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Another perspective on a famous problem,

IMO 1988: The equation x2+y2

xy+1 = n2

Luis Gómez Sánchez Alfaro

DIVULGACIÓN MATEMÁTICA

Abstract. In this work we apply a simple property of the function
F below to study an interesting IMO problem proposed in 1988 of
which we give a solution. We analyze with some detail the diophan-
tine equation F (x, y) = n2 in connection with this problem.

Resumen. En este trabajo se aplica una simple propiedad de la
función F , ver abajo, para estudiar un interesante problema pro-
puesto en la OMI de 1988, del cual damos una solución. Se analiza
con cierto detalle la ecuación diofántica F (x, y) = n2 en relación con
este problema.

The symmetrical function F (x, y) = x2+y2

xy+1 of R+ × R+ in R+ has the re-

markable property, trivial to verify: F (x, x3) = F (x, 0) = x2 for all x.

Here we use basically this property to determine an infinity of integer so-
lutions of the equation F (x, y) = n2 for all n ≥ 2. We give first a solution,
apparently new, to a famous problem [see (9) below] proposed by Stephan Beck,
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Federal Germany, in the 29◦ International Olympic Games of Mathematics held
at Canberra, Australia, in 1988. The statement of this problem implies that if n
is not a perfect square, the equation F (x, y) = n does not have integer solutions.

Let us define the function fn from R
+

to R
+

by fn(x) = F (n, x), i.e.,

fn(x) = n2+x2

nx+1 ; x ≥ 0

For n ∈ N we have the following properties which are elementary results:

1. fn(m) = fm(n) and fn(0) = fn(n3) = n2.

2. fn is 1− 1 over x > n3.

3. fn has a unique minimum at n0 = −1+
√
n4+1

n < n.

4. fn decreases over [0, n0] and increases over x > n0

fn(n0) =
2(
√

1 + n4 − 1)

n2
= m0 < 2 for all n; 1 < m0 < 2; n 6= 1

5. For all x 6= n0 in [0, n3] there exists a unique

y 6= x such that fn(x) = fn(y); in fact y =
n3 − x
nx+ 1

∈ [0, n3]

Let hn be the function defined by hn(x) = n3−x
nx+1 ; 0 ≤ x ≤ n3.

Thus hn(x) = y. Note the function hn is involutive, i.e., hn(hn(x)) = x.

6. If x, fn(x) are nonnegative integers, with 0 ≤ x < n3 then hn(x) is a
nonnegative integer.

Moreover, n0 < x < n3 ⇐⇒ 0 < hn(x) < n0

Proof:

n2 + x2

nx+ 1
=
n2 + [hn(x)]2

nhn(x) + 1
= k ⇒ x+ hn(x)

n
= k therefore

hn(x) = kn− x is an integer; it must be positive by definition of hn(x).

7. If 0 ≤ a < b then fa(x) > fb(x) for all x > α where α is the unique
positive root of x3 − abx− (a+ b) = 0.

Proof: Consider the difference function

g(x) = fb(x)− fa(x) =
−(b− a)[x3 − abx− (a+ b)]

(ax+ 1)(bx+ 1)
; x ≥ 0.

It is easily seen, using the derivative, that g(x) is decreasing over x ≥ 0
going from g(0) = b2 − a2 to −∞ so the equation g(x) = 0 has a unique
positive root α; consequently fa(x) > fb(x) if x > α.
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8. If 0 ≤ a < b then fb(x) = fa(x) = β at a unique point x = α where α is
the positive root of x3 − abx− (a+ b) = 0.

Furthermore a+ b = αβ.

Proof:
b2 + x2

bx+ 1
=
a2 + x2

ax+ 1
⇒ x3 − abx− (a+ b) = 0

On the other side
b2 + α2

bα+ 1
=
a2 + α2

aα+ 1
= β ⇒ a+ b = αβ

9. PROBLEM 6 (IMO 1988).- Let a and b positive integers such that

ab+ 1 divides a2 + b2. Show that a2+b2

ab+1 is the square of an integer.

SOLUTION: With a < b (a = b would give 1 < k < 2 where a2+b2

ab+1 = k)
consider the functions fa and fb so, k = fb(a) = fa(b) as in (1).

When k = a2 there is nothing to prove. Suppose fa(b) = k > a2. There

exists always a real c 6= b > a such that k = a2+b2

ab+1 = a2+c2

ac+1 from which,
as in the proof of (6), we have b + c = ak hence c is an integer. On the
other hand, when k > a2, it is easily seen that − 1

a < c < 0. This is a

contradiction and therefore we consider only k < a2. *

We know, by (3) and (4), that fa(x) is increasing at x = b because b > a >
a0 where a0 is the unique point in which fa takes its minimum. Applying

*This is indeed the proposition (13) given below but stated otherwise.
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(5) and (6) we obtain the integers k = fa(b) = fa(a1) = fa1(a) where
0 < a1 = ha(b) < a0 < a < b and obviously a2 > a21. Now fa1(x) is
increasing at x = a which implies 0 < a2 = ha1

(a) < a1 < a0 < a < b and
so on, continuing this way we obtain

k = fan(an+1) = fan+1(an) = fan+1(an+2)

where an+2 = han+1
(an)

and b2 > a2 > a21 > a22 > a23 > a2n > · · · · · · ≥ k

Consequently because of we are dealing with integers, we must have k = a2n
for a certain index n. The desired result follows.

(*) This indeed the proposition (13) given below but stated otherwise.

NOTE: Paragraph (9) gives a third solution which in addition to the two
previously known to the author, the first given by the Bulgarian partici-
pant in IMO 1988 Emmanuel Atanasiov and the second by the Australian
Professor J. Campbell, University of Canberra (see [1], page 65).

The following figure charts the end of the reasoning used in (9) which
together with (8) and (1) provides a means of finding integer solutions of

the equation x2+y2

xy+1 = n2

The two curves, fan
and fan−1

are distorted for practical reasons (the real
graphs very quickly stick to the y-axis as can be seen in the figure above
where two real graphs are shown).

As a2n = fan
(an−1) = fan

(0) = fan
(a3n) then, by (5), an−1 = a3n; on the

other hand, (8) gives an + an−2 = a3nx a
2
n = a5n , i. e., an−2 = a5n − an

Continuing in the same way we get integers (by ascent, and not, as in (9),
by descent) that are solutions of the proposed equation.
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SOLUTIONS OF x2+y2

xy+1 = n2

10. Thus, given fn and the trivial point with integer coordinates (n3, n2), we
consider this point as the intersection of fn with another curve fm whose
index m > n, according to (8), is given by n + m = n3 n2 = n5, i. e.
m = n5 − n (which also goes for the rest solving the equation

f3n(m) = n2 which gives m =
n5 +

√
(n10 − 4n6 + 4n2

2
= n5 − n).

The iterated application of the procedure gives the recurrence equation

xk+2 = n2xk+1 − xk, (x0, x1) = (0, n)

whose solutions satisfy the condition fxk
(xk+1) = n2 for all k ≥ 1. The

solutions of this equation are given by

2kxk =
n[(n2 + α)k − (n2 − α)k])

α

where α =
√
n4 − 4, this is,

2k−1xk = n
∑
i

(ki )n2(k−i)αi−1

where the indexes are the positive odds i ≤ k .

We finally have

2k−1xk = n

[k1]∑
j=0

(ki )n2(k−2j−1)(n4 − 4)j
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where [k1] denotes the integer part of k1 = k−1
2 and moreover

F (xk, xk+1) =
x2k + x2k+1

xkxk+1 + 1
= n2; k = 1, 2, 3, . . . . . . . . .

11. By construction of the integers xk, the sum in its general definition must be
divisible by 2k−1 which is clear if n is odd and easily verified in each of the
summands if n is even. Therefore each xk is a multiple of n and moreover,
a simple induction using the recurrence equation that defines them proves
that n is the greatest common divisor of each pair of consecutive (xk, xk+1)
in that succession.

12. EXAMPLES:

n = 3→ n3 = 27→ n5−n = 240→ n7− 2n3 = 2133→ n9− 3n5 +n =
18957→ n11−4n7+3n3 = 168480→ n13−5n9+6n5−n = 1497363→
· · ·
32 = 9 = 32+272

3∗27+1 = 272+2402

27∗240+1 = 2402+21332

240∗2133+1 = 21332+189572

2133∗18957+1 =

= 189572+1684802

18957∗168480+1 = 1684002+14973632

168480∗1497363+1 = · · ·

13. fn(x) is not an integer for all integer x > n3.

Proof: Suppose x is an integer with x > n3. If fn(x) is an integer, by
(9) it must be the square of an integer clearly greater than n, then for
some integer h ≥ 1 we have fn(x) = (n + h)2 which gives the equation
n2 +x2 = (nx+ 1)(n+h)2 whose discriminant, n2(n+h)4 + 4(2nh+h2),
should be a perfect square. Then there exists an integer k ≥ 1 such that

2n(n+ h)2k + k2 = 4(2nh+ h2)

i.e. 2kn3 + k2 + (kn− 2)(4nh+ 2h2) = 0

This is clearly impossible if (kn − 2) ≥ 0 and then kn = 1, but then we
have 2h2 + 4h− 3 = 0 which gives h irrational. This completes the proof.

Let [|n|] denotes the infinite set of solutions, generated by n, of the recu-
rrence equation xk+2 = n2xk+1 − xk, (x0, x1) = (0, n) solved in (10).

14. If fn(x) = b2; b ∈ N; x ∈ N; 0 < x < n3, then n ∈ [|b|], i.e. n is one of the
solutions in (10) generated by b.

Proof: Suppose a ∈ N; 0 < a < n3 and fn(a) ∈ N. By (10) we have
fn(a) = m2 < n2. By the involutive function of (5) we can choose a such
that fn be decreasing in a which means 0 < a < n0 (by (3), (5) and
(6)). Then there exists, by (7) and (8), a function fm increasing in a such
that fm(a) = fn(a) = k2; k2 < m2 < n2 and moreover m = ak2 − n
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(Note that n, a and m satisfy the recurrence equation of (10) for the
coefficient k2). We repeat the procedure, now with fm applied to the
point hm(a) making a descent, as in (9), which should end with fb such
that fb(0) = fb(b

3) = k2 = b2 and then n ∈ [|b|].

15. Theorem.- If p > 0 is a prime number, then the unique integer solutions
(x, z) of the equation fp(x) = z are the trivial ones (0, p2) and (p3, p2).

Proof: It is a consequence of (11), (13) and (14).

CONCLUSION.- Let us denote A = {m ∈ N; m > n3}. So far we have
obtained the following:

I fn(A) ∩ N = ∅ for all natural n J

I fp(N) ∩ N = {p2} for all prime p > 0 J

more generally, by (14), we can deduce without difficulty

I fn(N)∩N = {n2} for all n which does not belong to [|b|] for any non trivial divisor b of n J

We know fn(N) ∩ N trivially contains {n2}. The discussion above leads to
conjecture it contains at most one non trivial element.

ICONJECTUREJ

For all n > 0, fn(N) ∩ N = {n2} or {n2, b2}; (b < n and, by (14), n ∈ [|b|]
therefore, by (11), b divides n).

Referencias

[1] Francisco Bellot Rosado, Ascensión López Ch. Cien Problemas de Mate-
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FOUR VIEWS OF THE SURFACE OF EQUATION z = x2+y2

xy+1



IMO 1988: The equation x2+y2

xy+1 = n2. 151
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