Some KKM type, intersection and minimax theorems in spaces with abstract convexities

Luis González Espinoza

Abstract

In this paper we obtain KKM type theorems for G spaces, M-spaces and L-spaces which are spaces with no linear structure, these theorems are used to obtain some minimax results for these spaces. Also an intersection theorem for M-spaces is presented.

Resumen. En este trabajo obtenemos teoremas de tipo KKM para G-espacios, M-espacios y L-espacios que son espacios sin una estructura lineal, estos teoremas se utilizan para obtener unos resultados minimax para estos espacios. También se presenta un teorema de intersección para M-espacios.

1 Introduction

In this paper we obtain some KKM type theorems for G-spaces. These are Theorems 2.3, 2.6 and 2.11. These latter two results generalize Theorems 1 and Theorem 2 of Bardaro and Cepitelli [1]. We then apply our results to obtain some minimax theorems, including a generalization to G-spaces of an inequality of Fan [4]. This is our Corollary 3.3.

Then, using theorem 3.2 and theorem 3.4 of [2], we obtain a collection of similar results for M -spaces and for L-spaces.

Finally using a theorem of J. Kindler [5] we prove an intersection theorem for M-spaces.

2 Some KKM type theorems for G-spaces

In this section we present some KKM type theorem for G-spaces. KKM type theorems are intersection theorems for multifunctions which satisfy a condition known as the KKM condition. We begin by recalling the definition of a G-space and the concept of a multifunction of KKM type.

Definition 2.1 We call a triple (X, D, Γ) a G-space if X is a topological space, D is a nonempty subset of X and $\Gamma:<D>: \rightarrow 2^{X}$ is a multifunction from the set $\langle D>$ of nonempty finite subsets of D into X such that

1. $\Gamma(A) \subset \Gamma(B)$ whenever $A \subset B$
2. For each $A=\left\{a_{1}, \ldots, a_{n+1}\right\} \in<>$, there is a continuous function $\phi_{A}: \Delta_{n} \rightarrow \Gamma(A)$ such that for any subset $B=\left\{a_{i 1}, \ldots, a_{1 m}\right\} \subset A$. we have $\phi_{A}\left(\left[e_{i 1}, \ldots, e_{i m}\right]\right) \subset B$ where Δ_{n} denotes the standard closed n-simplex.

Definition 2.2 Let (X, D, Γ) be a G-space. A multifunction $F: D \rightarrow 2^{X}$ such that $\Gamma(A) \subset F(A)$ for every $A \in<D>$ is called $a \mathbf{G}$-KKM multifunction.

The following theorem was proved in [3]
Theorem 2.3 Let (X, D, Γ) be a compact G-space. Let $F: D \rightarrow 2^{X}$ be a closed valued G-KKM multifunction. Then $\bigcap\{F(x): x \in D\} \neq \emptyset$.

Next, we generalize Theorem 2.3 to the case where X is not compact; however, before doing so some definitions are required.

Definition 2.4 Let (X, D, Γ) be a G-space. A subset S of X is G-convex if $\Gamma(A) \subset S$ whenever $A \in<D \cap S>$.

Definition 2.5 Let (X, D, Γ) be an G-space, a set $K \subset X$ is G-compact if for every $A \in<X>$ there is a compact, G-convex set Y such that $K \cup A \subset Y$.

To present the following theorem let us recall that a set H is compactly closed if $H \cap B$ is closed in B for every compact set B.

Theorem 2.6 Let (X, Γ) be an G-space, and let $F: X \rightarrow 2^{X}$ be a closed valued G-KKM multifunction such that:

1. For each $x \in X F(x)$ is compactly closed.
2. There is a compact set $L \subset X$ and an G-compact set $K \subset X$ such that for each compact G-convex set Y with $K \subset Y \subset X$ we have that
$\bigcap\{(F(x) \cap Y: x \in Y\} \subset L$.
Then $\bigcap\{F(x): x \in X\} \neq \emptyset$.

Proof:

It will suffice to show that $\bigcap\{(F(x) \cap L): x \in X\} \neq \emptyset$. From condition (1) it follows that $\{F(x) \cap L: x \in X\}$ is a family of closed sets in the compact set L. Thus, it suffices to show that this family has the finite intersection property.

Suppose $A \in<X>$. By condition (2) there is a compact, G-convex set Y_{0} such that $K \cup A \subset Y_{0}$ and $\bigcap\left\{F(x) \cap Y_{0}: x \in Y_{0}\right\} \subset L$.

But, $\bigcap\left\{\left(F(x) \cap Y_{0}\right): x \in Y_{0}\right\} \subset \bigcap\left\{(F(x) \cap L): x \in Y_{0}\right\} \subset \bigcap\{(F(x) \cap L):$ $x \in A\}$, so, to show that $\bigcap\{(F(x) \cap L): x \in A\} \neq \emptyset$, it suffices to prove that $\bigcap\left\{\left(F(x) \cap Y_{0}\right): x \in Y_{0}\right\} \neq \emptyset$.

Now, because Y_{0} is G-convex, the pair $\left(Y_{0}, \Gamma \mid<Y_{0}>\right)$ is itself a compact G-space, and the multifunction $H: Y_{0} \rightarrow 2^{Y_{0}}$ given by $H(x)=F(x) \cap Y_{0}$, is a G-KKM multifunction.

Indeed, let $B \in<Y_{0}>$. Then,
$\Gamma(B)=\Gamma(B) \cap Y_{0}$
$\subset(\bigcup\{F(x): x \in B\}) \cap Y_{0}$
$=\bigcup\left\{F(x) \cap Y_{0}: x \in B\right\}$
$=\bigcup\{H(x): x \in B\}=H(B)$.
Therefore, H is a G-KKM multifunction for the compact G-space $\left(Y_{0}, \Gamma \mid<Y_{0}>\right)$. Thus by Theorem 2.3, it follows that $\bigcap\left\{\left(F(x) \cap Y_{0}\right): x \in\right.$ $\left.Y_{0}\right\}=\bigcap\left\{H(x): x \in Y_{0}\right\} \neq \emptyset . \diamond$

Now we will introduce a definition which describe a weaker condition for a multifunction than that of G-KKM, and we will use it later. Before doing that we need the following concept.

Definition 2.7 Let (X, D, Γ) be a G-space. Let A be a subset of X. We define the G-convex hull of A, denoted by $c^{G}(A)$, as

$$
\operatorname{co}^{G}(A)=\bigcap\{S \subset X: S \text { is } G \text {-convex, and } A \subset S\}
$$

Definition 2.8 Let (X, D, Γ) be a G-space. A multifunction $F: D \rightarrow 2^{X}$ such that $c^{G}(A) \subset F(A)$ for every $A \in<D>$ is called an \mathbf{G}^{*}-KKM multifunction.

The next proposition and its corollary were proved in [3].

Proposition 2.9 Let (X, D, Γ) be an G-space. Suppose $F: D \rightarrow 2^{X}$ is a $G^{*}-K K M$ multifunction, then it is a G-KKM multifunction.

Corollary 2.10 Let (X, D, Γ) be a compact G-space. Let $F: D \rightarrow 2^{X}$ be a closed valued G^{*}-KKM multifunction. Then $\bigcap\{F(x): x \in D\} \neq \emptyset$.

Theorem 2.11 Let (X, Γ) be a G-space, and let $F, H: X \rightarrow 2^{X}$ be two multifunctions such that:

1. For all $x \in X, H(x)$ is compactly closed, and $F(x) \subset H(x)$;
2. $x \in F(x)$ for every $x \in X$;
3. For all $x \in X, F^{*}(x)$ is G-convex;
4. H satisfies condition (2) of Theorem 2.6.

Then $\bigcap\{H(x): x \in X\} \neq \emptyset$.

Proof:

By Corollary 2.10 it will suffice to show that the multifunction H is a $\mathrm{G}^{*}-\mathrm{KKM}$ multifunction.

Suppose that H is not a G^{*}-KKM multifunction, then there is a subset $A \in<D>$ such that $c o^{G}(A) \not \subset H(A)$.

Thus, there exists $y \in c o^{G}(A)$ such that $y \notin H(A)$, which means that, $y \notin H(x)$ for all $x \in A$, that is, $x \in H^{*}(y)$ for all $x \in A$. Thus, $A \subset H^{*}(y)$.

On the other hand, condition (1) implies $H^{*}(y) \subset F^{*}(y)$. Thus, $F^{*}(y)$ is a G-convex subset containing A, which implies that, $c o^{G}(A) \subset F^{*}(y)$, but $y \in c o^{G}(A)$. Then $y \in F^{*}(y)$, which is equivalent to $y \notin F(y)$, in contradiction with condition (2).

Hence H is a G^{*}-KKM multifunction and so $\bigcap\{H(x) ; x \in X\} \neq \emptyset . \diamond$

Thus, theorems 2.6 and 2.11 generalize to G-spaces, theorems 1 and 2 in [1].

Corollary 2.12 Let (X, Γ) be a compact G-space. Let $F: X \rightarrow 2^{X}$ be a multifunction and let $H: X \rightarrow 2^{X}$ be a closed valued multifunction such that:

1. For all $x \in X, F(x) \subset H(x)$;
2. $x \in F(x)$ for every $x \in X$;
3. For all $x \in X, F^{*}(x)$ is G-convex.

Then $\bigcap\{H(x): x \in X\} \neq \emptyset$.

3 Some Minimax theorems for G-spaces

In this section we present a minimax inequality which is a generalization to G-spaces of an inequality previously proved by K. Fan in [4].

Theorem 3.1 Let (X, Γ) be a compact G-space, let $f: X \times X \rightarrow R$ and $h: X \times X \rightarrow R$ be two functions such that:

1. $h(x, y) \leq f(x, y)$ for all $(x, y) \in X \times X$.
2. The function $h_{x}: X \rightarrow R$ given by $h_{x}(y)=h(x, y)$ is lower semicontinuous.
3. Given any $\lambda \in R$ and any $y \in X$ the set $\{x \in X: f(x, y)>\lambda\}$ is G-convex.

Then for any $\lambda \in R$ either there exists $y_{0} \in X$ such that, $h\left(x, y_{0}\right) \leq \lambda$ for all $x \in X$, or there exists $y_{0} \in X$ such that $f\left(y_{0}, y_{0}\right)>\lambda$.

Proof:

Let us set $H(x)=\{y \in X: h(x, y) \leq \lambda\}$ and $F(x)=\{y \in X: f(x, y) \leq \lambda\}$. Since h_{x} is lower semicontinuous, $H(x)$ is a closed set, so in the terminology of multifunctions, we have a multifunction $F: X \rightarrow 2^{X}$, and a closed valued multifunction $H: X \rightarrow 2^{X}$, such that $F(x) \subset H(x)$ for all $x \in X$ because of condition (1).

Now for the multifunction F, we have two possibilities:
Either there is an $x_{0} \in X$, such that $x_{0} \notin F\left(x_{0}\right)$, in which case we have that $f\left(x_{0}, x_{0}\right)>\lambda$, that is, the second part of the alternative is true.

Or, for all $x \in X, x \in F(x)$. Now $F^{*}(y)=\{x \in X: y \notin F(x)\}=\{x \in X:$ $f(x, y)>\lambda\}$ which is an M-convex set for all $y \in X$ because of condition (3).

Therefore F and H are two multifunctions satisfying the hypotheses of Corollary 2.12 , so we have that, $\bigcap\{H(x): x \in X\} \neq \emptyset$.

Thus if $x_{0} \in \bigcap\{H(x): x \in X\}$ we have that $h\left(x_{0}, y\right) \leq \lambda$ for all $y \in X$, that is the first part of the alternative is true.

Corollary 3.2 With the hypotheses of Theorem 3.1 we obtain the following minimax inequality.

$$
\min _{y \in X} \sup _{x \in X} h(x, y) \leq \sup _{x \in X} f(x, x)
$$

Proof:
Let $\lambda=\sup _{x \in X} f(x, x)$, then either $\lambda=\infty$, in which case the inequality is obvious or λ is finite. Then because of definition of λ, the first part of the alternative in Theorem 3.1 is true. Therefore exists $y_{0} \in X$ such that:

$$
h\left(x, y_{0}\right) \leq \sup _{x \in X} f(x, x) \quad \text { forall } x \in X
$$

Then

$$
\sup _{x \in X} h(x, y) \leq \sup _{x \in X} f(x, x) \quad \text { forall } y \in X
$$

that is,

$$
\sup _{x \in X} h_{x}(y) \leq \sup _{x \in X} f(x, x) \quad \text { forall } y \in X
$$

Thus

$$
\inf _{y \in X} \sup _{x \in X} h_{x}(y) \leq \sup _{x \in X} f(x, x)
$$

but $\sup _{x \in X} h_{x}$ is lower semicontinuous, and it is well known that in this case this infimum is a minimun therefore we have that

$$
\min _{y \in X} \sup _{x \in X} h(x, y) \leq \sup _{x \in X} f(x, x) . \diamond
$$

Based on this, the inequality proved by Fan in [4] can be generalized to G-spaces by the following corollary.

Corollary 3.3 Let (X, Γ) be a compact G-space and let $f: X \times X \rightarrow R$ be a function such that:

1. The function $f_{x}: X \rightarrow R$ given by $f_{x}(y)=f(x, y)$ is lower semicontinuous.
2. Given any $\lambda \in R$ and any $y \in X$ the set $\{x \in X: f(x, y)>\lambda\}$ is G-convex.

Then the following inequality is true

$$
\min _{y \in X} \sup _{x \in X} f(x, y) \leq \sup _{x \in X} f(x, x)
$$

Proof:

Take $h(x, y)=f(x, y)$ in Corollary 3.2. \diamond

4 Some KKM and Minimax Theorems for M-spaces and L-spaces

Theorem 3.2 of [2], shows that if ($X, \mathbf{M}, \mathbf{k}$) is an M-space, and $D \subset X$ is an admissible subset, then there exists the corresponding M-space (X, D, Γ), such that the collection of M-convex subsets with respect to D in ($X, \mathbf{M}, \mathbf{k}$) coincides with the collection of G-convex sets in (X, D, Γ). We will use this result to obtain from the KKM and minimax theorems proved for G-spaces, similar results for M-spaces.

On the other hand, Theorem 3.4 of [2] states that given an L-space (X, D, \mathbf{P}), there is an M-space ($X, \mathbf{M}, \mathbf{k}$) for which D is an admissible subset, and the collection of L-convex subsets in (X, D, \mathbf{P}) coincides with the collection of Mconvex subsets with respect to D in $(X, \mathbf{M}, \mathbf{k})$. Based on this theorem some KKM and minimax theorems for L-spaces will be obtained.

Let us begin by recalling the concepts of M-space and M-convex subset, to introduce next the concept of M^{*}-KKM multifunction.

Notation. Given any integer $m \geq 2$ and $1 \leq i \leq m$, let $\delta_{i}: R^{n} \rightarrow R^{n}$ denote the function defined by $\delta_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$.

Definition 4.1 An M-space is a triple $(X, \mathbf{M}, \mathbf{k})$, where X is a topological space, $\mathbf{M}=M n$: ninteger, $n \leq 1$ is a collection of sets where $M n \subset X^{n}$ for all $n \geq 1$, and $\mathbf{k}=k n:$ ninteger, $n \leq 1$ is a collection of functions satisfying

1. $k_{n+1}: M_{n+1} \times \Delta_{n} \rightarrow X$.
2. If $x \in M_{n+1}(n \geq 1)$ and $i \leq n+1$, then $\delta_{i}(x) \in M_{n}$ and for any $t \in \Delta_{n}$ with $t_{i}=0, k_{n+1}(x, t)=k_{n}\left(\delta_{i}(x), \delta_{i}(t)\right)$.
3. If $x \in M_{n+1}$, then the map $t \rightarrow k_{n+1}(x, t)$, from Δ_{n} to X, is continuous.

Definition 4.2 Let $(X, \mathbf{M}, \mathbf{k})$ be an M-space. A nonempty subset $D \subset X$ is said to be admissible if $D^{n} \subset M_{n}$ for all n.

Definition 4.3 Let $(X, \mathbf{M}, \mathbf{k})$ be an M-space, let $D \subset X$ be an admissible subset. We say that a subset S of X is M-convex with respect to D, if for each subset $A \in<S \cap D>$ and any indexing of $A=\left\{a_{1}, \ldots, a_{n+1}\right\}$, we have that

$$
k_{n+1}\left(\left(a_{1}, \ldots, a_{n+1}\right), \Delta_{n}\right) \subset S
$$

If $D=X$ we say M-convex.

Definition 4.4 Let $(X, \mathbf{M}, \mathbf{k})$ be an M-space, let $D \subset X$ be an admissible subset. Let K be subset of X. We define the M-convex hull of K with respect to D, denoted by $c o_{D}^{M}$ as:

$$
c o_{D}^{M}=\bigcap\{S \subset X: S \text { is M-convex with respect to } D, K \subset S\}
$$

In case $D=X$, the M-convex hull of K with respect to X will be denoted by $c o^{M}$.

Definition 4.5 Let $(X, \mathbf{M}, \mathbf{k})$ be an M-space and let $D \subset X$ be an admissible subset. A multifunction $F: D \rightarrow 2^{X}$ is said to be $M^{*}-K K M$, if for each $A \in<$ $D>, c o_{D}^{M}(A) \subset F(A)$.

Proposition 4.6 Let $(X, \mathbf{M}, \mathbf{k})$ be a compact M-space, and let $D \subset X$ be an admissible subset. Let $F: D \rightarrow 2^{X}$ be a closed valued M^{*}-KKM multifunction. Then $\bigcap\{F(x): x \in D\} \neq \emptyset$.

Proof:
By Theorem 3.2 of [2], the collection of M-convex subsets with respect to D in the space ($X, \mathbf{M}, \mathbf{k}$), coincide with the collection of G-convex subsets in the corresponding G-space (X, D, Γ). Therefore $F: D \rightarrow 2^{X}$ is a G*-KKM multifunction in the G-space (X, D, Γ). Thus, by Corollary 2.9 we have that $\bigcap\{F(x): x \in D\} \neq \emptyset$.

As consequences of our next proposition we obtain minimax results for Mspaces, all these proofs are omitted because they are similar to those corresponding to G-spaces.

Proposition 4.7 Let ($X, \mathbf{M}, \mathbf{k}$) be a compact M-space, such that X is admissible. Let $F: X \rightarrow 2^{X}$ be a multifunction and let $H: X \rightarrow 2^{X}$ be a closed valued multifunction such that:

1. For all $x \in X, F(x) \subset H(x)$;
2. $x \in F(x)$ for every $x \in X$;
3. For all $x \in X, F^{*}(x)$ is M-convex.

Then $\bigcap\{H(x): x \in X\} \neq \emptyset$.

Proposition 4.8 Let $(X, \mathbf{M}, \mathbf{k})$ be a compact M-space, such that X is admissible. Let $f: X \times X \rightarrow R$ and $h: X \times X \rightarrow R$ be two functions such that:

1. $h(x, y) \leq f(x, y)$ for all $(x, y) \in X \times X$.
2. The function $h_{x}: X \rightarrow R$ given by $h_{x}(y)=h(x, y)$ is lower semicontinuous.
3. Given any $\lambda \in R$ and any $y \in X$ the set $\{x \in X: f(x, y)>\lambda\}$ is M-convex.

Then for any $\lambda \in R$ either there exist $y_{0} \in X$ such that for all $x \in X$, $h\left(x, y_{0}\right) \leq \lambda$, or there exists $y_{0} \in X$ such that $f\left(y_{0}, y_{0}\right)>\lambda$.

Proposition 4.9 With the hypotheses of Proposition 4.8 we obtain the following minimax inequality.

$$
\min _{y \in X} \sup _{x \in X} h(x, y) \leq \sup _{x \in X} f(x, x)
$$

Proposition 4.10 Let $(X, \mathbf{M}, \mathbf{k})$ be a compact M-space, such that X is admissible and let $f: X \times X \rightarrow R$ be a function such that:

1. The function $f_{x}: X \rightarrow R$ given by $f_{x}(y)=f(x, y)$ is lower semicontinuous.
2. Given any $\lambda \in R$ and any $y \in X$ the set $\{x \in X: f(x, y)>\lambda\}$ is M-convex.

Then the following inequality is true

$$
\min _{y \in X} \sup _{x \in X} f(x, y) \leq \sup _{x \in X} f(x, x)
$$

This proposition generalizes to M-spaces an inequality proved by Fan in [4].

Now, we give the definition of an L^{*}-KKM multifunction, and then by employing of Theorem 3.4 of [2], we state some KKM and minimax theorems for L-spaces. We begin by recalling the concepts of an L-space, an L-convex subset and the L-convex hull of a subset.

Definition 4.11 An L-space is a triple (X, D, \mathbf{P}), where X is a topological space, D is a nonempty subspace of X and $\mathbf{P}=\left\{P_{a}: a \in X\right\}$ is a collection of functions $P_{a}: D \times[0,1] \rightarrow D$, such that $P_{a}(x, 0)=x, P_{a}(x, 1)=a$, and P_{a} is continuous respect to $t \in[0,1]$. When $D=X$, we write (X, P).

Definition 4.12 Suppose (X, D, \mathbf{P}) is an L-space. Given $A \in<D>$, let $A=\left\{a_{0}, \ldots, a_{n}\right\}$ be any indexing of A by $\{0, \ldots n\}$. Define the multifunction $G_{A}:[0,1]^{n} \rightarrow D$ by

$$
G_{A}\left(t_{0}, \ldots, t_{n}\right)=P_{a_{0}}\left(P_{a_{1} \ldots} \ldots\left(P_{a_{n-1}}\left(a_{n}, t_{n-1}\right) \ldots, t_{1}\right), t_{0}\right)
$$

. For $A=\{a\}$, we define $G_{\{a\}}=\{a\}$. We say that a subset $S \subset X$ is L-convex if for every $A \in<A \cap D>$, and every indexing of $A=\left\{a_{0}, \ldots a_{n}\right\}$, it follows that $G_{A}\left([0,1]^{n}\right) \subset S$.

Definition 4.13 Let (X, D, \mathbf{P}) be an L-space. Let A be a subset of X. We define the L-convex hull of A by

$$
\operatorname{co}^{L}(A)=\bigcap\{S \subset X: S \text { is } L \text {-convex and } A \subset S\}
$$

Definition 4.14 Let (X, D, \mathbf{P}) be an L-space. A multifunction $F: D \rightarrow 2^{X}$ such that $\operatorname{co}^{L}(A) \subset F(A)$ for every $A \in<D>$ is called an \mathbf{L}^{*}-KKM multifunction.

Proposition 4.15 Let (X, D, \mathbf{P}) be a compact L-space. Let $F: D \rightarrow 2^{X}$ be a closed valued L^{*}-KKM multifunction. Then $\bigcap\{F(x): x \in D\} \neq \emptyset$.

Proof:
The proof follows from Theorem 3.4 of [2] and Proposition 4.6 in similar way to the proof of Proposition 4.6.

The followings propositions together with Proposition 3.4 of [2] allow us to present some minimax results for L-spaces, whose proofs are omitted because of their similarities with the corresponding for M-spaces.

Proposition 4.16 Let (X, \mathbf{P}) be a compact L-space. Let $F: X \rightarrow 2^{X}$ be a multifunction and let $H: X \rightarrow 2^{X}$ be a closed valued multifunction such that:

1. For all $x \in X, F(x) \subset H(x)$;
2. $x \in F(x)$ for every $x \in X$;
3. For all $x \in X, F^{*}(x)$ is L-convex.

Then $\bigcap\{H(x): x \in X\} \neq \emptyset$.
Proposition 4.17 Let (X, \mathbf{P}) be a compact L-space, let $f: X \times X \rightarrow R$ and $h: X \times X \rightarrow R$ be two functions such that:

1. $h(x, y) \leq f(x, y)$ for all $(x, y) \in X \times X$.
2. The function $h_{x}: X \rightarrow R$ given by $h_{x}(y)=h(x, y)$ is lower semicontinuous.
3. Given any $\lambda \in R$ and any $y \in X$ the set $\{x \in X: f(x, y)>\lambda\}$ is L-convex. Then for any $\lambda \in R$ either there exist $y_{0} \in X$ such that for all $x \in X$, $h\left(x, y_{0}\right) \leq \lambda$, or there exists $y_{0} \in X$ such that $f\left(y_{0}, y_{0}\right)>\lambda$.

Corollary 4.18 With the hypotheses of Proposition 4.17 we obtain the following minimax inequality.

$$
\min _{y \in X} \sup _{x \in X} h(x, y) \leq \sup _{x \in X} f(x, x)
$$

Corollary 4.19 Let (X, \mathbf{P}) be a compact L-space and let $f: X \times X \rightarrow R$ be a function such that:

1. The function $f_{x}: X \rightarrow R$ given by $f_{x}(y)=f(x, y)$ is lower semicontinuous.
2. Given any $\lambda \in R$ and any $y \in X$ the set $\{x \in X: f(x, y)>\lambda\}$ is L-convex. Then the following inequality is true

$$
\min _{y \in X} \sup _{x \in X} f(x, y) \leq \sup _{x \in X} f(x, x)
$$

5 An intersection Theorem for M-spaces

In this section, by employing an intersection theorem due to J. Kindler [5], proved without using the Theorem of Knaster-Kuratowski-Mazurkiewicz, we show another type of intersection theorem for M-spaces.

Theorem 5.1 For a multifunction $F: X \rightarrow 2^{Y}$ the following are equivalent.

1. $\bigcap\{F(x): x \in X\} \neq \emptyset$.
2. There exist topologies on X and Y such that
(a) Y is compact.
(b) Every value $F(x), x \in X$ is closed.
(c) For all $A \in<X>$ the subset $\bigcap\{F(x): x \in A\}$ is connected.
(d) For all $B \subset Y$ the subset $\bigcap\left\{F^{*}(y): y \in B\right\}$ is connected.

Theorem 5.2 Let $(X, \mathbf{M}, \mathbf{k})$ be an M-space such that X is admissible, and such that $k_{1}(x, 1)=x$ for all $x \in X$. Let Y be a compact topological space and $F: X \rightarrow 2^{Y}$ an upper semicontinuous multifunction such that

1. $F\left(\Gamma_{\left\{x_{1}, x_{2}\right\}}\right)=F\left(x_{1}\right) \cup F\left(x_{2}\right)$ for all $x_{1}, x_{2} \in X$.
2. $\bigcap\{F(x): x \in A\}$ is connected for all $A \in<X>$.

Then $\bigcap\{F(x): x \in X\} \neq \emptyset$.
Proof:
Due to Theorem 5.1 it suffices to prove that for all $B \subset Y$ the subset $\bigcap\left\{F^{*}(y)\right.$: $y \in B\}$ is connected, so let $B \subset Y$ and let us prove that $\bigcap\left\{F^{*}(y): y \in B\right\}$ is connected.

To this end we will show that given $x_{1}, x_{2} \in \bigcap\left\{F^{*}(y): y \in B\right\}$ there is a connected set C such that $\left\{x_{1}, x_{2}\right\} \subset C \subset \bigcap\left\{F^{*}(y): y \in B\right\}$.

Now $x_{1}, x_{2} \in \bigcap\left\{F^{*}(y): y \in B\right\}$ means that $B \cap F\left(x_{1}\right)=\emptyset$ and $B \cap F\left(x_{2}\right)=$ \emptyset, then $B \cap\left(F\left(x_{1}\right) \cup F\left(x_{2}\right)\right)=B \cap F\left(\Gamma_{\left\{x_{1}, x_{2}\right\}}\right)=\emptyset$. Therefore $x_{1}, x_{2} \in$ $\Gamma_{\left\{x_{1}, x_{2}\right\}} \subset \bigcap\left\{F^{*}(y): y \in B\right\}$. On the other hand $\Gamma_{\left\{x_{1}, x_{2}\right\}}=\left\{\bigcup\left\{k_{2}\left(\left(x_{1}, x_{2}\right), t\right):\right.\right.$ $\left.\left.t \in \bar{\Delta}_{1}\right\}\right\} \cup\left\{\bigcup\left\{k_{2}\left(\left(x_{2}, x_{1}\right), t\right): t \in \bar{\Delta}_{1}\right\}\right\}$ is path-connected.

In fact, let $x, y \in \Gamma_{\left\{x_{1}, x_{2}\right\}}$. We will show that there is a path joining x and y. Assume that $x=k_{2}\left(\left(x_{1}, x_{2}\right),\left(t_{1}, t_{2}\right)\right)$ with $\left(t_{1}, t_{2}\right) \in \bar{\Delta}_{1}$ and consider the path $\phi:[0,1] \rightarrow X$ defined by $\phi(t)=k_{2}\left(\left(x_{1}, x_{2}\right),\left(t_{1}+t-t t_{1}, t_{2}-t t_{2}\right)\right)$. By definition of M-space it follows that ϕ is continuous function such that $\phi(0)=k_{2}\left(\left(x_{1}, x_{2}\right),\left(t_{1}, t_{2}\right)\right)$ and $\phi(1)=k_{2}\left(\left(x_{1}, x_{2}\right),(1,0)\right)=k_{1}\left(x_{1}, 1\right)=x_{1}$. Therefore ϕ is a path joining x and x_{1}.

In a similar way we can construct a path joining y and x_{1}. Thus any pair $x, y \in \Gamma_{\left\{x_{1}, x_{2}\right\}}$ can be joined by a path, which means that, $\Gamma_{\left\{x_{1}, x_{2}\right\}}$ is path connected.

Therefore, given two points $\left\{x_{1}, x_{2}\right\} \in \bigcap\left\{F^{*}(y): y \in B\right\}$ we have found a connected set $C=\Gamma_{\left\{x_{1}, x_{2}\right\}}$ containing these two points and contained in $\bigcap\left\{F^{*}(y): y \in B\right\}$, this means that $\bigcap\left\{F^{*}(y): y \in B\right\}$ is connected. \diamond

References

[1] C. Bardaro and R. Cepitelli, Some further generalizations of the Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities, J. Math. Anal. Appl 132 (1988), 484-490.
[2] George L. Cain Jr., Luis González, The Knaster-Kuratowski-mazurkiewics theorem and abstract convexities, J. Math. Anal. Appl. 338 (2008) 563-571
[3] L. González, S. Kilmer, J. Rebaza, From a KKM theorem to Nash equilibria in L-spaces, Topology and its Applications, 155 (2007), 165-170
[4] K. Fan, A Minimax Inequality and Applications, Inequalities III, New York, Academic Press, 1972. 142 (1961), 305-310.
[5] J. Kindler, Topological intersection theorems, Proc.Amer.Math.Soc 117,1993, 1003-1011.
[6] J.V. Llinares, Abstract Convexity, Fixed point and Applications. Ph.D Thesis, University of Alicante, Spain,1994.
[7] S. Park and H. Kim, Coincidence Theorems for Admissible Multifunctions on Generalized Convex Spaces, J.Math.Anal.Appl,197,1996,173-187.

Luis González Espinoza.
Departamento de Matemáticas
Facultad de Ciencias,
Universidad de los Andes
Mérida, Venezuela.

