ω,
y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ Ω,
‖u(t, ·)‖L2 ≤ 1, t ∈ R,

where Ω is a bounded domain in Rn, the distributed control u ∈
L2(0, t1;L2(Ω)); for this problem we compute the extremal control.

Resumen. En este trabajo se ofrece una definición de transversal-
idad para el siguiente sistema de control infinito dimensional{

ẋ(t) = Ax(t) +Bu(t) t > 0

x(0) = x0 ∈ X; u(t) ∈ U ⊂ U, x(t∗) ∈ G(t∗),

para t? > 0 mı́nimo; en el estado x(t) ∈ X, X y U son espacios
de Banach, A es el generador infinitesimal de un grupo fuertemente
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continuo {S(t)}t∈R en X, B ∈ L(U,X), el conjunto objetivo G ⊂ X
y el conjunto control U son convexos y débilmente compactos. Para
este sistema damos una condición necesaria para que un control que
satisfaga la condición de transversalidad sea óptimo. Por último,
como aplicación se considera el problema de control óptimo gober-
nado por la ecuación de onda

ytt −∆y = u(t, x), x ∈ Ω, t ∈ R
y = 0, on R× ∂Ω,
y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ Ω,
‖u(t, ·)‖L2 ≤ 1, t ∈ R,

donde Ω es un dominio acotado en Rn, el control distribuido u ∈
L2(0, t1, L

2(ω)); para este problema calculamos el control extremo.

1 Introduction and preliminaries

For finite dimensional linear systems a sufficient condition for the optimal con-
trol is given in [4] and [5], this condition is referred to as transversality condition
and it is contained in Theorem 19 from [5], page 132. That is to say, if X is
a finite dimensional Banach space, then under certain hypothesis the extremal
control satisfying the transversality condition is unique optimal. Also, it is
proved in Theorem 18 of [5] that, if u?(t) ∈ Ω on 0 ≤ t ≤ t? is a minimal
time-optimal controller for the finite dimensional system{

ẋ(t) = A(t)x+B(t)u, t ∈ R, x ∈ Rn,

x(0) = x0 ∈ Rn, u(t) ∈ Ω ⊂ Rm, x(t∗) ∈ G(t∗) ⊂ Rn,
(1.1)

then u?(t) is extremal; that is to say; the following maximum principle holds

m(t) = max
v∈Ω

〈
η(t), B(t)v

〉
=
〈
η(t), B(t)u?(t)

〉
and

M(t) = max
v∈Ω

〈
η(t), A(t)x?(t) +B(t)v

〉
=
〈
η(t), A(t)x?(t) +B(t)u?(t)

〉
almost every where 0 ≤ t ≤ t?.

Here A(t) and B(t) are matrices of order n× n and n×m respectively, Ω is
compact, the target set G(t) is also compact and varies continuously on [0,∞];
and η(t) is a nontrivial solution of the adjoint system

η̇ = −ηA(t),
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and η(t?) is an outwards unit normal vector to a supporting hyperplane to the
set of attainability K(t?) at x?(t?) in ∂K(t?). Furthermore, if G(t) = G is
constat, then x?(t?) lies in the new frontier of K(t?). In this case, provided
A(t) and B(t) are continuous, the normal η(t?) can be selected so that

M(t?) ≥ 0. (1.2)

If in addition G is convex, then η(t?) can be selected satisfying the transver-
sality condition; namely, η(t?) is normal to a common supporting hyperplane
separating K(t?) and G.

In this paper we generalize these results to the following infinite dimensional
optimal control system{

ẋ(t) = Ax(t) +Bu(t) t > 0

x(0) = x0 ∈ X; u(t) ∈ U ⊂ U, x(t∗) ∈ G,
(1.3)

where the state x(t) ∈ X; X and U are separable Banach spaces with X been
reflexive, B ∈ L(U,X), the controls u ∈ L1

loc(R+, U), the target set G ⊂ X
and the control values set U are convex and weakly compact, and A is the
infinitesimal generator of a strongly continuous group {S(t)}t∈R of bounded
linear operators in X. A mild solution of (1.3) is a function xu(·) : [0,∞) −→ X
defined by

xu(t) = S(t)x0 +

∫ t

0

S(t− α)Bu(α)dα, t ≥ 0, (1.4)

where u ∈ L1
loc(R+, U).

Definition 1.1. For t1 > 0 the set of admissible controls on [0, t1] is defined
by

C(t1) = {u ∈ L1(0, t1;U) : u(t) ∈ U a.e in [0, t1]}

and the corresponding set of attainable points by

K(t1) = {xu(t1) : xu(·) is mild solution of (1.3), u ∈ C(t1)}.

Since U is convex and weakly compact and U is separable, BC(t1) can be
considered as a mensurable multifunction taking weakly compact values and so
K(t1) is weakly compact in X ([1], [7]).

Through this work we suppose that intK(t1) 6= ∅, where intK(t1) and
∂K(t1) denote the interior and the boundary of K(t1) respectively.

The following definition is a generalization of a similar one given in [5] page
73.

Definition 1.2. A control u ∈ C(t1) is called an extremal control if the
corresponding solution xu of (1.3) satisfies xu(t1) ∈ ∂K(t1).
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Definition 1.3. If t? ≥ 0 and u? ∈ C(t?) with corresponding solution x?(·) of
(1.4) satisfying x?(t?) ∈ G, then u? is called an optimal control if

t? = inf{t ∈ [0,∞) : K(t) ∩G 6= ∅}.

As an application of our result we shall consider the following optimal control
problem governed by the wave equation

ytt −∆y = u(t, x), x ∈ Ω, t ∈ R
y = 0, on R× ∂Ω,
y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ Ω,
‖u(t, ·)‖L2 ≤ 1, t ∈ R,

(1.5)

and prove that the optimal control is given by:

u(t, x) =

{
η2(t,x)
‖η2(t,·)‖L2

if ‖η2(t, ·)‖L2 6= 0

1 if ‖η2(t, ·)‖L2 = 0

where

η2(s, x) =

∞∑
i=1

(−λ
1
2
j sin(

√
λjs) < φj , x

?
1 > φj(x) + cos(

√
λjs) < φj , x

?
2 > φj(x)),

and x?1 ∈ H1
0 (Ω), x?2 ∈ L2(Ω), where λj and φj are the eigenvalues and the

eigenfunctions of −∆ respectively and 〈φj , x?i 〉 =
∫

Ω
φj(x)x?i (x)dx.

2 Main results

Following the lead of Lee-Markus [5] we state the forthcoming results.

Theorem 2.1. A control u ∈ C(t1) is extremal if, and only if, there is x? ∈
X?\{0} such that

max
v∈U

〈
η(s), Bv

〉
=
〈
η(s), Bu(s)

〉
a.e on [0, t1] (2.1)

where
η(s) = S?(−s)x?, 0 ≤ s ≤ t1.

Proof. By Theorem 4.3 of [1] a control u ∈ C(t1) is extremal if and only if,
there exists y? ∈ X?\{0} such that for almost every s ∈ [0, t1]

max
v∈U

〈
y?, S(t1 − s)Bv

〉
=

〈
y?, S(t1 − s)Bu(s)

〉
=
〈
S?(t1 − s)y?, Bu(s)

〉
=

〈
S?(−s)S?(t1)y?, Bu(s)

〉
a.e.

Since S? is a group, S?(t1) is invertible; then x? = S?(t1)y? 6= 0, and by
putting η(s) = S?(−s)x? we get the result.
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Definition 2.2. An extremal control u ∈ C(t1) satisfies the transversality
condition if the hyperplane

Π(t1) =
{
x ∈ X :

〈
η(t1), x− xu(t1)

〉
= 0
}

separates K(t1) and G at the point xu(t1).

Theorem 2.3. Suppose x0 ∈ D(A) and u? ∈ C(t?) is an optimal control
which satisfies

S(−s)Bu? ∈ D(A) a.e on [0, t?], t? > 0

AS(t− ·)Bu∗(·) ∈ L1(0, t;X), ∀t ∈ [0, t?).
(2.2)

Then

M(t) = max
v∈Ω

〈
η(t), A(t)x?(t) +B(t)v

〉
=
〈
η(t), A(t)x?(t) +B(t)u?(t)

〉
is defined a.e on [0, t?], where x?(·) = xu?(·) and η(t) = S(−t)x? with x? 6= 0
according to Theorem 2.1. Moreover, we can choose η(t?) such that

M(t?) ≥ 0

and satisfying the transversality condition.

Proof. If hypothesis (2.2) is satisfied, then Lemma 2.22 of [2] implies that x? is
differentiable almost every where on [0, t?] because X is reflexive and

ẋ?(t) = Ax?(t) +Bu?(t) a.e on [0, t?],

which implies M(t) is well defined. Since x?(·) may not be differentiable in
every point of [0, t?], we will use a limit process to prove M(t?) ≥ 0.

It is clear that x?(t?) /∈ K(t1) if 0 ≤ t1 < t?. Thus, by Theorem 6.3 of [4]
there is η(t1) ∈ X?, with ‖η(t1)‖ = 1 and

0 < inf
x∈K(t1)

‖x?(t?)− x‖ = inf
x∈K(t1)

〈
η(t1), x?(t?)− x

〉
. (2.3)

Since K(t1) is weakly compact, there is x(t1) ∈ K(t1) such that

0 < inf
x∈K(t1)

‖x?(t?)− x‖ =
〈
η(t1), x?(t?)− x(t1)

〉
. (2.4)

From (2.3) and (2.4) we get〈
η(t1), x− x?(t1)

〉
≤ 0 for every x ∈ K(t1).

Thus η(t1) separates x?(t?) from K(t1) at x(t1) ∈ K(t1).
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This implies that〈
η(t1), x?(t?)− x(t1)

〉
> 0 and

〈
η(t1), x− x(t1)

〉
≤ 0, x ∈ K(t1) (2.5)

Now, we will prove that there is t̂1 ∈ (t, t?) such that
〈
η(t1), ẋ(t̂1)

〉
> 0.

Otherwise, 〈
η(t1), ẋ?(t)

〉
≤ 0 t ∈ [t1, t

?],

whenever ẋ?(t) exist on [0, t?].
Since x?(·) is absolutely continuous,∫ t?

t1

〈
η(t1), ẋ?(t)

〉
dt ≤ 0⇐⇒

〈
η(t1), x?(t?)− x?(t1)

〉
≤ 0

which implies

0 <
〈
η(t1), x?(t?)− x(t1)

〉
=

〈
η(t1), x?(t?)− x?(t1)

〉
+

〈
η(t1), x?(t1)− x(t1)

〉
≤ 0

which contradicts (2.5).
In this way we can choose a sequence

0 < t1 < t̂1 < t2 < t̂2 < · · · < tn < t̂n < · · · < t?

with ‖η(tn)‖ = 1, for all n, and satisfying〈
η(tn), ẋ?(t̂n)

〉
> 0⇐⇒

〈
η(tn), Ax?(tn) +Bu?(t̂n) > 0. (2.6)

Since U weakly compact, and K(t) is weakly compact and uniformly bounded
for 0 < t ≤ t?, we can suppose:

w − lim
n→∞

u?(t̂n) = u ∈ U , w − lim
n→∞

η(tn) = η(t?) (2.7)

and
lim
n)→∞

〈
(tn), x(tn)

〉
= α ∈ R. (2.8)

Consider the hyperplane Π(t?) given by

Π(t?) = {x ∈ X :
〈
η(t?), x− x?(t?)

〉
= 0}.

Claim. Π(t?) separates x?(t?) and K(t?). In fact,〈
η(t?), x− x?(t?)

〉
≤ 0, ∀x ∈ K(t).

Otherwise, there is x0 ∈ K(t?) such that〈
η(t?), x0 − x?(t?)

〉
> 0. (2.9)
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Since by (2.5) 〈
η(tn), x?(t?)− x(tn)

〉
≥ 0 n = 1, 2, · · · ;

then, by inequality〈
η(tn), x?(t?)− x(tn)

〉
≤ ‖x?(t?)− x?(tn)‖,

we get
lim
n→∞

〈
η(tn), x(tn)

〉
=
〈
η(t?), x?(t?)

〉
.

Since lim
n→∞

h(K(tn),K(t?)) = 0, where h denotes the Hausdorff metric (see [1]),

there is a sequence {xn} ⊂ K(tn), n = 1, 2, · · · with lim
n→∞

‖xn − x0‖ = 0 and by

(2.9) we get 〈
η(tn), xn − x(tn)

〉
≤ 0 n = 1, 2, · · · . (2.10)

But, however

lim
n→∞

〈
η(tn), xn − x(tn)

〉
= lim

n→∞

(〈
η(t1), xn − x0

〉
+

〈
η(tn), x0

〉
−
〈
η(tn), x(tn)

〉)
=

〈
η(t?), x0 − x?(t?)

〉
> 0,

which is a contradiction with (2.10). So Π(t?) separates x?(t?) and K(t?).
Since A is closed, our hypothesis together with Theorem II.2.6 of [3] imply

Ax?(t̂n) = AS(t̂n)x0 +AS(t̂n)

∫ t̂n

0

S(−s)Bu?(s)ds

= S(t̂n)Ax0 + S(t̂n)

∫ t̂n

0

S(−s)ABu?(s)ds

which implies that

lim
n→∞

Ax?(t̂n) = S(t?)Ax0 + S(t?)

∫ t?

0

S(−s)ABu?(s)ds

= Ax?(t?).

Hence, by taking limit in (2.6) we obtain M(t?) ≥ 0.

The proof of Corollary 2.4 and Theorem 2.5 are similar to proof of Corollary
and Theorem 18 from [5], pages 131 and 132, respectively.

Corollary 2.4. If A is a bounded operator and u ∈ C(t?) is an extremal control,
then

M(t) = max
v∈U

〈
η(t), Ax(t) +Bv

〉
=

〈
η(t), Ax(t) +Bu(t)

〉
a.e on [0, t?]. (2.11)
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is well defined and constant.

Proof. Since A is a bounded operator, D(A) = X and S(t) = exp(tA), then the
hypothesis of Theorem 5.3 of [1] are satisfied. Therefore M(·) is well defined
and it is absolutely continuous, and so M is differentiable almost every where
on [0, t?]. We will estimate the derivative of M(t) at t = τ1, if it exists. Suppose
τ2 > τ1. Then

M(τ2)−M(τ1)

τ2 − τ1
≥

〈
η(τ2), Ax(τ2) +Bu(τ1)

〉
−
〈
η(τ1), A(τ1) +Bu(τ1)

〉
τ2 − τ1

=
〈
η(τ2), A

x(τ2)− x(τ1)

τ2 − τ1
〉

+
〈η(τ2)− η(τ1)

τ2 − τ1
, Ax(τ1)

〉
+

〈η(τ2)− η(τ1)

τ2 − τ1
, Bu(τ1)

〉
.

Without loss generality we can suppose that ẋ(τ1) exists. If x? ∈ X?\{0}
satisfies the equation η(t) = exp(−A?t)x?, then

η̇(t) = −A? exp(−A?t)x? = −A?η(t).

Thus, by taking limit as τ2 −→ τ1, we have

dM

dt
(τ1) ≥

〈
η(τ1), Aẋ(τ1)

〉
+
〈
η̇(τ1), Ax(τ1)

〉
+
〈
η̇(τ1), Bu(τ1)

〉
=

〈
η(τ1), A(Ax(τ1) +Bu(τ1))

〉
−
〈
A?η(τ1), Ax(τ1)

〉
−

〈
A?η(τ1), Bu(τ1)

〉
= 0.

Similar computation shows that
dM

dt
(τ1) ≤ 0. Consequently M is constant on

[0, t?].

The following theorem prove that, under normality conditions, the Maxi-
mum Principle is sufficient for optimality, provided that the optimal control
exists and is the unique extremal control which satisfies the transversality con-
dition.

Theorem 2.5. Let A be a bounded linear operator such that the following con-
ditions are satisfied:
a) The system is normal for t > 0.
b) G is a convex and weakly compact.
c) If t > 0, u ∈ C(t) and xu(t) ∈ G, then there exists a control u such that
xu(t) ∈ G with t ≥ t and u is not extremal for any t > t.

If u1 ∈ C(t1), u2 ∈ C(t2) satisfies the transversality conditions, then
t1 = t2 = t? and u2(t) = u1(t) a.e on [0, t?]. In particular u1 = u? in the
unique extremal control.
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Proof. Consider first the case t1 = t2. Since the system is normal, K(t1)
is strictly convex (see [1]). Then, by the transversality condition, there is a
hyperplane Π which separates K(t1) and G.

So, both x1(t1) and x2(t2) belong to ∂G. Hence x1(t1), x2(t2) ∈ ∂K(t1)∩Π.
Since K(t1) is strictly convex, x1(t1) = x2(t2). Applying again the normality
condition, we conclude that

u1(t) = u2(t) a.e on [0, t1].

Suppose now t1 < t2, by the transversality condition there is a hyperplane
separating K(t2) and G, and by hypothesis (c) K(t2) ∩ G 6= ∅ which is a
contradiction.

3 Applications

In this section we shall consider the optimal control problem governed by the
wave equation 

ytt −∆y = u(t, x), x ∈ Ω, t ∈ R
y = 0, on R× ∂Ω,
y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ Ω,
‖u(t, ·)‖L2 ≤ 1, t ∈ R,

(3.1)

where the distributed control u ∈ L2(0, t1;L2(Ω)). We wish to steer the initial
state (y0, y1) to the origin in minimal time. The system (3.1) can be written as
an abstract second order equation in the Hilbert space X = L2(Ω). But before
that, we shall consider the following properties of the operator −∆.

Let X = L2(Ω) and consider the linear unbounded operator A : D(A) ⊂
X → X defined by Aφ = −∆φ, where

D(A) = H1
0 (Ω) ∩H2(Ω). (3.2)

The operator A has the following very well known properties, the spectrum of
A consists of only eigenvalues

0 < λ1 < λ2 < · · · < λj →∞,

each one with multiplicity γj equal to the dimension of the corresponding
eigenspace.
a) There exists a complete orthonormal set {φj} of eigenvectors of A.

b) For all x ∈ D(A) we have

Ax =

∞∑
j=1

λj

γj∑
k=1

< ξ, φj,k > φj,k =

∞∑
j=1

λjEjξ, (3.3)



84 D. Barcenas=, H. Leiva and A. T. Moya

where < ·, · > is the inner product in X and

Ejx =

γj∑
k=1

< ξ, φj,k > φj,k. (3.4)

So, {Ej} is a family of complete orthogonal projections inX and x =
∞∑
j=1

Ejx, x ∈

X.

c) −A generates an analytic semigroup {e−At} given by

e−Atx =

∞∑
j=1

e−λjtEjx. (3.5)

d) The fractional powered spaces Xr are given by:

Xr = D(Ar) = {x ∈ X :

∞∑
j=1

(λj)
2r‖Ejx‖2 <∞}, r ≥ 0,

with the norm

‖x‖r = ‖Arx‖ =


∞∑
j=1

λ2r
j ‖Ejx‖2


1/2

, x ∈ Xr,

and

Arx =

∞∑
j=1

λrjEjx. (3.6)

Also, for r ≥ 0 we define Zr = Xr × X, which is a Hilbert Space with norm
given by ∥∥∥∥[ w

v

]∥∥∥∥
Zr

=
(
‖w‖2r + ‖v‖2

) 1
2 . y′′ = −Ay + u(t)

y(0) = y0, y′(0) = y1

|u(t)| ≤ 1,
(3.7)

where the operator −A is the Laplacian operator defined above.
Using the change of variables y′ = v, the second order equation (3.7) can be
written as a first order system of ordinary differential equations in the Hilbert
space Z = Z1/2 = X1/2 ×X as

z′ = Az +Bu(t), z ∈ Z

z(0) = z0,

|u(t)| ≤ 1,

(3.8)
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where

z0 =

[
y0

y1

]
, z =

[
y
v

]
, B =

[
0
IX

]
, A =

[
0 IX

−A 0

]
, (3.9)

A is an unbounded linear operator with domain D(A) = D(A) × X and u ∈
L2(0, τ, U) with U = X.

The proof of the following theorem follows from Theorem 3.1 from [6] by
putting c = 0 and d = 1.

Theorem 3.1. The operator A given by (3.9), is the infinitesimal generator of
a strongly continuous semigroup {S(t)}t∈R given by

S(t)z =

∞∑
j=1

eAjtPjz, z ∈ Z, t ≥ 0 (3.10)

where {Pj}j≥1 is a complete family of orthogonal projections in the Hilbert space
Z given by

Pj = diag[Ej , Ej ], j ≥ 1 (3.11)

and

Rj =

[
0 1
−λj 0

]
, Aj = RjPj t ≥ 1. (3.12)

Note that

R∗j =

[
0 −1
λj 0

]
, A∗j = R∗jPj , j ≥ 1.

Moreover eAjs = eRjsPj and the eigenvalues of Rj are
√
λji and −

√
λji.

Now

eRjt = {cos(
√
λjt)I +

1√
λj

sin(
√
λjt)Rj}

=

 cos(
√
λjt)

sin(
√
λjt)√
λj

−λ
1
2
j sin(

√
λjt) cos(

√
λjt)

 ,
and

eR
∗
j t = {cos(

√
λjt)I +

1√
λj

sin(
√
λjt)R

∗
j}

=

 cos(
√
λjt) − sin(

√
λjt)√
λj

λ
1
2
j sin(

√
λjt) cos(

√
λjt)

 .
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Hence, the adjoint equation is

η̇ = −A?η,

where

A? =

[
0 −IX
A 0

]
is infinitesimal generator of strongly continuous group {S?(t)}t∈R give by

S?(−s)x? =

∞∑
j=1

e−R
?
j sPj x

?, x? =

[
x?1
x?2

]
∈ X 1

2
+X.

Therefore, a solution of the adjoint equation such that η(0) = x? is given by

η(s) = T ?(−s)x?.

Now, we shall apply Theorem (2.1) to find the optimal optimal control:

〈
η(s), Bu

〉
X

1
2×X

=
〈[

η1

η2

]
,

[
0
u

]〉
X

1
2×X

=
〈
η2(s), u

〉
X
≤ ‖η2(s)‖X .

Hence, if we put

u(t, ξ) =

{
η2(t,ξ)
‖η2(t,·)‖X if ‖η2(t, ·)‖X 6= 0

1 if ‖η2(t, ·)‖X = 0
,

then

max
v∈U

〈
η(s), Bv

〉
≤ ‖η2(s)‖X =

〈
η(s), Bû(s)

〉
, a.e on [0, t1].

On the other hand, we known that

η(s) = T ?(−s)x? =

∞∑
j=1

e−R
?
j sPj x

?,

therefore

η2(s, x) =

∞∑
i=1

(−λ
1
2
j sin(

√
λjs) < φj , x

?
1 > φj(x) + cos(

√
λjs) < φj , x

?
2 > φj(x)).
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