A remark on the ϕ-norms

Akkouchi Mohamed

Abstract

We introduce the concept of ϕ-norm on (complex or real) linear spaces for a class of functions ϕ which are J-convex, nondecreasing and having a fixed point on the set of nonnegative real numbers. The q-norms introduced by H. Belbachir, M. Mirzavaziri and M. S. Moslehian, (see A.J.M.A.A., Vol. 3, No. 1, Art. 2, (2006)) are particular cases of ϕ-norms. We establish that every ϕ-norm is a norm in the usual sense, and that the converse is true as well.

Resumen. Introducimos el concepto de ϕ-norma sobre espacios lineales (complejos o reales) para una clase de funciones ϕ que es J-convexa, no decreciente y con un punto fijo en el conjunto de los números reales no negativos. Las q-normas introducidas por H. Belbachir, Mirzavaziri M. y Moslehian MS, (ver AJMAA, vol. 3, No. 1 , del art. 2 (2006)) son casos particulares de ϕ-normas. Probamos que cada ϕ-norma es una norma en el sentido usual, y que el converso también es cierto.

1 Introduction

In [3], S. Saitoh noticed that in any arbitrary linear space E, the so-called parallelogram inequality $\|x+y\|^{2} \leq 2\left(\|x\|^{2}+\|y\|^{2}\right)$, for vectors x, y in E, may be more suitable than the usual triangle inequality. He considered this inequality in the setting of a natural sum Hilbert space for two arbitrary Hilbert spaces.

It is easy to see that any arbitrary norm $\|$.$\| on E$ satisfies the parallelogram inequality.

The reader is referred to [2] for undefined terms and notations.
In [1], the authors have introduced an extension of the triangle inequality by using the concept of a q-norm.

Definition 1.1. Let \mathcal{X} be a real or complex linear space and $q \in[1, \infty)$. A mapping $\|\cdot\|: \mathcal{X} \rightarrow[0, \infty)$ is called a q-norm on \mathcal{X} if it satisfies the following conditions:

1. $\|x\|=0 \Leftrightarrow x=0$,
2. $\|\lambda x\|=|\lambda|\|x\|$ for all $x \in \mathcal{X}$ and all scalar λ,
3. $\|x+y\|^{q} \leq 2^{q-1}\left(\|x\|^{q}+\|y\|^{q}\right)$ for all $x, y \in \mathcal{X}$.

In [1], the following result was proved.
Theorem 1.1. Every q-norm is a norm in the usual sense.
The purpose of this paper is to extend the result above by using the notion of a ϕ-norm which is more general than the notion of a q-norm.

2 Definitions and preliminaries

Let Φ be the set of functions $\phi:[0,+\infty) \rightarrow[0,+\infty)$ which are not identically zero and satisfying the following properties:
$\left(\phi_{1}\right) \phi$ is non-decreasing on $[0,+\infty)$.
$\left(\phi_{2}\right) \phi\left(\frac{s+t}{2}\right) \leq \frac{\phi(s)+\phi(t)}{2}, \quad$ for all $s, t \in[0,+\infty)$.
$\left(\phi_{3}\right)$ There exists a positive number $r>0$ such that $\phi(r)=r$.
Example 1. For each $q>1$, the function $\phi_{q}(t)=t^{q}$ satisfies the properties $\left(\phi_{1}\right),\left(\phi_{2}\right)$ and $\left(\phi_{3}\right)$ with $r=1$.

Example 2. Consider $\phi(t)=\exp (t-1)$. Then ϕ satisfies the properties $\left(\phi_{1}\right),\left(\phi_{2}\right)$ and $\left(\phi_{3}\right)$ with $r=1$.
Definition 2.1. Let \mathcal{X} be a real or complex linear space and $\phi \in \Phi$. A mapping $\|\cdot\|: \mathcal{X} \rightarrow[0, \infty)$ is called a ϕ-norm on \mathcal{X} if it satisfies the following conditions:

1. $\|x\|=0 \Leftrightarrow x=0$,
2. $\|\lambda x\|=|\lambda|\|x\|$ for all $x \in \mathcal{X}$ and all scalar λ,
3. $\phi\left(\frac{\|x+y\|}{2}\right) \leq \frac{\phi(\|x\|)+\phi(\|y\|)}{2}, \quad$ for all $x, y \in \mathcal{X}$.

When ϕ is continuous, We observe that the property (3) above is equivalent to say that the function $x \longrightarrow \phi(\|x\|)$ is convex on \mathcal{X}.

Remark 1. For evey number $q>1$, a mapping $\|\cdot\|: \mathcal{X} \rightarrow[0, \infty)$ is a q-norm on \mathcal{X} if and only if $\|\cdot\|$ is a ϕ_{q}-norm, where $\phi_{q}(t)=t^{q}$.

We have the following result.
Proposition 2.1. Every norm in the usual sense is a ϕ-norm for every $\phi \in \Phi$.
Proof. Let $x, y \in \mathcal{X}$. Since $\|$.$\| is a norm, then we have$

$$
\|x+y\| \leq\|x\|+\|y\|
$$

Since ϕ is non-decreasing and convex on $[0, \infty)$, it follows that

$$
\phi\left(\frac{\|x+y\|}{2}\right) \leq \phi\left(\frac{\|x\|+\|y\|}{2}\right) \leq \frac{\phi(\|x\|)+\phi(\|y\|)}{2} .
$$

So, $\|\cdot\|$ is a ϕ-norm.
The following lemma will be used in the proof of the main result of this note.
Lemma 2.1. Let \mathcal{X} be a real or complex linear space. Let $\|\cdot\|: \mathcal{X} \rightarrow[0, \infty)$ be a mapping satisfying (1) and (2) in the definition of a ϕ-norm. Then the following assertions are equivalent:
(i) $\|\cdot\|$ is a norm.
(ii) The set $B_{r}=\{x \in \mathcal{X}:\|x\| \leq r\}$ is convex, for any arbitrary number $r>0$.
(iii) The set $B_{1}=\{x \in \mathcal{X}:\|x\| \leq 1\}$ is convex.
(iv) There exists a positive number $r>0$ such that the set $B_{r}=\{x \in \mathcal{X}:\|x\| \leq r\}$ is convex.

Proof. The implications (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) are obvious. It remains to show the implication (iv) \Rightarrow (i). Let $r>0$ be such that the set B_{r} is convex. Let $x, y \in \mathcal{X}$. We can suppose that $x \neq 0$ and $y \neq 0$. We put $x^{\prime}=r \frac{x}{\|x\|}$ and $y^{\prime}=r \frac{y}{\|y\|}$. We have $x^{\prime}, y^{\prime} \in B_{r}$. By assumption, we know that $\lambda x^{\prime}+(1-\lambda) y^{\prime} \in B_{r}$ for all $0 \leq \lambda \leq 1$. In particular, for $\lambda=\frac{\|x\|}{\|x\|+\|y\|}$ we obtain

$$
\left\|\frac{r x}{\|x\|+\|y\|}+\frac{r y}{\|x\|+\|y\|}\right\|=\left\|\lambda x^{\prime}+(1-\lambda) y^{\prime}\right\| \leq r
$$

So that $r\|x+y\| \leq r[\|x\|+\|y\|]$, which implies that $\|x+y\| \leq\|x\|+\|y\|$. So $\|\cdot\|$ is a norm on \mathcal{X}. This ends the proof.

3 The result

Now we are ready to state and prove the main result of this note.
Theorem 3.1. Let \mathcal{X} be a real or complex linear space. Let $\|\cdot\|: \mathcal{X} \rightarrow[0, \infty)$ be a mapping satisfying the following conditions:

1. $\|x\|=0 \Leftrightarrow x=0$,
2. $\|\lambda x\|=|\lambda|\|x\|$ for all $x \in \mathcal{X}$ and all scalar λ.

Then the following assertions are equivalent:
(i) $\|\cdot\|$ is a norm (in the usual sense on \mathcal{X}).
(ii) $\|\cdot\|$ is a ϕ-norm on \mathcal{X} for every $\phi \in \Phi$.
(iii) There exists a $\phi \in \Phi$ such that $\|\cdot\|$ is a ϕ-norm on \mathcal{X}.

Proof. The implication (i) \Rightarrow (ii) is Proposition 2.1. The implication (ii) \Rightarrow (iii) is evident. We have to prove the implication (iii) \Rightarrow (i). Suppose that $\|\cdot\|$ is a ϕ-norm on \mathcal{X} for some $\phi \in \Phi$. By Property $\left(\phi_{3}\right)$, there exists a positive number $r>0$ such that $\phi(r)=r$. By Lemma 2.1, it is sufficient to prove that the set $B_{r}=\{x \in \mathcal{X}:\|x\| \leq r\}$ is convex.

Let $x, y \in B_{r}$. Then, by the properties $\left(\phi_{1}\right),\left(\phi_{2}\right)$ and $\left(\phi_{3}\right)$ of ϕ, we have

$$
\phi\left(\frac{\|x+y\|}{2}\right) \leq \frac{\phi(\|x\|)+\phi(\|y\|)}{2} \leq \frac{\phi(r)+\phi(r)}{2}=\phi(r)=r .
$$

So $\frac{1}{2} x+\left(1-\frac{1}{2}\right) y \in B_{r}$. Thus if $D=\left\{\left.\frac{k}{2^{n}} \right\rvert\, n=1,2, \ldots ; k=0,1, \ldots, 2^{n}\right\}$, then for each $\lambda \in D$ we have $\lambda x+(1-\lambda) y \in B_{r}$.

Let $0 \leq \lambda \leq 1$ and $z=\lambda x+(1-\lambda) y$. We can suppose that $0<\lambda<1$. Since D is dense in $[0,1]$, there exists a sequence $\left\{\rho_{n}\right\}$ of points of D satisfying $\rho_{n} \geq \lambda$, for every nonnegative integer n, such that $\lim _{n} \rho_{n}=\lambda$. We put $\beta_{n}=\frac{1-\rho_{n}}{1-\lambda}$. Obviously, we have $0 \leq \beta_{n} \leq 1$ and $\lim _{n} \beta_{n}=1$. For every nonnegative integer n, we observe that

$$
0 \leq \frac{\lambda}{\rho_{n}} \beta_{n} \leq \beta_{n} \leq 1
$$

Therefore $\frac{\lambda}{\rho_{n}} \beta_{n} x \in B_{r}$. Since $\rho_{n} \in D$ we conclude that

$$
\beta_{n} z=\lambda \beta_{n} x+(1-\lambda) \beta_{n} y=\rho_{n} \frac{\lambda}{\rho_{n}} \beta_{n} x+\left(1-\rho_{n}\right) y \in B_{r}
$$

Thus $\beta_{n}\|z\|=\left\|\beta_{n} z\right\| \leq r$ for all n. By letting n tend to infinity, we get $\|z\| \leq r$, i.e. $z \in B_{r}$.

Acknowledgement. I thank very much the anonymous referee for his (or her) helpful comments.

References

[1] H. Belbachir, M. Mirzavaziri and M. S. Moslehian, q-norms are really norms, A.J.M.A.A., Vol. 3, No. 1, Art. 2, (2006) pp. 1-3.
[2] W. B. Johnson (ed.) and J. Lindenstrauss (ed.), Handbook of the Geometry of Banach Spaces, Vol. 1, North-Holland Publishing Co., Amsterdam, 2001.
[3] S. Saitoh, Generalizations of the triangle inequality, J. Inequal. Pure Appl. Math. 4 (2003), No. 3, Article 62, 5 pp.

Akkouchi Mohamed
Département de Mathématiques, Faculté des Sciences-Semlalia.
Université Cadi Ayyad, B.P. 2390. Av. du prince My. Abdellah.
Marrakech, Maroc (Morocco).
e-mail: akkouchimo@yahoo.fr

