Some KKM type, intersection and minimax theorems in spaces with abstract convexities

Luis González Espinoza

Abstract. In this paper we obtain KKM type theorems for G-spaces, M-spaces and L-spaces which are spaces with no linear structure, these theorems are used to obtain some minimax results for these spaces. Also an intersection theorem for M-spaces is presented.

Resumen. En este trabajo obtenemos teoremas de tipo KKM para G-espacios, M-espacios y L-espacios que son espacios sin una estructura lineal, estos teoremas se utilizan para obtener unos resultados minimax para estos espacios. También se presenta un teorema de intersección para M-espacios.

1 Introduction

In this paper we obtain some KKM type theorems for G-spaces. These are Theorems 2.3, 2.6 and 2.11. These latter two results generalize Theorems 1 and Theorem 2 of Bardaro and Cepitelli [1]. We then apply our results to obtain some minimax theorems, including a generalization to G-spaces of an inequality of Fan [4]. This is our Corollary 3.3.

Then, using theorem 3.2 and theorem 3.4 of [2], we obtain a collection of similar results for M-spaces and for L-spaces.

Finally using a theorem of J. Kindler [5] we prove an intersection theorem for M-spaces.

2 Some KKM type theorems for G-spaces

In this section we present some KKM type theorem for G-spaces. KKM type theorems are intersection theorems for multifunctions which satisfy a condition known as the KKM condition. We begin by recalling the definition of a G-space and the concept of a multifunction of KKM type.

Definition 2.1 We call a triple (X, D, Γ) a G-space if X is a topological space, D is a nonempty subset of X and $\Gamma :< D >:\to 2^X$ is a multifunction from the set < D > of nonempty finite subsets of D into X such that

- 1. $\Gamma(A) \subset \Gamma(B)$ whenever $A \subset B$
- 2. For each $A = \{a_1, ..., a_{n+1}\} \in \langle D \rangle$, there is a continuous function $\phi_A : \Delta_n \to \Gamma(A)$ such that for any subset $B = \{a_{i1}, ..., a_{1m}\} \subset A$. we have $\phi_A([e_{i1}, ..., e_{im}]) \subset B$ where Δ_n denotes the standard closed n-simplex.

Definition 2.2 Let (X, D, Γ) be a *G*-space. A multifunction $F : D \to 2^X$ such that $\Gamma(A) \subset F(A)$ for every $A \in \langle D \rangle$ is called a **G-KKM multifunction**.

The following theorem was proved in [3]

Theorem 2.3 Let (X, D, Γ) be a compact G-space. Let $F : D \to 2^X$ be a closed valued G-KKM multifunction. Then $\bigcap \{F(x) : x \in D\} \neq \emptyset$.

Next, we generalize Theorem 2.3 to the case where X is not compact; however, before doing so some definitions are required.

Definition 2.4 Let (X, D, Γ) be a G-space. A subset S of X is G-convex if $\Gamma(A) \subset S$ whenever $A \in \langle D \cap S \rangle$.

Definition 2.5 Let (X, D, Γ) be an G-space, a set $K \subset X$ is **G-compact** if for every $A \in \langle X \rangle$ there is a compact, G-convex set Y such that $K \cup A \subset Y$.

To present the following theorem let us recall that a set H is compactly closed if $H \cap B$ is closed in B for every compact set B.

Theorem 2.6 Let (X, Γ) be an G-space, and let $F : X \to 2^X$ be a closed valued G-KKM multifunction such that:

- 1. For each $x \in X$ F(x) is compactly closed.
- 2. There is a compact set $L \subset X$ and an G-compact set $K \subset X$ such that for each compact G-convex set Y with $K \subset Y \subset X$ we have that

 $\bigcap \{ (F(x) \cap Y : x \in Y) \} \subset L.$

Then $\bigcap \{F(x) : x \in X\} \neq \emptyset$.

Proof:

It will suffice to show that $\bigcap \{ (F(x) \cap L) : x \in X \} \neq \emptyset$. From condition (1) it follows that $\{F(x) \cap L : x \in X\}$ is a family of closed sets in the compact set L. Thus, it suffices to show that this family has the finite intersection property.

Suppose $A \in \langle X \rangle$. By condition (2) there is a compact, G-convex set Y_0 such that $K \cup A \subset Y_0$ and $\bigcap \{F(x) \cap Y_0 : x \in Y_0\} \subset L$.

But, $\bigcap \{ (F(x) \cap Y_0) : x \in Y_0 \} \subset \bigcap \{ (F(x) \cap L) : x \in Y_0 \} \subset \bigcap \{ (F(x) \cap L) : x \in A \}$, so, to show that $\bigcap \{ (F(x) \cap L) : x \in A \} \neq \emptyset$, it suffices to prove that $\bigcap \{ (F(x) \cap Y_0) : x \in Y_0 \} \neq \emptyset$.

Now, because Y_0 is G-convex, the pair $(Y_0, \Gamma | < Y_0 >)$ is itself a compact G-space, and the multifunction $H: Y_0 \to 2^{Y_0}$ given by $H(x) = F(x) \cap Y_0$, is a G-KKM multifunction.

Indeed, let $B \in \langle Y_0 \rangle$. Then,

 $\Gamma(B) = \Gamma(B) \cap Y_0$

 $\subset (\bigcup \{F(x) : x \in B\}) \cap Y_0$

 $= \bigcup \{ F(x) \cap Y_0 : x \in B \}$

 $= \bigcup \{ H(x) : x \in B \} = H(B).$

Therefore, H is a G-KKM multifunction for the compact G-space

 $(Y_0, \Gamma| < Y_0 >)$. Thus by Theorem 2.3, it follows that $\bigcap \{ (F(x) \cap Y_0) : x \in Y_0 \} = \bigcap \{ H(x) : x \in Y_0 \} \neq \emptyset$. \diamondsuit

Now we will introduce a definition which describe a weaker condition for a multifunction than that of G-KKM, and we will use it later. Before doing that we need the following concept.

Definition 2.7 Let (X, D, Γ) be a G-space. Let A be a subset of X. We define the G-convex hull of A, denoted by $co^G(A)$, as

$$co^G(A) = \bigcap \{ S \subset X : S \text{ is } G\text{-convex, and } A \subset S \}$$

Definition 2.8 Let (X, D, Γ) be a *G*-space. A multifunction $F : D \to 2^X$ such that $co^G(A) \subset F(A)$ for every $A \in \langle D \rangle$ is called an **G*-KKM multifunction**.

The next proposition and its corollary were proved in [3].

Proposition 2.9 Let (X, D, Γ) be an G-space. Suppose $F : D \to 2^X$ is a G*-KKM multifunction, then it is a G-KKM multifunction.

Corollary 2.10 Let (X, D, Γ) be a compact G-space. Let $F : D \to 2^X$ be a closed valued G^* -KKM multifunction. Then $\bigcap \{F(x) : x \in D\} \neq \emptyset$.

Theorem 2.11 Let (X, Γ) be a G-space, and let $F, H : X \to 2^X$ be two multifunctions such that:

- 1. For all $x \in X$, H(x) is compactly closed, and $F(x) \subset H(x)$;
- 2. $x \in F(x)$ for every $x \in X$;
- 3. For all $x \in X$, $F^*(x)$ is G-convex;
- 4. H satisfies condition (2) of Theorem 2.6.

Then $\bigcap \{H(x) : x \in X\} \neq \emptyset$.

Proof:

By Corollary 2.10 it will suffice to show that the multifunction H is a G*-KKM multifunction.

Suppose that H is not a G*-KKM multifunction, then there is a subset $A \in \langle D \rangle$ such that $co^G(A) \not\subset H(A)$.

Thus, there exists $y \in co^G(A)$ such that $y \notin H(A)$, which means that, $y \notin H(x)$ for all $x \in A$, that is, $x \in H^*(y)$ for all $x \in A$. Thus, $A \subset H^*(y)$.

On the other hand, condition (1) implies $H^*(y) \subset F^*(y)$. Thus, $F^*(y)$ is a G-convex subset containing A, which implies that, $co^G(A) \subset F^*(y)$, but $y \in co^G(A)$. Then $y \in F^*(y)$, which is equivalent to $y \notin F(y)$, in contradiction with condition (2).

Hence H is a G*-KKM multifunction and so $\bigcap \{H(x); x \in X\} \neq \emptyset$.

Thus, theorems 2.6 and 2.11 generalize to G-spaces, theorems 1 and 2 in [1].

Corollary 2.12 Let (X, Γ) be a compact G-space. Let $F : X \to 2^X$ be a multifunction and let $H : X \to 2^X$ be a closed valued multifunction such that:

- 1. For all $x \in X$, $F(x) \subset H(x)$;
- 2. $x \in F(x)$ for every $x \in X$;
- 3. For all $x \in X$, $F^*(x)$ is G-convex.

Then $\bigcap \{H(x) : x \in X\} \neq \emptyset$.

3 Some Minimax theorems for G-spaces

In this section we present a minimax inequality which is a generalization to G-spaces of an inequality previously proved by K. Fan in [4].

Theorem 3.1 Let (X, Γ) be a compact G-space, let $f : X \times X \to R$ and $h : X \times X \to R$ be two functions such that:

- 1. $h(x,y) \leq f(x,y)$ for all $(x,y) \in X \times X$.
- 2. The function $h_x : X \to R$ given by $h_x(y) = h(x, y)$ is lower semicontinuous.
- 3. Given any $\lambda \in R$ and any $y \in X$ the set $\{x \in X : f(x,y) > \lambda\}$ is *G*-convex.

Then for any $\lambda \in R$ either there exists $y_0 \in X$ such that , $h(x, y_0) \leq \lambda$ for all $x \in X$, or there exists $y_0 \in X$ such that $f(y_0, y_0) > \lambda$.

Proof:

Let us set $H(x) = \{y \in X : h(x, y) \leq \lambda\}$ and $F(x) = \{y \in X : f(x, y) \leq \lambda\}$. Since h_x is lower semicontinuous, H(x) is a closed set, so in the terminology of multifunctions, we have a multifunction $F : X \to 2^X$, and a closed valued multifunction $H : X \to 2^X$, such that $F(x) \subset H(x)$ for all $x \in X$ because of condition (1).

Now for the multifunction F, we have two possibilities:

Either there is an $x_0 \in X$, such that $x_0 \notin F(x_0)$, in which case we have that $f(x_0, x_0) > \lambda$, that is, the second part of the alternative is true.

Or, for all $x \in X$, $x \in F(x)$. Now $F^*(y) = \{x \in X : y \notin F(x)\} = \{x \in X : f(x, y) > \lambda\}$ which is an M-convex set for all $y \in X$ because of condition (3).

Therefore F and H are two multifunctions satisfying the hypotheses of Corollary 2.12, so we have that, $\bigcap \{H(x) : x \in X\} \neq \emptyset$.

Thus if $x_0 \in \bigcap \{H(x) : x \in X\}$ we have that $h(x_0, y) \leq \lambda$ for all $y \in X$, that is the first part of the alternative is true. \diamond

Corollary 3.2 With the hypotheses of Theorem 3.1 we obtain the following minimax inequality.

$$\min_{y \in X} \sup_{x \in X} h(x, y) \le \sup_{x \in X} f(x, x).$$

Proof:

Let $\lambda = \sup_{x \in X} f(x, x)$, then either $\lambda = \infty$, in which case the inequality is obvious or λ is finite. Then because of definition of λ , the first part of the alternative in Theorem 3.1 is true. Therefore exists $y_0 \in X$ such that:

$$h(x, y_0) \le \sup_{x \in X} f(x, x) \text{ for all } x \in X.$$

Then

$$sup_{x \in X}h(x, y) \le sup_{x \in X}f(x, x)$$
 for all $y \in X$

that is,

$$sup_{x \in X}h_x(y) \leq sup_{x \in X}f(x,x)$$
 for all $y \in X$.

Thus

 $inf_{y\in X}sup_{x\in X}h_x(y) \leq sup_{x\in X}f(x,x);$

but $sup_{x\in X}h_x$ is lower semicontinuous, and it is well known that in this case this infimum is a minimum therefore we have that

 $min_{y\in X}sup_{x\in X}h(x,y) \leq sup_{x\in X}f(x,x).$

Based on this, the inequality proved by Fan in [4] can be generalized to G-spaces by the following corollary.

Corollary 3.3 Let (X, Γ) be a compact G-space and let $f : X \times X \to R$ be a function such that:

- 1. The function $f_x : X \to R$ given by $f_x(y) = f(x, y)$ is lower semicontinuous.
- 2. Given any $\lambda \in R$ and any $y \in X$ the set $\{x \in X : f(x,y) > \lambda\}$ is *G*-convex.

Then the following inequality is true

 $\min_{y \in X} \sup_{x \in X} f(x, y) \le \sup_{x \in X} f(x, x).$

Proof:

Take h(x, y) = f(x, y) in Corollary 3.2. \diamond

4 Some KKM and Minimax Theorems for M-spaces and L-spaces

Theorem 3.2 of [2], shows that if $(X, \mathbf{M}, \mathbf{k})$ is an M-space, and $D \subset X$ is an admissible subset, then there exists the corresponding M-space (X, D, Γ) , such that the collection of M-convex subsets with respect to D in $(X, \mathbf{M}, \mathbf{k})$ coincides with the collection of G-convex sets in (X, D, Γ) . We will use this result to obtain from the KKM and minimax theorems proved for G-spaces, similar results for M-spaces.

On the other hand, Theorem 3.4 of [2] states that given an L-space (X, D, \mathbf{P}) , there is an M-space $(X, \mathbf{M}, \mathbf{k})$ for which D is an admissible subset, and the collection of L-convex subsets in (X, D, \mathbf{P}) coincides with the collection of Mconvex subsets with respect to D in $(X, \mathbf{M}, \mathbf{k})$. Based on this theorem some KKM and minimax theorems for L-spaces will be obtained. Let us begin by recalling the concepts of M-space and M-convex subset, to introduce next the concept of M*-KKM multifunction.

Notation. Given any integer $m \ge 2$ and $1 \le i \le m$, let $\delta_i : \mathbb{R}^n \to \mathbb{R}^n$ denote the function defined by $\delta_i(x_1, ..., x_n) = (x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$.

Definition 4.1 An M-space is a triple $(X, \mathbf{M}, \mathbf{k})$, where X is a topological space, $\mathbf{M} = Mn$: ninteger, $n \leq 1$ is a collection of sets where $Mn \subset X^n$ for all $n \geq 1$, and $\mathbf{k} = kn$: ninteger, $n \leq 1$ is a collection of functions satisfying

- 1. $k_{n+1}: M_{n+1} \times \Delta_n \to X$.
- 2. If $x \in M_{n+1}$ $(n \ge 1)$ and $i \le n+1$, then $\delta_i(x) \in M_n$ and for any $t \in \Delta_n$ with $t_i = 0, k_{n+1}(x, t) = k_n(\delta_i(x), \delta_i(t))$.
- 3. If $x \in M_{n+1}$, then the map $t \to k_{n+1}(x,t)$, from Δ_n to X, is continuous.

Definition 4.2 Let $(X, \mathbf{M}, \mathbf{k})$ be an M-space. A nonempty subset $D \subset X$ is said to be admissible if $D^n \subset M_n$ for all n.

Definition 4.3 Let $(X, \mathbf{M}, \mathbf{k})$ be an M-space, let $D \subset X$ be an admissible subset. set. We say that a subset S of X is M-convex with respect to D, if for each subset $A \in \langle S \cap D \rangle$ and any indexing of $A = \{a_1, ..., a_{n+1}\}$, we have that

$$k_{n+1}((a_1,\ldots,a_{n+1}),\Delta_n) \subset S.$$

If D = X we say M-convex.

Definition 4.4 Let $(X, \mathbf{M}, \mathbf{k})$ be an M-space, let $D \subset X$ be an admissible subset. set. Let K be subset of X. We define the M-convex hull of K with respect to D, denoted by co_D^M as:

 $co_D^M = \bigcap \{ S \subset X : S \text{ is } M \text{-convex with respect to } D, K \subset S \}.$

In case D = X, the M-convex hull of K with respect to X will be denoted by co^{M} .

Definition 4.5 Let $(X, \mathbf{M}, \mathbf{k})$ be an M-space and let $D \subset X$ be an admissible subset. A multifunction $F : D \to 2^X$ is said to be M^* -KKM, if for each $A \in \langle D \rangle$, $co_D^M(A) \subset F(A)$.

Proposition 4.6 Let $(X, \mathbf{M}, \mathbf{k})$ be a compact M-space, and let $D \subset X$ be an admissible subset. Let $F : D \to 2^X$ be a closed valued M^* -KKM multifunction. Then $\bigcap \{F(x) : x \in D\} \neq \emptyset$.

Proof:

By Theorem 3.2 of [2], the collection of M-convex subsets with respect to D in the space $(X, \mathbf{M}, \mathbf{k})$, coincide with the collection of G-convex subsets in the corresponding G-space (X, D, Γ) . Therefore $F : D \to 2^X$ is a G*-KKM multifunction in the G-space (X, D, Γ) . Thus, by Corollary 2.9 we have that $\bigcap \{F(x) : x \in D\} \neq \emptyset$. \diamondsuit

As consequences of our next proposition we obtain minimax results for Mspaces, all these proofs are omitted because they are similar to those corresponding to G-spaces.

Proposition 4.7 Let $(X, \mathbf{M}, \mathbf{k})$ be a compact M-space, such that X is admissible. Let $F: X \to 2^X$ be a multifunction and let $H: X \to 2^X$ be a closed valued multifunction such that:

- 1. For all $x \in X$, $F(x) \subset H(x)$;
- 2. $x \in F(x)$ for every $x \in X$;
- 3. For all $x \in X$, $F^*(x)$ is M-convex.

Then $\bigcap \{H(x) : x \in X\} \neq \emptyset$.

Proposition 4.8 Let $(X, \mathbf{M}, \mathbf{k})$ be a compact M-space, such that X is admissible. Let $f : X \times X \to R$ and $h : X \times X \to R$ be two functions such that:

- 1. $h(x,y) \leq f(x,y)$ for all $(x,y) \in X \times X$.
- 2. The function $h_x : X \to R$ given by $h_x(y) = h(x, y)$ is lower semicontinuous.
- 3. Given any $\lambda \in R$ and any $y \in X$ the set $\{x \in X : f(x,y) > \lambda\}$ is *M*-convex.

Then for any $\lambda \in R$ either there exist $y_0 \in X$ such that for all $x \in X$, $h(x, y_0) \leq \lambda$, or there exists $y_0 \in X$ such that $f(y_0, y_0) > \lambda$.

Proposition 4.9 With the hypotheses of Proposition 4.8 we obtain the following minimax inequality.

 $min_{y \in X} sup_{x \in X} h(x, y) \le sup_{x \in X} f(x, x).$

Proposition 4.10 Let $(X, \mathbf{M}, \mathbf{k})$ be a compact M-space, such that X is admissible and let $f : X \times X \to R$ be a function such that:

- 1. The function $f_x : X \to R$ given by $f_x(y) = f(x, y)$ is lower semicontinuous.
- 2. Given any $\lambda \in R$ and any $y \in X$ the set $\{x \in X : f(x,y) > \lambda\}$ is *M*-convex.

Then the following inequality is true

$$\min_{y \in X} \sup_{x \in X} f(x, y) \le \sup_{x \in X} f(x, x).$$

This proposition generalizes to M-spaces an inequality proved by Fan in [4].

Now, we give the definition of an L*-KKM multifunction, and then by employing of Theorem 3.4 of [2], we state some KKM and minimax theorems for L-spaces. We begin by recalling the concepts of an L-space, an L-convex subset and the L-convex hull of a subset.

Definition 4.11 An L-space is a triple (X, D, \mathbf{P}) , where X is a topological space, D is a nonempty subspace of X and $\mathbf{P} = \{P_a : a \in X\}$ is a collection of functions $P_a : D \times [0,1] \rightarrow D$, such that $P_a(x,0) = x$, $P_a(x,1) = a$, and P_a is continuous respect to $t \in [0,1]$. When D = X, we write (X, P).

Definition 4.12 Suppose (X, D, \mathbf{P}) is an L-space. Given $A \in \langle D \rangle$, let $A = \{a_0, ..., a_n\}$ be any indexing of A by $\{0, ...n\}$. Define the multifunction $G_A : [0, 1]^n \to D$ by

$$G_A(t_0, ..., t_n) = P_{a_0}(P_{a_1}...(P_{a_{n-1}}(a_n, t_{n-1})..., t_1), t_0)$$

. For $A = \{a\}$, we define $G_{\{a\}} = \{a\}$. We say that a subset $S \subset X$ is L-convex if for every $A \in A \cap D >$, and every indexing of $A = \{a_0, ..., a_n\}$, it follows that $G_A([0,1]^n) \subset S$.

Definition 4.13 Let (X, D, \mathbf{P}) be an L-space. Let A be a subset of X. We define the L-convex hull of A by

$$co^{L}(A) = \bigcap \{ S \subset X : S \text{ is } L\text{-convex and } A \subset S \}$$

Definition 4.14 Let (X, D, \mathbf{P}) be an L-space. A multifunction $F : D \to 2^X$ such that $co^L(A) \subset F(A)$ for every $A \in \langle D \rangle$ is called an L*-KKM multifunction.

Proposition 4.15 Let (X, D, \mathbf{P}) be a compact L-space. Let $F : D \to 2^X$ be a closed valued L^* -KKM multifunction. Then $\bigcap \{F(x) : x \in D\} \neq \emptyset$.

Proof:

The proof follows from Theorem 3.4 of [2] and Proposition 4.6 in similar way to the proof of Proposition 4.6.

The followings propositions together with Proposition 3.4 of [2] allow us to present some minimax results for L-spaces, whose proofs are omitted because of their similarities with the corresponding for M-spaces.

Proposition 4.16 Let (X, \mathbf{P}) be a compact L-space. Let $F : X \to 2^X$ be a multifunction and let $H : X \to 2^X$ be a closed valued multifunction such that:

- 1. For all $x \in X$, $F(x) \subset H(x)$;
- 2. $x \in F(x)$ for every $x \in X$;
- 3. For all $x \in X$, $F^*(x)$ is L-convex.

Then $\bigcap \{H(x) : x \in X\} \neq \emptyset$.

Proposition 4.17 Let (X, \mathbf{P}) be a compact L-space, let $f : X \times X \to R$ and $h : X \times X \to R$ be two functions such that:

- 1. $h(x,y) \leq f(x,y)$ for all $(x,y) \in X \times X$.
- 2. The function $h_x : X \to R$ given by $h_x(y) = h(x, y)$ is lower semicontinuous.
- 3. Given any $\lambda \in R$ and any $y \in X$ the set $\{x \in X : f(x, y) > \lambda\}$ is L-convex.

Then for any $\lambda \in R$ either there exist $y_0 \in X$ such that for all $x \in X$, $h(x, y_0) \leq \lambda$, or there exists $y_0 \in X$ such that $f(y_0, y_0) > \lambda$.

Corollary 4.18 With the hypotheses of Proposition 4.17 we obtain the following minimax inequality.

 $min_{y \in X} sup_{x \in X} h(x, y) \le sup_{x \in X} f(x, x).$

Corollary 4.19 Let (X, \mathbf{P}) be a compact L-space and let $f : X \times X \to R$ be a function such that:

1. The function $f_x : X \to R$ given by $f_x(y) = f(x, y)$ is lower semicontinuous.

2. Given any $\lambda \in R$ and any $y \in X$ the set $\{x \in X : f(x, y) > \lambda\}$ is L-convex.

Then the following inequality is true

 $\min_{y \in X} \sup_{x \in X} f(x, y) \le \sup_{x \in X} f(x, x).$

5 An intersection Theorem for M-spaces

In this section, by employing an intersection theorem due to J. Kindler [5], proved without using the Theorem of Knaster-Kuratowski-Mazurkiewicz, we show another type of intersection theorem for M-spaces.

Theorem 5.1 For a multifunction $F: X \to 2^Y$ the following are equivalent.

- 1. $\bigcap \{F(x) : x \in X\} \neq \emptyset.$
- 2. There exist topologies on X and Y such that
 - (a) Y is compact.
 - (b) Every value $F(x), x \in X$ is closed.
 - (c) For all $A \in \langle X \rangle$ the subset $\bigcap \{F(x) : x \in A\}$ is connected.
 - (d) For all $B \subset Y$ the subset $\bigcap \{F^*(y) : y \in B\}$ is connected.

Theorem 5.2 Let $(X, \mathbf{M}, \mathbf{k})$ be an M-space such that X is admissible, and such that $k_1(x, 1) = x$ for all $x \in X$. Let Y be a compact topological space and $F: X \to 2^Y$ an upper semicontinuous multifunction such that

- 1. $F(\Gamma_{\{x_1,x_2\}}) = F(x_1) \cup F(x_2)$ for all $x_1, x_2 \in X$.
- 2. $\bigcap \{F(x) : x \in A\}$ is connected for all $A \in \langle X \rangle$.

Then $\bigcap \{F(x) : x \in X\} \neq \emptyset$.

Proof:

Due to Theorem 5.1 it suffices to prove that for all $B \subset Y$ the subset $\bigcap \{F^*(y) : y \in B\}$ is connected, so let $B \subset Y$ and let us prove that $\bigcap \{F^*(y) : y \in B\}$ is connected.

To this end we will show that given $x_1, x_2 \in \bigcap \{F^*(y) : y \in B\}$ there is a connected set C such that $\{x_1, x_2\} \subset C \subset \bigcap \{F^*(y) : y \in B\}$.

Now $x_1, x_2 \in \bigcap \{F^*(y) : y \in B\}$ means that $B \cap F(x_1) = \emptyset$ and $B \cap F(x_2) = \emptyset$, then $B \cap (F(x_1) \cup F(x_2)) = B \cap F(\Gamma_{\{x_1, x_2\}}) = \emptyset$. Therefore $x_1, x_2 \in \Gamma_{\{x_1, x_2\}} \subset \bigcap \{F^*(y) : y \in B\}$. On the other hand $\Gamma_{\{x_1, x_2\}} = \{\bigcup \{k_2((x_1, x_2), t) : t \in \overline{\Delta}_1\}\} \cup \{\bigcup \{k_2((x_2, x_1), t) : t \in \overline{\Delta}_1\}\}$ is path-connected.

In fact, let $x, y \in \Gamma_{\{x_1, x_2\}}$. We will show that there is a path joining x and y. Assume that $x = k_2((x_1, x_2), (t_1, t_2))$ with $(t_1, t_2) \in \overline{\Delta}_1$ and consider the path $\phi : [0, 1] \to X$ defined by $\phi(t) = k_2((x_1, x_2), (t_1 + t - tt_1, t_2 - tt_2))$. By definition of M-space it follows that ϕ is continuous function such that $\phi(0) = k_2((x_1, x_2), (t_1, t_2))$ and $\phi(1) = k_2((x_1, x_2), (1, 0)) = k_1(x_1, 1) = x_1$. Therefore ϕ is a path joining x and x_1 .

In a similar way we can construct a path joining y and x_1 . Thus any pair $x, y \in \Gamma_{\{x_1, x_2\}}$ can be joined by a path, which means that, $\Gamma_{\{x_1, x_2\}}$ is path connected.

Therefore, given two points $\{x_1, x_2\} \in \bigcap \{F^*(y) : y \in B\}$ we have found a connected set $C = \Gamma_{\{x_1, x_2\}}$ containing these two points and contained in $\bigcap \{F^*(y) : y \in B\}$, this means that $\bigcap \{F^*(y) : y \in B\}$ is connected. \diamond

References

- C. Bardaro and R. Cepitelli, Some further generalizations of the Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities, J. Math. Anal. Appl 132 (1988), 484-490.
- [2] George L. Cain Jr., Luis González, The Knaster-Kuratowski-mazurkiewics theorem and abstract convexities, J. Math. Anal. Appl. 338 (2008) 563-571
- [3] L. González, S. Kilmer, J. Rebaza, From a KKM theorem to Nash equilibria in L-spaces, Topology and its Applications, 155 (2007), 165-170
- [4] K. Fan, A Minimax Inequality and Applications, Inequalities III, New York, Academic Press, 1972. 142 (1961), 305-310.
- [5] J. Kindler, Topological intersection theorems, Proc.Amer.Math.Soc 117,1993, 1003-1011.
- [6] J.V. Llinares, Abstract Convexity, Fixed point and Applications. Ph.D Thesis, University of Alicante, Spain, 1994.
- [7] S. Park and H. Kim, Coincidence Theorems for Admissible Multifunctions on Generalized Convex Spaces, J.Math.Anal.Appl,197,1996,173-187.

Luis González Espinoza. Departamento de Matemáticas Facultad de Ciencias, Universidad de los Andes Mérida, Venezuela.